Challenging Problems in Geometry

Alfred S. Posamentier Charles T. Salkind

Challenging Problems in Geometry

ALFRED S. POSAMENTIER
Professor of Mathematics Education
The City College of the City University of New York

CHARLES T. SALKIND
Late Professor of Mathematics
Polytechnic University, New York

DOVER PUBLICATIONS, INC.
New York

Copyright

Copynght © 1970,1988 by Alfred S. Posamentier.
All rights reserved under Pan American and International Copyright Conventions.

Published in Canada by General Publishing Company, Ltd, 30 Lesmill Road, Don Mills, Toronto, Ontario.

Published in the United Kingdom by Constable and Company, Ltd., 3 The Lanchesters, 162-164 Fulham Palace Road, London W6 9ER.

Bibliographical Note

This Dover edition, first published in 1996, is an unabridged, very slightly altered republication of the work first published in 1970 by the Macmillan Company, New York, and again in 1988 by Dale Seymour Publications, Palo Alto, California. For the Dover edition, Professor Posamentier has made two slight alterations in the introductory material

Library of Congress Cataloging-in-Publication Data

Posamentier, Alfred S.
Challenging problems in geometry / Alfred S Posamentier, Charles T. Salkind
p. $\quad \mathrm{cm}$

Originally published: New York: The Macmillan Company, 1970.
ISBN 0-486-69154-3 (pbk.)

1. Geometry-Problems, exercises, etc. I. Salkind, Charles T., 1898- . II. Title.
QA459.P68 1996
516'.0076—dc20 95-52535

CONTENTS

Introduction iv
Preparing to Solve a Problem vii
SECTION IA New Twist on Familiar Topics

1. Congruence and Parallelism
Problems Solutions 49
2. Triangles in Proportion 65
3. The Pythagorean Theorem 77
4. Circles Revisited 89
5. Area Relationships 116
SECTION II
Further Investigations
6. A Geometric Potpourri 135
7. Ptolemy and the Cyclic Quadrilateral 164
8. Menelaus and Ceva: Collinearity and Concurrency 36 175
9. The Simson Line 43 202
10. The Theorem of Stewart 45 214
Hints 221
Appendix I:
Selected Definitions, Postulates, and Theorems 239
Appendix II:
Selected Formulas 244

INTRODUCTION

The challenge of well-posed problems transcends national boundaries, ethnic origins, political systems, economic doctrines, and religious beliefs; the appeal is almost universal. Why? You are invited to formulate your own explanation. We simply accept the observation and exploit it here for entertainment and enrichment.

This book is a new, combined edition of two volumes first published in 1970. It contains nearly two hundred problems, many with extensions or variations that we call challenges. Supplied with pencil and paper and fortified with a diligent attitude, you can make this material the starting point for exploring unfamiliar or little-known aspects of mathematics. The challenges will spur you on; perhaps you can even supply your own challenges in some cases. A study of these nonroutine problems can provide valuable underpinnings for work in more advanced mathematics.

This book, with slight modifications made, is as appropriate now as it was a quarter century ago when it was first published. The National Council of Teachers of Mathematics (NCTM), in their Curriculum and Evaluation Standards for High School Mathematics (1989), lists problem solving as its first standard, stating that " mathematical problem solving in its broadest sense is nearly synonymous with doing mathematics." They go on to say, " [problem solving] is a process by which the fabric of mathematics is identified in later standards as both constructive and reinforced."

This strong emphasis on mathematics is by no means a new agenda item. In 1980, the NCTM published An Agenda for Action. There, the NCTM also had problem solving as its first item, stating, "educators should give priority to the identification and analysis of specific problem solving strategies.... [and] should develop and disseminate examples of 'good problems' and strategies." It is our intention to provide secondary mathematics educators with materials to help them implement this very important recommendation.

ABOUT THE BOOK

Challenging Problems in Geometry is organized into three main parts: "Problems," "Solutions," and "Hints." Unlike many contemporary problem-solving resources, this book is arranged not by problem-solving technique, but by topic. We feel that announcing the technique to be used stifles creativity and destroys a good part of the fun of problem solving.

The problems themselves are grouped into two sections. Section I, "A New Twist on Familiar Topics," covers five topics that roughly
parallel the sequence of the high school geometry course. Section II, "Further Investigations," presents topics not generally covered in the high school geometry course, but certainly within the scope of that audience. These topics lead to some very interesting extensions and enable the reader to investigate numerous fascinating geometric relationships.

Within each topic, the problems are arranged in approximate order of difficulty. For some problems, the basic difficulty may lie in making the distinction between relevant and irrelevant data or between known and unknown information. The sure ability to make these distinctions is part of the process of problem solving, and each devotee must develop this power by him- or herself. It will come with sustained effort.

In the "Solutions" part of the book, each problem is restated and then its solution is given. Answers are also provided for many but not all of the challenges. In the solutions (and later in the hints), you will notice citations such as "(\#23)" and "(Formula \#5b)." These refer to the definitions, postulates, and theorems listed in Appendix I, and the formulas given in Appendix II.

From time to time we give alternate methods of solution, for there is rarely only one way to solve a problem. The solutions shown are far from exhaustive, and intentionally so, allowing you to try a variety of different approaches. Particularly enlightening is the strategy of using multiple methods, integrating algebra, geometry, and trigonometry. Instances of multiple methods or multiple interpretations appear in the solutions. Our continuing challenge to you, the reader, is to find a different method of solution for every problem.

The third part of the book, "Hints," offers suggestions for each problem and for selected challenges. Without giving away the solution, these hints can help you get back on the track if you run into difficulty.

USING THE BOOK

This book may be used in a variety of ways. It is a valuable supplement to the basic geometry textbook, both for further explorations on specific topics and for practice in developing problem-solving techniques. The book also has a natural place in preparing individuals or student teams for participation in mathematics contests. Mathematics clubs might use this book as a source of independent projects or activities. Whatever the use, experience has shown that these problems motivate people of all ages to pursue more vigorously the study of mathematics.

Very near the completion of the first phase of this project, the passing of Professor Charles T. Salkind grieved the many who knew and respected him. He dedicated much of his life to the study of problem posing and problem solving and to projects aimed at making problem
solving meaningful, interesting, and instructive to mathematics students at all levels. His efforts were praised by all. Working closely with this truly great man was a fascinating and pleasurable experience.

Alfred S. Posamentier
1996

PREPARING TO SOLVE A PROBLEM

A strategy for attacking a problem is frequently dictated by the use of analogy. In fact, searching for an analogue appears to be a psychological necessity. However, some analogues are more apparent than real, so analogies should be scrutinized with care. Allied to analogy is structural similarity or pattern. Identifying a pattern in apparently unrelated problems is not a common achievement, but when done successfully it brings immense satisfaction.

Failure to solve a problem is sometimes the result of fixed habits of thought, that is, inflexible approaches. When familiar approaches prove fruitless, be prepared to alter the line of attack. A flexible attitude may help you to avoid needless frustration.

Here are three ways to make a problem yield dividends:
(1) The result of formal manipulation, that is, "the answer," may or may not be meaningful; find out! Investigate the possibility that the answer is not unique. If more than one answer is obtained, decide on the acceptability of each alternative. Where appropriate, estimate the answer in advance of the solution. The habit of estimating in advance should help to prevent crude errors in manipulation.
(2) Check possible restrictions on the data and/or the results. Vary the data in significant ways and study the effect of such variations on the original result.
(3) The insight needed to solve a generalized problem is sometimes gained by first specializing it. Conversely, a specialized problem, difficult when tackled directly, sometimes yields to an easy solution by first generalizing it.
As is often true, there may be more than one way to solve a problem. There is usually what we will refer to as the "peasant's way" in contrast to the "poet's way"-the latter being the more elegant method.

To better understand this distinction, let us consider the following problem:

If the sum of two numbers is 2 , and the product of these same two numbers is 3 , find the sum of the reciprocals of these two numbers.

Those attempting to solve the following pair of equations simultaneously are embarking on the "peasant's way" to solve this problem.

$$
\begin{array}{r}
x+y=2 \\
x y=3
\end{array}
$$

Substituting for y in the second equation yields the quadratic equation, $x^{2}-2 x+3=0$. Using the quadratic formula we can find $x=1 \pm i \sqrt{ } 2$. By adding the reciprocals of these two values of x, the answer $\frac{2}{3}$ appears. This is clearly a rather laborious procedure, not particularly elegant.

The "poet's way" involves working backwards. By considering the desired result

$$
\frac{1}{x}+\frac{1}{y}
$$

and seeking an expression from which this sum may be derived, one should inspect the algebraic sum:

$$
\frac{x+y}{x y}
$$

The answer to the original problem is now obvious! That is, since $x+y=2$ and $x y=3, \frac{x+y}{x y}=\frac{2}{3}$. This is clearly a more elegant solution than the first one.

The "poet's way" solution to this problem points out a very useful and all too often neglected method of solution. A reverse strategy is certainly not new. It was considered by Pappus of Alexandria about 320 A.D. In Book VII of Pappus' Collection there is a rather complete description of the methods of "analysis" and "synthesis." T. L. Heath, in his book A Manual of Greek Mathematics (Oxford University Press, 1931, pp. 452-53), provides a translation of Pappus' definitions of these terms:

Analysis takes that which is sought as if it were admitted and passes from it through its successive consequences to something which is admitted as the result of synthesis: for in analysis we assume that which is sought as if it were already done, and we inquire what it is from which this results, and again what is the antecedent cause of the latter, and so on, until, by so retracing our steps, we come upon something already known or belonging to the class of first principles, and such a method we call analysis as being solution backward.

But in synthesis, reversing the progress, we take as already done that which was last arrived at in the analysis and, by arranging in their natural order as consequences what before were antecedents, and successively connecting them one with another, we arrive finally at the construction of that which was sought: and this we call synthesis.

Unfortunately, this method has not received its due emphasis in the mathematics classroom. We hope that the strategy recalled here will serve you well in solving some of the problems presented in this book.

Naturally, there are numerous other clever problem-solving strategies to pick from. In recent years a plethora of books describing various problem-solving methods have become available. A concise description of these problem-solving strategies can be found in Teaching Secondary School Mathematics: Techniques and Enrichment Units, by A. S. Posamentier and J. Stepelman, 4th edition (Columbus, Ohio: Prentice Hall/Merrill, 1995).

Our aim in this book is to strengthen the reader's problem-solving skills through nonroutine motivational examples. We therefore allow the reader the fun of finding the best path to a problem's solution, an achievement generating the most pleasure in mathematics.

PROBLEMS

SECTION I

A New Twist on Familiar Topics

1. Congruence and Parallelism

The problems in this section present applications of several topics that are encountered early in the formal development of plane Euclidean geometry. The major topics are congruence of line segments, angles, and triangles and parallelism in triangles and various types of quadrilaterals.

1-1 In any $\triangle A B C, E$ and D are interior points of $\overline{A C}$ and $\overline{B C}$, respectively (Fig. 1-1). $\overline{A F}$ bisects $\angle C A D$, and $\overline{B F}$ bisects $\angle C B E$. Prove $m \angle A E B+m \angle A D B=2 m \angle A F B$.

Challenge 1 Prove that this result holds if E coincides with C.
Challenge 2 Prove that the result holds if E and D are exterior points on extensions of $\overline{A C}$ and $\overline{B C}$ through C.

1-2 In $\triangle A B C$, a point D is on $\overline{A C}$ so that $A B=A D$ (Fig. 1-2). $m \angle A B C-m \angle A C B=30$. Find $m \angle C B D$.

1-3 The interior bisector of $\angle B$, and the exterior bisector of $\angle C$ of $\triangle A B C$ meet at D (Fig. 1-3). Through D, a line parallel to $\overline{C B}$ meets $\overline{A C}$ at L and $\overline{A B}$ at M. If the measures of legs $\overline{L C}$ and $\overline{M B}$ of trapezoid CLMB are 5 and 7 , respectively, find the measure of base $\overline{L M}$. Prove your result.

Challenge Find $\overline{L M}$ if $\triangle A B C$ is equilateral.

1-4 In right $\triangle A B C, \overline{C F}$ is the median to hypotenuse $\overline{A B}, \overline{C E}$ is the bisector of $\angle A C B$, and $\overline{C D}$ is the altitude to $\overline{A B}$ (Fig. 1-4). Prove that $\angle D C E \cong \angle E C F$.

Challenge Does this result hold for a non-right triangle?

1-5 The measure of a line segment $\overline{P C}$, perpendicular to hypotenuse $\overline{A C}$ of right $\triangle A B C$, is equal to the measure of leg $\overline{B C}$. Show $\overline{B P}$ may be perpendicular or parallel to the bisector of $\angle A$.

1-6 Prove the following: if, in $\triangle A B C$, median $\overline{A M}$ is such that $m \angle B A C$ is divided in the ratio $1: 2$, and $\overline{A M}$ is extended through M to D so that $\angle D B A$ is a right angle, then $A C=\frac{1}{2} A D$ (Fig. 1-6).

Challenge Find two ways of proving the theorem when $m \angle A=90$.

1-7 In square $A B C D, M$ is the midpoint of $\overline{A B}$. A line perpendicular to $\overline{M C}$ at M meets $\overline{A D}$ at K. Prove that $\angle B C M \cong \angle K C M$.

Challenge Prove that $\triangle K D C$ is a 3-4-5 right triangle.
1-8 Given any $\triangle A B C, \overline{A E}$ bisects $\angle B A C, \overline{B D}$ bisects $\angle A B C$, $\overline{C P} \perp \overline{B D}$, and $\overline{C Q} \perp \overline{A E}$ (Fig. 1-8), prove that $\overline{P Q}$ is parallel to $\overline{A B}$.

Challenge Identify the points P and Q when $\triangle A B C$ is equilateral.
1-9 Given that $A B C D$ is a square, $\overline{C F}$ bisects $\angle A C D$, and $\overline{B P Q}$ is perpendicular to $C F$ (Fig. 1-9), prove $D Q=2 P E$.
1.9

1-10 Given square $A B C D$ with $m \angle E D C=m \angle E C D=15$, prove $\triangle A B E$ is equilateral (Fig. 1-10).

1-11 In any $\triangle A B C, D, E$, and F are midpoints of the sides $\overline{A C}, \overline{A B}$, and $\overline{B C}$, respectively (Fig. 1-11). $\overline{B G}$ is an altitude of $\triangle A B C$. Prove that $\angle E G F \cong \angle E D F$.
Challenge 1 Investigate the case when $\triangle A B C$ is equilateral.
Challenge 2 Investigate the case when $A C=C B$.

1-12 In' right $\triangle A B C$, with right angle at $C, B D=B C, A E=A C$, $\overline{E F} \perp \overline{B C}$, and $\overline{D G} \perp \overline{A C}$ (Fig. 1-12). Prove that $D E=E F+D G$.

1-13 Prove that the sum of the measures of the perpendiculars from any point on a side of a rectangle to the diagonals is constant.
Challenge If the point were on the extension of a side of the rectangle, would the result still hold?

1-14 The trisectors of the angles of a rectangle are drawn. For each pair of adjacent angles, those trisectors that are closest to the enclosed side are extended until a point of intersection is established. The line segments connecting those points of intersection form a quadrilateral. Prove that the quadrilateral is a rhombus.
Challenge 1 What type of quadrilateral would be formed if the original rectangle were replaced by a square?

Challenge 2 What type of figure is obtained when the original figure is any parallelogram?
Challenge 3 What type of figure is obtained when the original figure is a rhombus?

1-15 In Fig. 1-15, $\overline{B E}$ and $\overline{A D}$ are altitudes of $\triangle A B C . F, G$, and K are midpoints of $\overline{A H}, \overline{A B}$, and $\overline{B C}$, respectively. Prove that $\angle F G K$ is a right angle.

1-16 In parallelogram $A B C D, M$ is the midpoint of $\overline{B C} \cdot \overline{D T}$ is drawn from D perpendicular to $\overleftrightarrow{M A}$ as in Fig. 1-16. Prove that $C T=$ $C D$.

Challenge Make the necessary changes in the construction lines, and then prove the theorem for a rectangle.

1-17 Prove that the line segment joining the midpoints of two opposite sides of any quadrilateral bisects the line segment joining the midpoints of the diagonals.

1-18 In any $\triangle A B C, \overleftarrow{X Y Z}$ is any line through the centroid G (Fig. 1-18). Perpendiculars are drawn from each vertex of $\triangle A B C$ to this line. Prove $C Y=A X+B Z$.

1-19 In any $\triangle A B C, \overleftrightarrow{C P Q}$ is any line through C, interior to $\triangle A B C$ (Fig. 1-19). $\overline{B P}$ is perpendicular to line $\overline{C P Q}, \overline{A Q}$ is perpendicular to line $\overline{C P Q}$, and M is the midpoint of $\overline{A B}$. Prove that $M P=M Q$.

Challenge Show that the same result holds if the line through C is exterior to $\triangle A B C$.

1-20 In Fig. 1-20, $A B C D$ is a parallelogram with equilateral triangles $A B F$ and $A D E$ drawn on sides $\overline{A B}$ and $\overrightarrow{A D}$, respectively. Prove that $\triangle F C E$ is equilateral.

1-21 If a square is drawn externally on each side of a parallelogram, prove that
(a) the quadrilateral determined by the centers of these squares is itself a square
(b) the diagonals of the newly formed square are concurrent with the diagonals of the original parallelogram.

Challenge Consider other regular polygons drawn externally on the sides of a parallelogram. Study each of these situations!

2. Triangles in Proportion

As the title suggests, these problems deal primarily with similarity of triangles. Some interesting geometric proportions are investigated, and there is a geometric illustration of a harmonic mean.

Do you remember manipulations with proportions such as: if $\frac{a}{b}=\frac{c}{d}$ then $\frac{a-b}{b}=\frac{c-d}{d}$? They are essential to solutions of many problems.

2-1 In $\triangle A B C, \overline{D E}\|\overline{B C}, \overline{F E}\| \overline{D C}, A F=4$, and $F D=6$ (Fig. 2-1). Find $D B$.

Challenge 1 Find $D B$ if $A F=m_{1}$ and $F D=m_{2}$.
Challenge $2 \overline{F G} \| \overline{D E}$, and $\overline{H G} \| \overline{F E}$. Find $D B$ if $A H=2$ and $H F=4$.
Challenge 3 Find $D B$ if $A H=m_{1}$ and $H F=m_{2}$.

2-2 In isosceles $\triangle A B C(A B=A C), \overrightarrow{C B}$ is extended through B to P (Fig. 2-2). A line from P, parallel to altitude $\overline{B F}$, meets $\overline{A C}$ at D (where D is between A and F). From P, a perpendicular is drawn to meet the extension of $\overline{A B}$ at E so that B is between E and A. Express $B F$ in terms of $P D$ and $P E$. Try solving this problem in two different ways.

Challenge Prove that $B F=P D+P E$ when $A B=A C, P$ is between B and C, D is between C and F, and a perpendicular from P meets $\overline{A B}$ at E.

2-3 The measure of the longer base of a trapezoid is 97 . The measure of the line segment joining the midpoints of the diagonals is 3 . Find the measure of the shorter base.

Challenge Find a general solution applicable to any trapezoid.

2-4 In $\triangle A B C, D$ is a point on side $\overline{B A}$ such that $B D: D A=1: 2$. E is a point on side $\overline{C B}$ so that $C E: E B=1: 4$. Segments $\overline{D C}$ and $\overline{A E}$ intersect at F. Express $C F: F D$ in terms of two positive relatively prime integers.

8 PROBLEMS

Challenge Show that if $B D: D A=m: n$ and $C E: E B=r: s$, then

$$
\frac{C F}{F D}=\left(\frac{r}{s}\right)\left(\frac{m+n}{n}\right) .
$$

2-5 In $\triangle A B C, \overline{B E}$ is a median and O is the midpoint of $\overline{B E}$. Draw $\overline{A O}$ and extend it to meet $\overline{B C}$ at D. Draw $\overline{C O}$ and extend it to meet $\overline{B A}$ at F. If $C O=15, O F=5$, and $A O=12$, find the measure of $\overline{O D}$.

Challenge Can you establish a relationship between $O D$ and $A O$?
2-6 In parallelogram $A B C D$, points E and F are chosen on diagonal $\overline{A C}$ so that $A E=F C$. If $\overline{B E}$ is extended to meet $\overline{A D}$ at H, and $\overline{B F}$ is extended to meet $\overline{D C}$ at G, prove that $\overline{H G}$ is parallel to $\overline{A C}$.

Challenge Prove the theorem if E and F are on $\stackrel{\leftrightarrow}{A C}$, exterior to the parallelogram.

2-7 $\overline{A M}$ is the median to side $\overline{B C}$ of $\triangle A B C$, and P is any point on $\overline{A M} . \overline{B P}$ extended meets $\overline{A C}$ at E, and $\overline{C P}$ extended meets $\overline{A B}$ at D. Prove that $\overline{D E}$ is parallel to $\overline{B C}$.
Challenge Show that the result holds if P is on $\overleftrightarrow{A M}$, exterior to $\triangle A B C$.

2-8 In $\triangle A B C$, the bisector of $\angle A$ intersects $\overline{B C}$ at D (Fig. 2-8). A perpendicular to $\overline{A D}$ from B intersects $\overline{A D}$ at E. A line segment through E and parallel to $\overline{A C}$ intersects $\overline{B C}$ at G, and $\overline{A B}$ at H. If $A B=26, B C=28, A C=30$, find the measure of $\overline{D G}$.
Challenge Prove the result for $\overline{C F} \perp \overline{A D}$ where F is on $\overleftarrow{A D}$ exterior to $\triangle A B C$.

2-9 In $\triangle A B C$, altitude $\overline{B E}$ is extended to G so that $E G=$ the measure of altitude $\overline{C F}$. A line through G and parallel to $\overline{A C}$ meets $\overleftrightarrow{B A}$ at H, as in Fig. 2-9. Prove that $A H=A C$.
Challenge 1 Show that the result holds when $\angle A$ is a right angle.
Challenge 2 Prove the theorem for the case where the measure of altitude $\overline{B E}$ is greater than the measure of altitude $\overline{C F}$, and G is on $\overline{B E}$ (between B and E) so that $E G=C F$.

2-10 In trapezoid $A B C D(\overline{A B} \| \overline{D C})$, with diagonals $\overline{A C}$ and $\overline{D B}$ intersecting at $P, \overline{A M}$, a median of $\triangle A D C$, intersects $\overline{B D}$ at E (Fig. 2-10). Through E, a line is drawn parallel to $\overline{D C}$ cutting $\overline{A D}$, $\overline{A C}$, and $\overline{B C}$ at points H, F, and G, respectively. Prove that $H E=E F=F G$.

2-11 A line segment $\overline{A B}$ is divided by points K and L in such a way that $(A L)^{2}=(A K)(A B)$ (Fig. 2-11). A line segment $\overline{A P}$ is drawn congruent to $\overline{A L}$. Prove that $\overline{P L}$ bisects $\angle K P B$.

Challenge Investigate the situation when $\angle A P B$ is a right angle.
2-12 P is any point on altitude $\overline{C D}$ of $\triangle A B C . \overline{A P}$ and $\overline{B P}$ meet sides $\overline{C B}$ and $\overline{C A}$ at points Q and R, respectively. Prove that $\angle Q D C \cong$ $\angle R D C$.

2-13 In $\triangle A B C, Z$ is any point on base $\overline{A B}$ (Fig. 2-13). $\overline{C Z}$ is drawn. A line is drawn through A parallel to $\overline{C Z}$ meeting $\overleftrightarrow{B C}$ at X. A line is drawn through B parallel to $\overline{C Z}$ meeting $\overleftrightarrow{A C}$ at Y. Prove that $\frac{1}{A X}+\frac{1}{B Y}=\frac{1}{C Z}$.

Challenge Two telephone cable poles, 40 feet and 60 feet high, respectively, are placed near each other. As partial support, a line runs from the top of each pole to the bottom of the other. How high above the ground is the point of intersection of the two support lines?

2-14 In $\triangle A B C, m \angle A=120$. Express the measure of the internal bisector of $\angle A$ in terms of the two adjacent sides.
Challenge Prove the converse of the theorem established above.
2-15 Prove that the measure of the segment passing through the point of intersection of the diagonals of a trapezoid and parallel to the bases with its endpoints on the legs, is the harmonic mean between the measures of the parallel sides. The harmonic mean of two numbers is defined as the reciprocal of the average of the reciprocals of two numbers. The harmonic mean between a and b is equal to

$$
\left(\frac{a^{-1}+b^{-1}}{2}\right)^{-1}=\frac{2 a b}{a+b} .
$$

2-16 In $\square A B C D, E$ is on $\overline{B C}$ (Fig. 2-16a). $\overline{A E}$ cuts diagonal $\overline{B D}$ at G and $\overleftrightarrow{D C}$ at F. If $A G=6$ and $G E=4$, find $E F$.

Challenge 1 Show that $A G$ is one-half the harmonic mean between $A F$ and $A E$.

Challenge 2 Prove the theorem when E is on the extension of $\overline{C B}$ through B (Fig. 2-16b).

3. The Pythagorean Theorem

You will find two kinds of problems in this section concerning the key result of Euclidean geometry, the theorem of Pythagoras. Some problems involve direct applications of the theorem. Others make use of results that depend on the theorem, such as the relationship between the sides of an isosceles right triangle or a 30-60-90 triangle.

3-1 In any $\triangle A B C, E$ is any point on altitude $\overline{A D}$ (Fig. 3-1). Prove that $(A C)^{2}-(C E)^{2}=(A B)^{2}-(E B)^{2}$.

Challenge 1 Show that the result holds if E is on the extension of $\overline{A D}$ through D.

Challenge 2 What change in the theorem results if E is on the extension of $\overline{A D}$ through A ?

3-2 In $\triangle A B C$, median $\overline{A D}$ is perpendicular to median $\overline{B E}$. Find $A B$ if $B C=6$ and $A C=8$.

Challenge 1 Express $A B$ in general terms for $B C=a$, and $A C=b$.
Challenge 2 Find the ratio of $A B$ to the measure of its median.
3-3 On hypotenuse $\overrightarrow{A B}$ of right $\triangle A B C$, draw square $A B L H$ externally. If $A C=6$ and $B C=8$, find $C H$.

Challenge 1 Find the area of quadrilateral HLBC.
Challenge 2 Solve the problem if square $A B L H$ overlaps $\triangle A B C$.
3-4 The measures of the sides of a right triangle are 60,80 , and 100 . Find the measure of a line segment, drawn from the vertex of the right angle to the hypotenuse, that divides the triangle into two triangles of equal perimeters.

3-5 On sides $\overline{A B}$ and $\overline{D C}$ of rectangle $A B C D$, points F and E are chosen so that $A F C E$ is a rhombus (Fig. 3-5). If $A B=16$ and $B C=12$, find $E F$.

Challenge If $A B=a$ and $B C=b$, what general expression will give the measure of $\overline{E F}$?

3-6 A man walks one mile east, then one mile northeast, then another mile east. Find the distance, in miles, between the man's initial and final positions.

Challenge How much shorter (or longer) is the distance if the course is one mile east, one mile north, then one mile east?

3-7 If the measures of two sides and the included angle of a triangle are $7, \sqrt{50}$, and 135 , respectively, find the measure of the segment joining the midpoints of the two given sides.
Challenge 1 Show that when $m \angle A=135$,

$$
E F=\frac{1}{2} \sqrt{b^{2}+c^{2}+b c \sqrt{2}}
$$

where E and F are midpoints of sides $\overline{A C}$ and $\overline{A B}$, respectively, of $\triangle A B C$.
note: a, b, and c are the lengths of the sides opposite $\angle A, \angle B$, and $\angle C$ of $\triangle A B C$.

Challenge 2 Show that when $m \angle A=120$,

$$
E F=\frac{1}{2} \sqrt{b^{2}+c^{2}+b c \sqrt{1}} .
$$

Challenge 3 Show that when $m \angle A=150$,

$$
E F=\frac{1}{2} \sqrt{b^{2}+c^{2}+b c \sqrt{3}} .
$$

Challenge 4 On the basis of these results, predict the values of $E F$ for $m \angle A=30,45,60$, and 90 .

3-8 Hypotenuse $\overline{A B}$ of right $\triangle A B C$ is divided into four congruent segments by points G, E, and H, in the order A, G, E, H, B. If $A B=20$, find the sum of the squares of the measures of the line segments from C to G, E, and H.
Challenge Express the result in general terms when $A B=c$.
3-9 In quadrilateral $A B C D, A B=9, B C=12, C D=13, D A=14$, and diagonal $A C=15$ (Fig. 3-9). Perpendiculars are drawn from B and D to $\overline{A C}$, meeting $\overline{A C}$ at points P and Q, respectively. Find $P Q$.

3-10 In $\triangle A B C$, angle C is a right angle (Fig. 3-10). $A C=B C=1$, and D is the midpoint of $\overline{A C} \cdot \overline{B D}$ is drawn, and a line perpendicular to $\overline{B D}$ at P is drawn from C. Find the distance from P to the intersection of the medians of $\triangle A B C$.
Challenge Show that $P G=\frac{c \sqrt{10}}{30}$, when G is the centroid, and c is the length of the hypotenuse.

3-11 A right triangle contains a 60° angle. If the measure of the hypotenuse is 4 , find the distance from the point of intersection of the 2 legs of the triangle to the point of intersection of the angle bisectors.

3-12 From point P inside $\triangle A B C$, perpendiculars are drawn to the sides meeting $\overline{B C}, \overline{C A}$, and $\overline{A B}$, at points D, E, and F, respectively. If $B D=8, D C=14, C E=13, A F=12$, and $F B=6$, find $A E$. Derive a general theorem, and then make use of it to solve this problem.

3-13 For $\triangle A B C$ with medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$, let $m=A D+$ $B E+C F$, and let $s=A B+B C+C A$. Prove that $\frac{3}{2} s>$ $m>\frac{3}{4} s$.

3-14 Prove that $\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)=m_{a}^{2}+m_{b}{ }^{2}+m_{c}{ }^{2}$. (m_{c} means the measure of the median drawn to side c.)
Challenge 1 Verify this relation for an equilateral triangle.
Challenge 2 The sum of the squares of the measures of the sides of a triangle is 120 . If two of the medians measure 4 and 5 , respectively, how long is the third median?
Challenge 3 If $\overline{A E}$ and $\overline{B F}$ are medians drawn to the legs of right $\triangle A B C$, find the numeral value of $\frac{(A E)^{2}+(B F)^{2}}{(A B)^{2}}$.

4. Circles Revisited

Circles are the order of the day in this section. There are problems dealing with arc and angle measurement; others deal with lengths of chords, secants, tangents, and radii; and some problems involve both.

Particular attention should be given to Problems 4-33 thru 4-40, which concern cyclic quadrilaterals (quadrilaterals that may be inscribed in a circle). This often neglected subject has interesting applications. If you are not familiar with it, you might look at the theorems that are listed in Appendix I.

4-1 Two tangents from an external point P are drawn to a circle, meeting the circle at points A and B. A third tangent meets the circle at T, and tangents $\overrightarrow{P A}$ and $\overrightarrow{P B}$ at points Q and R, respectively. Find the perimeter p of $\triangle P Q R$.

4-2 $\overline{A B}$ and $\overline{A C}$ are tangent to circle O at B and C, respectively, and $\overline{C E}$ is perpendicular to diameter $\overline{B D}$ (Fig. 4-2). Prove $(B E)(B O)=$ $(A B)(C E)$.

Challenge 1 Find the value of $A B$ when E coincides with O.
Challenge 2 Show that the theorem is true when E is between B and O.
Challenge 3 Show that $\frac{A B}{\sqrt{B E}}=\frac{B O}{\sqrt{E D}}$.

4-3 From an external point P, tangents $\overrightarrow{P A}$ and $\overrightarrow{P B}$ are drawn to a circle. From a point Q on the major (or minor) arc $\overparen{A B}$, perpendiculars are drawn to $\overrightarrow{A B}, \overrightarrow{P A}$, and $\overrightarrow{P B}$. Prove that the perpendicular to $\overline{A B}$ is the mean proportional between the other two perpendiculars.

Challenge Show that the theorem is true when the tangents are parallel.

4-4 Chords $\overline{A C}$ and $\overline{D B}$ are perpendicular to each other and intersect at point G (Fig. 4-4). In $\triangle A G D$ the altitude from G meets $\overline{A D}$ at E, and when extended meets $\overline{B C}$ at P. Prove that $B P=P C$.

Challenge One converse of this theorem is as follows. Chords $\overline{A C}$ and $\overline{D B}$ intersect at G. In $\triangle A G D$ the altitude from G meets $\overline{A D}$ at E, and when extended meets $\overline{B C}$ at P so that $B P=$ $P C$. Prove that $\overline{A C} \perp \overline{B D}$.

4-5 Square $A B C D$ is inscribed in a circle. Point E is on the circle. If $A B=8$. find the value of

$$
(A E)^{2}+(B E)^{2}+(C E)^{2}+(D E)^{2}
$$

Challenge Prove that for $A B C D$, a non-square rectangle, $(A E)^{2}+$ $(B E)^{2}+(C E)^{2}+(D E)^{2}=2 d^{2}$, where d is the measure of the length of a diagonal of the rectangle.

4-6 Radius $\overline{A O}$ is perpendicular to radius $\overline{O B}, \overline{M N}$ is parallel to $\overline{A B}$ meeting $\overline{A O}$ at P and $\overline{O B}$ at Q, and the circle at M and N (Fig. 4-6). If $M P=\sqrt{56}$, and $P N=12$, find the measure of the radius of the circle.

4-7 Chord $\overline{C D}$ is drawn so that its midpoint is 3 inches from the center of a circle with a radius of 6 inches. From A, the midpoint of minor arc $\overparen{C D}$, any chord $\overline{A B}$ is drawn intersecting $\overline{C D}$ in M. Let v be the range of values of $(A B)(A M)$, as chord $\overline{A B}$ is made to rotate in the circle about the fixed point A. Find v.

4-8 A circle with diameter $\overline{A C}$ is intersected by a secant at points B and D. The secant and the diameter intersect at point P outside the circle, as shown in Fig. 4-8. Perpendiculars $\overline{A E}$ and $\overline{C F}$ are drawn from the extremities of the diameter to the secant. If $E B=2$, and $B D=6$, find $D F$.
Challenge Does $D F=E B$? Prove it!
4-9 A diameter $\overline{C D}$ of a circle is extended through D to external point P. The measure of secant $\overline{C P}$ is 77 . From P, another secant is drawn intersecting the circle first at A, then at B. The measure of secant $\overline{P B}$ is 33 . The diameter of the circle measures 74. Find the measure of the angle formed by the secants.

Challenge Find the measure of the shorter secant if the measure of the angle between the secants is 45 .

4-10 In $\triangle A B C$, in which $A B=12, B C=18$, and $A C=25$, a semicircle is drawn so that its diameter lies on $\overline{A C}$, and so that it is tangent to $\overline{A B}$ and $\overline{B C}$. If O is the center of the circle, find the measure of $\overline{A O}$.

Challenge Find the diameter of the semicircle.
4-11 Two parallel tangents to circle O meet the circle at points M and N. A third tangent to circle O, at point P, meets the other two tangents at points K and L. Prove that a circle, whose diameter is $\overline{K L}$, passes through O, the center of the original circle.
Challenge Prove that for different positions of point P, on $\overparen{M N}$, a family of circles is obtained tangent to each other at O.

4-12 $\overline{L M}$ is a chord of a circle, and is bisected at K (Fig. 4-12). $\overline{D K J}$ is another chord. A semicircle is drawn with diameter $\overline{D J} . \overline{K S}$, perpendicular to $\overline{D J}$, meets this semicircle at S. Prove $K S=K L$.
Challenge Show that if $\overline{D K J}$ is a diameter of the first circle, or if $\overline{D K J}$ coincides with $\overline{L M}$, the theorem is trivial.

4-13 $\triangle A B C$ is inscribed in a circle with diameter $\overline{A D}$. A tangent to the circle at D cuts $\overline{A B}$ extended at E and $\overline{A C}$ extended at F. If $A B=4, A C=6$, and $B E=8$, find $C F$.

Challenge 1 Find $m \angle D A F$.
Challenge 2 Find $B C$.
4-14 Altitude $\overline{A D}$ of equilateral $\triangle A B C$ is a diameter of circle O. If the circle intersects $\overline{A B}$ and $\overline{A C}$ at E and F, respectively, find the ratio of $E F: B C$.

Challenge Find the ratio of $E B: B D$.

4-15 Two circles intersect in A and B, and the measure of the common chord $\overline{A B}$ is 10 . The line joining the centers cuts the circles in P and Q. If $P Q=3$ and the measure of the radius of one circle is 13 , find the radius of the other circle.

Challenge Find the second radius if $P Q=2$.
4-16 $A B C D$ is a quadrilateral inscribed in a circle. Diagonal $\overrightarrow{B D}$ bisects $\overline{A C}$. If $A B=10, A D=12$, and $D C=11$, find $B C$.
Challenge Solve the problem when diagonal $\overline{B D}$ divides $\overline{A C}$ into two segments, one of which is twice as long as the other.

4-17 A is a point exterior to circle $O . \overline{P T}$ is drawn tangent to the circle so that $P T=P A$. As shown in Fig. 4-17, C is any point on circle O, and $\overline{A C}$ and $\overline{P C}$ intersect the circle at points D and B, respectively. $\overline{A B}$ intersects the circle at E. Prove that $\overline{D E}$ is parallel to $\overline{A P}$.

Challenge 1 Prove the theorem for A interior to circle O.
Challenge 2 Explain the situation when A is on circle O.
4-18 $\overline{P A}$ and $\overline{P B}$ are tangents to a circle, and $\overline{P C D}$ is a secant. Chords $\overline{A C}, \overline{B C}, \overline{B D}$, and $\overline{D A}$ are drawn. If $A C=9, A D=12$, and $B D=10$, find $B C$.

Challenge If in addition to the information given above, $P A=15$ and $P C=9$, find $A B$.

4-19 The altitudes of $\triangle A B C$ meet at $O . \overline{B C}$, the base of the triangle, has a measure of 16 . The circumcircle of $\triangle A B C$ has a diameter with a measure of 20 . Find $A O$.

4-20 Two circles are tangent internally at P, and a chord, $\overline{A B}$, of the
larger circle is tangent to the smaller circle at C (Fig. 4-20). $\overline{P B}$ and $\overline{P A}$ cut the smaller circle at E and D, respectively. If $A B=15$, while $P E=2$ and $P D=3$, find $A C$.

Challenge Express $A C$ in terms of $A B, P E$, and $P D$.
4.20

4-21 A circle, center O, is circumscribed about $\triangle A B C$, a triangle in which $\angle C$ is obtuse (Fig. 4-21). With $\overline{O C}$ as diameter, a circle is drawn intersecting $\overline{A B}$ in D and D^{\prime}. If $A D=3$, and $D B=4$, find $C D$.

Challenge 1 Show that the theorem is or is not true if $m \angle C=90$.
Challenge 2 Investigate the case for $m \angle C<90$.

4-22 In circle O, perpendicular chords $\overline{A B}$ and $\overline{C D}$ intersect at E so that $A E=2, E B=12$, and $C E=4$. Find the measure of the radius of circle O.

Challenge Find the shortest distance from E to the circle.

4-23 Prove that the sum of the measure of the squares of the segments made by two perpendicular chords is equal to the square of the measure of the diameter of the given circle.

Challenge Prove the theorem for two perpendicular chords meeting outside the circle.

4-24 Two equal circles are tangent externally at T. Chord $\overline{T M}$ in circle O is perpendicular to chord $\overline{T N}$ in circle Q. Prove that $\overline{M N} \| \overline{O Q}$ and $M N=O Q$.
Challenge Show that $M N=\sqrt{2\left(R^{2}+r^{2}\right)}$ if the circles are unequal, where R and r are the radii of the two circles.

4-25 From point A on the common internal tangent of tangent circles O and O^{\prime}, secants $\overline{A E B}$ and $\overline{A D C}$ are drawn, respectively (Fig. $4-25$). If $\overline{D E}$ is the common external tangent, and points C and B are collinear with the centers of the circles, prove
(a) $m \angle 1=m \angle 2$, and
(b) $\angle A$ is a right angle.

Challenge 1 Prove or disprove that if $\overline{B C}$ does not pass through the centers of the circles, the designated pairs of angles are not equal and $\angle A$ is not a right angle.
Challenge 2 Prove that $D E$ is the mean proportional between the diameters of circles O and O^{\prime}.

4-26 Two equal intersecting circles O and O^{\prime} have a common chord $\overline{R S}$. From any point P on $\overline{R S}$ a ray is drawn perpendicular to $\overline{R S}$ cutting circles O and O^{\prime} at A and B, respectively. Prove that $\overline{A B}$ is parallel to the line of centers, $\overleftarrow{O O}^{\prime}$, and that $A B=O O^{\prime}$.

4-27 A circle is inscribed in a triangle whose sides are 10,10 , and 12 units in measure (Fig. 4-27). A second, smaller circle is inscribed tangent to the first circle and to the equal sides of the triangle. Find the measure of the radius of the second circle.
Challenge 1 Solve the problem in general terms if $A C=a, B C=2 b$.
Challenge 2 Inscribe a third, smaller circle tangent to the second circle and to the equal sides, and find its radius by inspection.
Challenge 3 Extend the legs of the triangle through B and C, and draw a circle tangent to the original circle and to the extensions of the legs. What is its radius?

4-28 A circle with radius 3 is inscribed in a square. Find the radius of the circle that is inscribed between two sides of the square and the original circle.
Challenge Show that the area of the small circle is approximately 3% of the area of the large circle.

4-29 $\overline{A B}$ is a diameter of circle O, as shown in Fig. 4-29. Two circles are drawn with $\overline{A O}$ and $\overline{O B}$ as diameters. In the region between the circumferences, a circle D is inscribed, tangent to the three previous circles. If the measure of the radius of circle D is 8 , find $A B$.

Challenge Prove that the area of the shaded region equals the area of circle E.

4-30 A carpenter wishes to cut four equal circles from a circular piece of wood whose area is 9π square feet. He wants these circles of wood to be the largest that can possibly be cut from this piece of wood. Find the measure of the radius of each of the four new circles.
Challenge 1 Find the correct radius if the carpenter decides to cut out three equal circles of maximum size.
Challenge 2 Which causes the greater waste of wood, the four circles or the three circles?

4-31 A circle is inscribed in a quadrant of a circle of radius 8 (Fig. 4-31). What is the measure of the radius of the inscribed circle?

Challenge Find the area of the shaded region.
4-32 Three circles intersect. Each pair of circles has a common chord. Prove that these three chords are concurrent.

Challenge Investigate the situation in which one circle is externally tangent to each of two intersecting circles.

4-33 The bisectors of the angles of a quadrilateral are drawn. From each pair of adjacent angles, the two bisectors are extended until they intersect. The line segments connecting the points of intersection form a quadrilateral. Prove that this figure is cyclic (i.e., can be inscribed in a circle).

4-34 In cyclic quadrilateral $A B C D$, perpendiculars to $\overline{A B}$ and $\overline{C D}$ are erected at B and D and extended until they meet sides $\overleftrightarrow{C D}$ and $\overleftrightarrow{A B}$ at B^{\prime} and D^{\prime}, respectively. Prove $\overline{A C}$ is parallel to ${\overrightarrow{B^{\prime}} D^{\prime}}^{\prime}$.

4-35 Perpendiculars $\overline{B D}$ and $\overline{C E}$ are drawn from vertices B and C of $\triangle A B C$ to the interior bisectors of angles C and B, meeting them at D and E, respectively (Fig. 4-35). Prove that $\overrightarrow{D E}$ intersects $\overrightarrow{A B}$ and $\overline{A C}$ at their respective points of tangency, F and G, with the circle that is inscribed in $\triangle A B C$.

4-36 A line, $\overline{P Q}$, parallel to base $\overline{B C}$ of $\triangle A B C$, cuts $\overline{A B}$ and $\overline{A C}$ at P and Q, respectively (Fig. 4-36). The circle passing through P and tangent to $\overline{A C}$ at Q cuts $\overline{A B}$ again at R. Prove that the points R, Q, C, and B lie on a circle.
Challenge Prove the theorem when P and R coincide.

4-37 In equilateral $\triangle A B C, D$ is chosen on $\overline{A C}$ so that $A D=\frac{1}{3}(A C)$, and E is chosen on $\overline{B C}$ so that $C E=\frac{1}{3}$ (BC) (Fig. 4-37). $\overline{B D}$ and $\overline{A E}$ intersect at F. Prove that $\angle C F B$ is a right angle.

Challenge Prove or disprove the theorem when $A D=\frac{1}{4}(A C)$ and $C E=\frac{1}{4}(B C)$.

4-38 The measure of the sides of square $A B C D$ is x. F is the midpoint of $\overline{B C}$, and $\overline{A E} \perp \overline{D F}$ (Fig. 4-38). Find $B E$.
4.38

4-39 If equilateral $\triangle A B C$ is inscribed in a circle, and a point P is chosen on minor arc $\overparen{A C}$, prove that $P B=P A+P C$.

4-40 From point A, tangents are drawn to circle O, meeting the circle at B and C (Fig. 4-40). Chord $\overline{B F} \|$ secant $\overline{A D E}$. Prove that $\overline{F C}$ bisects $\overline{D E}$.

5. Area Relationships

While finding the area of a polygon or circle is a routine matter when a formula can be applied directly, it becomes a challenging task when the given information is "indirect." For example, to find the area of a triangle requires some ingenuity if you know only the measures of its medians. Several problems here explore this kind of situation. The other problems involve a comparison of related areas. To tackle these problems, it may be helpful to keep in mind the following basic relationships. The ratio of the areas of triangles with congruent altitudes is that of their bases. The ratio of the areas of similar triangles is the square of the ratio of the lengths of any corresponding line segments. The same is true for circles, which are all similar, with the additional possibility of comparing the lengths of corresponding arcs. Theorem \#56 in Appendix I states another useful relationship.

5-1 As shown in Fig. 5-1, E is on $\overline{A B}$ and C is on $\overline{F G}$. Prove $\square A B C D$ is equal in area to $\square E F G D$.

5-1

Challenge Prove that the same proposition is true if E lies on the extension of $\overline{A B}$ through B.

5-2 The measures of the bases of trapezoid $A B C D$ are 15 and 9 , and the measure of the altitude is 4 . Legs $\overline{D A}$ and $\overline{C B}$ are extended to meet at E. If F is the midpoint of $\overline{A D}$, and G is the midpoint of $\overline{B C}$, find the area of $\triangle F G E$.

Challenge Draw $\overline{G L} \| \overline{E D}$ and find the ratio of the area of $\triangle G L C$ to the area of $\triangle E D C$.

5-3 The distance from a point A to a line $\overleftrightarrow{B C}$ is 3 . Two lines l and l^{\prime}, parallel to $\overleftrightarrow{B C}$, divide $\triangle A B C$ into three parts of equal area. Find the distance between l and l^{\prime}.

5-4 Find the ratio between the areas of a square inscribed in a circle and an equilateral triangle circumscribed about the same circle.

Challenge 1 Using a similar procedure, find the ratio between the areas of a square circumscribed about a circle and an equilateral triangle inscribed in the same circle.

Challenge 2 Let D represent the difference in area between the circumscribed triangle and the inscribed square. Let K represent the area of the circle. Is the ratio $D: K$ greater than 1 , equal to 1 , or less than 1 ?

Challenge 3 Let D represent the difference in area between the circumscribed square and the circle. Let T represent the area of the inscribed equilateral triangle. Find the ratio $D: T$.

5-5 A circle O is tangent to the hypotenuse $\overline{B C}$ of isosceles right $\triangle A B C . \overline{A B}$ and $\overline{A C}$ are extended and are tangent to circle O at E and F, respectively, as shown in Fig. 5-5. The area of the triangle is X^{2}. Find the area of the circle.

Challenge Find the area of trapezoid EBCF.
5-6 $\overline{P Q}$ is the perpendicular bisector of $\overline{A D}, \overline{A B} \perp \overline{B C}$, and $\overline{D C} \perp \overline{B C}$ (Fig. 5-6). If $A B=9, B C=8$, and $D C=7$, find the area of quadrilateral $A P Q B$.

5-7 A triangle has sides that measure 13, 14, and 15. A line perpendicular to the side of measure 14 divides the interior of the triangle into two regions of equal area. Find the measure of the segment of the perpendicular that lies within the triangle.
Challenge Find the area of the trapezoid determined by the perpendicular to the side whose measure is 14 , the altitude to that side, and sides of the given triangle.

5-8 In $\triangle A B C, A B=20, A C=22 \frac{1}{2}$, and $B C=27$. Points X and Y are taken on $\overline{A B}$ and $\overline{A C}$, respectively, so that $A X=A Y$. If the area of $\triangle A X Y=\frac{1}{2}$ area of $\triangle A B C$, find $A X$.

Challenge Find the ratio of the area of $\triangle B X Y$ to that of $\triangle C X Y$.
5-9 In $\triangle A B C, A B=7, A C=9$. On $\overline{A B}$, point D is taken so that $B D=3 . \overline{D E}$ is drawn cutting $\overline{A C}$ in E so that quadrilateral $B C E D$ has $\frac{5}{7}$ the area of $\triangle A B C$. Find $C E$.

Challenge Show that if $B D=\frac{1}{n} c$, and the area of quadrilateral $B C E D=\frac{1}{m} K$, where ${ }^{n} K$ is the area of $\triangle A B C$, then $C E=b\left(\frac{n-m}{m(n-1)}\right)$.

5-10 An isosceles triangle has a base of measure 4, and sides measuring 3. A line drawn through the base and one side (but not through any vertex) divides both the perimeter and the area in half. Find the measures of the segments of the base defined by this line.

Challenge Find the measure of the line segment cutting the two sides of the triangle.

5-11 Through D, a point on base $\overline{B C}$ of $\triangle A B C, \overline{D E}$ and $\overline{D F}$ are drawn parallel to sides $\overline{A B}$ and $\overline{A C}$, respectively, meeting $\overline{A C}$ at E and $\overline{A B}$ at F. If the area of $\triangle E D C$ is four times the area of $\triangle B F D$, what is the ratio of the area of $\triangle A F E$ to the area of $\triangle A B C$?

Challenge Show that if the area of $\triangle E D C$ is k^{2} times the area of $\triangle B F D$, then the ratio of area of $\triangle A F E$ to the area of $\triangle A B C$ is $k:(1+k)^{2}$.

5-12 Two circles, each of which passes through the center of the other, intersect at points M and N (Fig. 5-12). A line from M intersects the circles at K and L. If $K L=6$, compute the area of $\triangle K L N$.

5-12

Challenge If r is the measure of the radius of each circle, find the least value and the greatest value of the area of $\triangle K L N$.

5-13 Find the area of a triangle whose medians have measures 39,42 , 45.

5-14 The measures of the sides of a triangle are 13,14 , and 15 . A second triangle is formed in which the measures of the three sides are the
same as the measures of the medians of the first triangle. What is the area of the second triangle?
Challenge 1 Show that $K(m)=\left(\frac{3}{4}\right) K$ where K represents the area of $\triangle A B C$, and $K(m)$ the area of a triangle with sides m_{a}, m_{b}, m_{c}, the medians of $\triangle A B C$.
Challenge 2 Solve Problem 5-13 using the results of Challenge 1.
5-15 Find the area of a triangle formed by joining the midpoints of the sides of a triangle whose medians have measures 15,15 , and 18.

Challenge Express the required area in terms of $K(m)$, where $K(m)$ is the area of the triangle formed from the medians.

5-16 In $\triangle A B C, E$ is the midpoint of $\overline{B C}$, while F is the midpoint of $\overline{A E}$, and $\overleftrightarrow{B F}$ meets $A C$ at D. If the area of $\triangle A B C=48$, find the area of $\triangle A F D$.
Challenge 1 Solve this problem in general terms.
Challenge 2 Change $A F=\frac{1}{2} A E$ to $A F=\frac{1}{3} A E$, and find a general solution.

5-17 In $\triangle A B C, D$ is the midpoint of side $\overline{B C}, E$ is the midpoint of $\overline{A D}, F$ is the midpoint of $\overline{B E}$, and G is the midpoint of $\overline{F C}$ (Fig. 5-17). What part of the area of $\triangle A B C$ is the area of $\triangle E F G$?
Challenge Solve the problem if $B D=\frac{1}{3} B C, A E=\frac{1}{3} A D, B F=\frac{1}{3} B E$, and $G C=\frac{1}{3} F C$.

5-18 In trapezoid $A B C D$ with upper base $\overline{A D}$, lower base $\overline{B C}$, and legs $\overline{A B}$ and $\overline{C D}, E$ is the midpoint of $\overline{C D}$ (Fig. 5-18). A perpendicular, $\overline{E F}$, is drawn to $\overline{B A}$ (extended if necessary). If $E F=24$ and $A B=30$, find the area of the trapezoid. (Note that the figure is not drawn to scale.)

Challenge Establish a relationship between points F, A, and B such that the area of the trapezoid $A B C D$ is equal to the area of $\triangle F B H$.

5-19 In $\square A B C D$, a line from C cuts diagonal $\overline{B D}$ in E and $\overline{A B}$ in F. If F is the midpoint of $\overline{A B}$, and the area of $\triangle B E C$ is 100 , find the area of quadrilateral $A F E D$.
Challenge Find the area of $\triangle G E C$ where G is the midpoint of $\overline{B D}$.
5-20 P is any point on side $\overline{A B}$ of $\square A B C D . \overline{C P}$ is drawn through P meeting $\overline{D A}$ extended at Q. Prove that the area of $\triangle D P A$ is equal to the area of $\triangle Q P B$.
Challenge Prove the theorem for point P on the endpoints of side $\overline{B A}$.
5-21 $\overline{R S}$ is the diameter of a semicircle. Two smaller semicircles, $\overparen{R T}$ and $\overparen{T S}$, are drawn on $\overline{R S}$, and their common internal tangent $\overline{A T}$ intersects the large semicircle at A, as shown in Fig. 5-21. Find the ratio of the area of a semicircle with radius $\overline{A T}$ to the area of the shaded region.

5-22 Prove that from any point inside an equilateral triangle, the sum of the measures of the distances to the sides of the triangle is constant.

Challenge In equilateral $\triangle A B C$, legs $\overline{A B}$ and $\overline{B C}$ are extended through B so that an angle is formed that is vertical to $\angle A B C$. Point P lies within this vertical angle. From P, perpendiculars are drawn to sides $\overline{B C}, \overline{A C}$, and $\overline{A B}$ at points Q, R, and S, respectively. Prove that $P R-(P Q+$ $P S$) equals a constant for $\triangle A B C$.

SECTION II

Further Investigations

6. A Geometric Potpourri

A variety of somewhat difficult problems from elementary Euclidean geometry will be found in this section. Included are Heron's Theorem and its extension to the cyclic quadrilateral, Brahmagupta`s Theorem. There are problems often considered classics, such as the butterfly problem and Morley's Theorem. Other famous problems presented are Euler's Theorem and Miquel's Theorem.

Several ways to solve a problem are frequently given in the Solution Part of the book, as many as seven different methods in one case! We urge you to experiment with different methods. After all, 'the right answer' is not the name of the game in Geometry.

6-1 Heron's Formula is used to find the area of any triangle, given only the measures of the sides of the triangle. Derive this famous formula. The area of any triangle $=\sqrt{s(s-a)(s-b)(s-c)}$, where a, b, c are measures of the sides of the triangle and s is the semiperimeter.

Challenge Find the area of a triangle whose sides measure $6, \sqrt{2}, \sqrt{50}$.
6-2 An interesting extension of Heron's Formula to the cyclic quadrilateral is credited to Brahmagupta, an Indian mathematician who lived in the early part of the seventh century. Although Brahmagupta's Formula was once thought to hold for all quadrilaterals, it has been proved to be valid only for cyclic quadrilaterals.

The formula for the area of a cyclic quadrilateral with side measures a, b, c, and d is

$$
K=\sqrt{(s-a)(s-b)(s-c)(s-d)}
$$

where s is the semiperimeter. Derive this formula.

Challenge 1 Find the area of a cyclic quadrilateral whose sides measure $9,10,10$, and 21.

Challenge 2 Find the area of a cyclic quadrilateral whose sides measure $15,24,7$, and 20.

6-3 Sides $\overline{B A}$ and $\overline{C A}$ of $\triangle A B C$ are extended through A to form rhombuses $B A T R$ and $C A K N$. (See Fig. 6-3.) $\overline{B N}$ and $\overline{R C}$, intersecting at P, meet $\overline{A B}$ at S and $\overline{A C}$ at M. Draw $\overline{M Q}$ parallel to $\overline{A B}$. (a) Prove $A M Q S$ is a rhombus and (b) prove that the area of $\triangle B P C$ is equal to the area of quadrilateral $A S P M$.

6-4 Two circles with centers A and B intersect at points M and N. Radii $\overline{A P}$ and $\overline{B Q}$ are parallel (on opposite sides of $\overleftarrow{A B}$). If the common external tangents meet $\overleftrightarrow{A B}$ at D, and $\overline{P Q}$ meets $\overline{A B}$ at C, prove that $\angle C N D$ is a right angle.

6-5 In a triangle whose sides measure $5^{\prime \prime}, 6^{\prime \prime}$, and $7^{\prime \prime}$, point P is $2^{\prime \prime}$ from the $5^{\prime \prime}$ side and $3^{\prime \prime}$ from the $6^{\prime \prime}$ side. How far is P from the $7{ }^{\prime \prime}$ side?

6-6 Prove that if the measures of the interior bisectors of two angles of a triangle are equal, then the triangle is isosceles.

6-7 In circle O, draw any chord $\overline{A B}$, with midpoint M. Through M two other chords, $\overline{F E}$ and $\overline{C D}$, are drawn. $\overline{C E}$ and $\overline{F D}$ intersect $\overline{A B}$ at Q and P, respectively. Prove that $M P=M Q$. (See Fig. 6-7.) This problem is often referred to as the butterfly problem.

6-8 $\triangle A B C$ is isosceles with $C A=C B . m \angle A B D=60, m \angle B A E=$ 50 , and $m \angle C=20$. Find the measure of $\angle E D B$ (Fig. 6-8).

6-9 Find the area of an equilateral triangle containing in its interior a point P, whose distances from the vertices of the triangle are 3,4 , and 5.

6-10 Find the area of a square $A B C D$ containing a point P such that $P A=3, P B=7$, and $P D=5$.
Challenge 1 Find the measure of $\overline{P C}$.
Challenge 2 Express $P C$ in terms of $P A, P B$, and $P D$.
6-11 If, on each side of a given triangle, an equilateral triangle is constructed externally, prove that the line segments formed by joining a vertex of the given triangle with the remote vertex of the equilateral triangle drawn on the side opposite it are congruent.

Challenge 1 Prove that these lines are concurrent.
Challenge 2 Prove that the circumcenters of the three equilateral triangles determine another cquilateral triangle.

6-12 Prove that if the angles of a triangle are trisected, the intersections of the pairs of trisectors adjacent to the same side determine an equilateral triangle. (This theorem was first derived by F. Morley about 1900.)

6-13 Prove that in any triangle the centroid trisects the line segment joining the center of the circumcircle and the orthocenter (i.e. the point of intersection of the altitudes). This theorem was first published by Leonhard Euler in 1765.

Challenge 1 The result of this theorem leads to an interesting problem first published by James Joseph Sylvester (1814-1897). The problem is to find the resultant of the three vectors $\vec{O} \vec{A}, \overrightarrow{O B}$, and $\overrightarrow{O C}$ acting on the center of the circumcircle O of $\triangle A B C$.
Challenge 2 Describe the situation when $\triangle A B C$ is equilateral.
Challenge 3 Prove that the midpoint of the line segment determined by the circumcenter and the orthocenter is the center of the nine-point circle. The nine-point circle of a triangle is determined by the following nine points; the feet of the altitudes, the midpoints of the sides of the triangle, and the midpoints of the segments from the vertices to the orthocenter.

6-14 Prove that if a point is chosen on each side of a triangle, then the circles determined by each vertex and the points on the adjacent sides pass through a common point (Figs. 6-14a and 6-14b). This theorem was first published by A. Miquel in 1838.
Challenge 1 Prove in Fig. 6-14a, $m \angle B F M=m \angle C E M=m \angle A D M$; or in Fig. 6-14b, $m \angle B F M=m \angle C D M=m \angle G E M$.
Challenge 2 Give the location of M when $A F=F B=B E=E C=$ $C D=D A$.

6-15 Prove that the centers of the circles in Problem 6-14 determine a triangle similar to the original triangle.
Challenge Prove that any other triangle whose sides pass through the intersections of the above three circles, P, Q, and R (two at a time), is similar to $\triangle A B C$.

7. Ptolemy and the Cyclic Quadrilateral

One of the great works of the second Alexandrian period was a collection of earlier studies, mainly in astronomy, by Claudius Ptolemaeus (better known as Ptolemy). Included in this work, the Almagest, is a theorem stating that in a cyclic (inscribed) quadrilateral the sum of the products of the opposite sides equals the product of the diagonals. This powerful theorem of Ptolemy enables us to solve problems which would otherwise be difficult to handle. The theorem and some of its consequences are explored here.

7-1 Prove that in a cyclic quadrilateral the product of the diagonals is equal to the sum of the products of the pairs of opposite sides (Ptolemy's Theorem).

Challenge 1 Prove that if the product of the diagonals of a quadrilateral equals the sum of the products of the pairs of opposite sides, then the quadrilateral is cyclic. This is the converse of Ptolemy's Theorem.

Challenge 2 To what familiar result does Ptolemy's Theorem lead when the cyclic quadrilateral is a rectangle?

Challenge 3 Find the diagonal, d, of the trapezoid with bases a and b, and equal legs c.
7.2 E is a point on side $\overline{A D}$ of rectangle $A B C D$, so that $D E=6$, while $D A=8$, and $D C=6$. If $\overline{C E}$ extended meets the circumcircle of the rectangle at F, find the measure of chord $\overline{D F}$. (See Fig. 7-2.)

Challenge Find the measure of $\overline{F B}$.

7-3 On side $\overline{A B}$ of square $A B C D$, right $\triangle A B F$, with hypotenuse $\overline{A B}$, is drawn externally to the square. If $A F=6$ and $B F=8$ find $E F$, where E is the point of intersection of the diagonals of the square.
Challenge Find $E F$, when F is inside square $A B C D$.
7.4 Point P on side $\overline{A B}$ of right $\triangle A B C$ is placed so that $B P=P A=2$. Point Q is on hypotenuse $\overline{A C}$ so that $\overline{P Q}$ is perpendicular to $\overline{A C}$. If $C B=3$, find the measure of $\overline{B Q}$, using Ptolemy's Theorem. (See Fig. 7-4.)
Challenge 1 Find the area of quadrilateral $C B P Q$.
Challenge 2 As P is translated from B to A along $\overline{B A}$, find the range of values of $B Q$, where $\overline{P Q}$ remains perpendicular to $\overline{C A}$.

7-5 If any circle passing through vertex A of parallelogram $A B C D$ intersects sides $\overline{A B}$, and $\overline{A D}$ at points P and R, respectively, and diagonal $\overline{A C}$ at point Q, prove that $(A Q)(A C)=(A P)(A B)+$ $(A R)(A D)$. (See Fig. 7-5.)
Challenge Prove the theorem valid when the circle passes through C.
7-6 Diagonals $\overline{A C}$ and $\overline{B D}$ of quadrilateral $A B C D$ meet at E. If $A E=2, B E=5, C E=10, D E=4$, and $B C=\frac{15}{2}$, find $A B$.

Challenge Find the radius of the circumcircle if the measure of the distance from $\overline{D C}$ to the center O is $2 \frac{1}{2}$.

7-7 If isosceles $\triangle A B C(A B=A C)$ is inscribed in a circle, and a point P is on $\overparen{B C}$, prove that $\frac{P A}{P B+P C}=\frac{A C}{B C}$, a constant for the given triangle.

7-8 If equilateral $\triangle A B C$ is inscribed in a circle, and a point P is on $\overparen{B C}$, prove that $P A=P B+P C$.

7-9 If square $A B C D$ is inscribed in a circle, and a point P is on $\overparen{B C}$, prove that $\frac{P A+P C}{P A+P D}=\frac{P D}{P A}$.

7-10 If regular pentagon $A B C D E$ is inscribed in a circle, and point P is on $\overparen{B C}$, prove that $P A+P D=P B+P C+P E$.

7-11 If regular hexagon $A B C D E F$ is inscribed in a circle, and point P is on $\overparen{B C}$, prove that $P E+P F=P A+P B+P C+P D$.

Challenge Derive analogues for other regular polygons.
7-12 Equilateral $\triangle A D C$ is drawn externally on side $\overline{A C}$ of $\triangle A B C$. Point P is taken on $\overline{B D}$. Find $m \angle A P C$ such that $B D=P A+$ $P B+P C$.

Challenge Investigate the case where $\triangle A D C$ is drawn internally on side $\overline{A C}$ of $\triangle A B C$.

7-13 A line drawn from vertex A of equilateral $\triangle A B C$, meets $\overline{B C}$ at D and the circumcircle at P. Prove that $\frac{1}{P D}=\frac{1}{P B}+\frac{1}{P C}$.

Challenge 1 If $B P=5$ and $P C=20$, find $A D$.
Challenge 2 If $m \overparen{B P}: m \overparen{P C}=1: 3$, find the radius of the circle in challenge I.

7-14 Express in terms of the sides of a cyclic quadrilateral the ratio of the diagonals.

Challenge Verify the result for an isosceles trapezoid.
7-15 A point P is chosen inside parallelogram $A B C D$ such that $\angle A P B$ is supplementary to $\angle C P D$. Prove that $(A B)(A D)=$ $(B P)(D P)+(A P)(C P)$.

7-16 A triangle inscribed in a circle of radius 5 , has two sides measuring 5 and 6, respectively. Find the measure of the third side of the triangle.

Challenge Generalize the result of this problem for any triangle.

8. Menelaus and Ceva: Collinearity and Concurrency

Proofs of theorems dealing with collinearity and concurrency are ordinarily clumsy, lengthy, and, as a result, unpopular. With the aid of two famous theorems, they may be shortened.

The first theorem is credited to Menelaus of Alexandria (about 100 A.D.). In 1678, Giovanni Ceva, an Italian mathematician, published Menelaus' Theorem and a second one of his own, related to it. The problems in this section concern either Menelaus' Theorem, Ceva's Theorem, or both. Among the applications investigated are theorems of Gerard Desargues, Blaise Pascal, and Pappus of Alexandria. A rule of thumb for these problems is: try to use Menelaus' Theorem for collinearity and Ceva's Theorem for concurrency.
8-1 Points P, Q, and R are taken on sides $\overline{A C}, \overline{A B}$, and $\overline{B C}$ (extended if necessary) of $\triangle A B C$. Prove that if these points are collinear,

$$
\frac{A Q}{Q B} \cdot \frac{B R}{R C} \cdot \frac{C P}{P A}=-1
$$

This theorem, together with its converse, which is given in the Challenge that follows, constitute the classic theorem known as Menelaus' Theorem. (Sce Fig. 8-1a and Fig. 8-1b.)

Challenge In $\triangle A B C$ points P, Q, and R are situated respectively on sides $\overline{A C}, \overline{A B}$, and $\overline{B C}$ (extended when necessary). Prove that if

$$
\frac{A Q}{Q B} \cdot \frac{B R}{R C} \cdot \frac{C P}{P A}=-1
$$

then P, Q, and R are collinear. This is part of Menelaus' Theorem.

8-2 Prove that three lines drawn from the vertices A, B, and C of $\triangle A B C$ meeting the opposite sides in points L, M, and N, respectively, are concurrent if and only if $\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=1$.

This is known as Ceva's Theorem. (See Fig. 8-2a, and Fig. 8-2b.)

8-3 Prove that the medians of any triangle are concurrent.
8-4 Prove that the altitudes of any triangle are concurrent.
Challenge Investigate the difficulty in applying this proof to a right triangle by Ceva's Theorem.

8-5 Prove that the interior angle bisectors of a triangle are concurrent.
8-6 Prove that the interior angle bisectors of two angles of a nonisosceles triangle and the exterior angle bisector of the third angle meet the opposite sides in three collinear points.

8-7 Prove that the exterior angle bisectors of any non-isosceles triangle meet the opposite sides in three collinear points.

8-8 In right $\triangle A B C, P$ and Q are on $\overline{B C}$ and $\overline{A C}$, respectively, such that $C P=C Q=2$. Through the point of intersection, R, of $\overline{A P}$ and $\overline{B Q}$, a line is drawn also passing through C and meeting $\overline{A B}$ at $S . \overline{P Q}$ extended meets $\stackrel{\rightharpoonup}{A B}$ at T. If the hypotenuse $A B=10$ and $A C=8$, find $T S$.
Challenge 1 By how much is $T S$ decreased if P is taken at the midpoint of $\overline{B C}$?
Challenge 2 What is the minimum value of $T S$?
8-9 A circle through vertices B and C of $\triangle A B C$ meets $\overline{A B}$ at P and $\overline{A C}$ at R. If $\overleftarrow{P R}$ meets $\overleftrightarrow{B C}$ at Q, prove that $\frac{Q C}{Q B}=\frac{(R C)(A C)}{(P B)(A B)}$. (Sce Fig. 8-9.)
Challenge Investigate the case where the points P and R are on the extremities of $\overline{B A}$ and $\overline{C A}$, respectively.

8-10 In quadrilateral $A B C D, \overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ meet at P, while $\overleftrightarrow{A D}$ and $\overleftrightarrow{B C}$ meet at Q. Diagonals $\overleftrightarrow{A C}$ and $\overleftrightarrow{B D}$ meet $\overleftrightarrow{P Q}$ at X and Y, respectively (Fig. 8-10). Prove that $\frac{P X}{X Q}=-\frac{P Y}{Y Q}$.

8-11 Prove that a line drawn through the centroid, G, of $\triangle A B C$, cuts sides $\overline{A B}$ and $\overline{A C}$ at points M and N, respectively, so that $(A M)(N C)+(A N)(M B)=(A M)(A N)$. (See Fig. 8-11.)

8-12 In $\triangle A B C$, points L, M, and N lie on $\overline{B C}, \overline{A C}$, and $\overline{A B}$, respectively, and $\overline{A L}, \overline{B M}$, and $\overline{C N}$ are concurrent.
(a) Find the numerical value of $\frac{P L}{A L}+\frac{P M}{B M}+\frac{P N}{C N}$.
(b) Find the numerical value of $\frac{A P}{A L}+\frac{B P}{B M}+\frac{C P}{C N}$.

8-13 Congruent line segments $\overline{A E}$ and $\overline{A F}$ are taken on sides $\overline{A B}$ and $\overline{A C}$, respectively, of $\triangle A B C$. The median $\overline{A M}$ intersects $\overline{E F}$ at point Q. Prove that $\frac{Q E}{Q F}=\frac{A C}{A B}$.

8-14 In $\triangle A B C, \overleftrightarrow{A L}, \overleftrightarrow{B M}$, and $\overleftrightarrow{C N}$ are concurrent at P. Express the ratio $\frac{A P}{P L}$ in terms of segments made by the concurrent lines on the sides of $\triangle A B C$. (See Fig. 8-2a, and Fig. 8-2b.)
Challenge Complete the expressions for $\frac{B P}{P M}$ and $\frac{C P}{P N}$.

8-15 Side $\overline{A B}$ of square $A B C D$ is extended to P so that $B P=2(A B)$. With M, the midpoint of $\overline{D C}, \overline{B M}$ is drawn meeting $\overline{A C}$ at Q. $\overline{P Q}$ meets $\overline{B C}$ at R. Using Menelaus' theorem, find the ratio $\frac{C R}{R B}$. (See Fig. 8-15.)

Challenge 1 Find $\frac{C R}{R}$, when $B P=A B$.
Challenge 2 Find $\frac{C R}{R B}$, when $B P=k \cdot A B$.

8-16 Sides $\overleftrightarrow{A B}, \overleftrightarrow{B} \vec{C}, \overleftrightarrow{C D}$, and $\overleftrightarrow{D A}$ of quadrilateral $A B C D$ are cut by a straight line at points K, L, M, and N, respectively. (See Fig. 8-16.) Prove that $\frac{B L}{L C} \cdot \frac{A K}{K B} \cdot \frac{D N}{N A} \cdot \frac{C M}{M D}=1$.

Challenge 1 Prove the theorem for parallelogram $A B C D$.
Challenge 2 Extend this theorem to other polygons.
8-17 Tangents to the circumcircle of $\triangle A B C$ at points A, B, and C meet sides $\overleftrightarrow{B C}, \overleftrightarrow{A C}$, and $\overleftrightarrow{A B}$ at points P, Q, and R, respectively. Prove that points P, Q, and R are collinear. (See Fig. 8-17.)

8-18 A circle is tangent to side $\overline{B C}$, of $\triangle A B C$ at M, its midpoint, and cuts $\overleftrightarrow{A B}$ and $\overleftrightarrow{A C}$ at points R, R^{\prime}, and S, S^{\prime}, respectively. If $\overline{R S}$ and $\overline{R^{\prime} S^{\prime}}$ are each extended to meet $\overleftrightarrow{B C}$ at points P and P^{\prime} respectively, prove that $(B P)\left(B P^{\prime}\right)=(C P)\left(C P^{\prime}\right)$. (See Fig. 8-18.)

Challenge 1 Show that the result implies that $C P=B P^{\prime}$.
Challenge 2 Investigate the situation when $\triangle A B C$ is equilateral.

8-19 In $\triangle A B C$ (Fig. 8-19) P, Q, and R are the midpoints of the sides $\overrightarrow{A B}, \overrightarrow{B C}$, and $\overrightarrow{A C}$. Lines $\overleftarrow{A} \vec{N}, \overleftarrow{B} \dot{L}$, and $\overleftarrow{C M}$ are concurrent, meeting the opposite sides in N, L, and M, respectively. If $\overparen{P L}$ meets $\overleftrightarrow{B C}$ at $J, \overleftrightarrow{M Q}$ meets $\overparen{A C}$ at I, and $\dot{R} \vec{N}$ meets $\overleftrightarrow{A B}$ at H, prove that H, I, and J are collinear.

8-20 $\triangle A B C$ cuts a circle at points $E, E^{\prime}, D, D^{\prime}, F, F^{\prime}$, as in Fig. 8-20. Prove that if $\overline{A D}, \overline{B F}$, and $\overline{C E}$ are concurrent, then $\overline{A D^{\prime}}, \overline{B F^{\prime}}$, and $\overline{C E^{\prime}}$ are also concurrent.

8-21 Prove that the three pairs of common external tangents to three circles, taken two at a time, meet in three collinear points.

8-22 $\overline{A M}$ is a median of $\triangle A B C$, and point G on $\overline{A M}$ is the centroid. $\overline{A M}$ is extended through M to point P so that $G M=M P$. Through P, a line parallel to $\overline{A C}$ cuts $\overline{A B}$ at Q and $\overline{B C}$ at P_{1}; through P, a line parallel to $\overline{A B}$ cuts $\overline{C B}$ at N and $\overline{A C}$ at P_{2}; and a line through P and parallel to $\overline{C B}$ cuts $\overleftrightarrow{A B}$ at P_{3}. Prove that points P_{1}, P_{2}, and P_{3} are collinear. (See Fig. 8-22.)

8-22

8-23 If $\triangle A_{1} B_{1} C_{1}$ and $\triangle A_{2} B_{2} C_{2}$ are situated so that the lines joining the corresponding vertices, $\overleftrightarrow{A_{1} A_{2}}, \overleftrightarrow{B_{1} B_{2}}$, and $\overleftrightarrow{C_{1} C_{2}}$, are concurrent (Fig. 8-23), then the pairs of corresponding sides intersect in three collinear points. (Desargues’ Theorem)

Challenge Prove the converse.
8-24 A circle inscribed in $\triangle A B C$ is tangent to sides $\overline{B C}, \overline{C A}$, and $\overline{A B}$ at points L, M, and N, respectively. If $\overline{M N}$ extended meets $\overleftrightarrow{B C}$ at P,
(a) prove that $\frac{B L}{L C}=-\frac{B P}{P C}$
(b) prove that if $\overleftrightarrow{N L}$ meets $\overleftrightarrow{A C}$ at Q and $\overleftrightarrow{M L}$ meets $\overleftrightarrow{A B}$ at R, then P, Q, and R are collinear.

8-25 In $\triangle A B C$, where $\overline{C D}$ is the altitude to $\overline{A B}$ and P is any point on $\overline{D C}, \overline{A P}$ meets $\overline{C B}$ at Q, and $\overline{B P}$ meets $\overline{C A}$ at R. Prove that $m \angle R D C=m \angle Q D C$, using Ceva's Theorem.

8-26 In $\triangle A B C$ points F, E, and D are the feet of the altitudes drawn from the vertices A, B, and C, respectively. The sides of the pedal $\triangle F E D, \overline{E F}, \overline{D F}$, and $\overline{D E}$, when extended, meet the sides of $\triangle A B C, \overleftrightarrow{A B}, \overleftrightarrow{A C}$, and $\overleftrightarrow{B C}$ (extended) at points M, N, and L, respectively. Prove that M, N, and L are collinear. (See Fig. 8-26.)

8-27 In $\triangle A B C$ (Fig. 3-27), L, M, and N are the feet of the altitudes from vertices A, B, and C. Prove that the perpendiculars from A, B, and C to $\overline{M N}, \overline{L N}$, and $\overline{L M}$, respectively, are concurrent.
Challenge Prove that $\overline{P L}, \overline{Q M}$, and $\overline{R N}$ are concurrent.
8-28 Prove that the perpendicular bisectors of the interior angle bisectors of any triangle meet the sides opposite the angles being bisected in three collinear points.

8-29 Figure 8-29a shows a hexagon $A B C D E F$ whose pairs of opposite sides are: $[\overline{A B}, \overline{D E}],[\overline{C B}, \overline{E F}]$, and $[\overline{C D}, \overline{A F}]$. If we place points A, B, C, D, E, and F in any order on a circle, the above pairs of opposite sides intersect at points L, M, and N respectively. Prove that L, M, and N are collinear. Fig. 8-29b shows one arrangement of the six points, A, B, C, D, E, and F on a circle.

Challenge 1 Prove the theorem for another arrangement of the points A, B, C, D, E, and F on a circle.

Challenge 2 Can you explain this theorem when one pair of opposite sides are parallel?

8-30 Points A, B, and C are on one line and points A^{\prime}, B^{\prime}, and C^{\prime} are on another line (in any order). (Fig. 8-30) If $\overleftrightarrow{A B^{\prime}}$ and $\overleftrightarrow{A^{\prime} B}$ meet at $C^{\prime \prime}$, while $\overleftarrow{A C^{\prime}}$ and $\overleftarrow{A^{\prime} C}$ meet at $B^{\prime \prime}$, and $\overleftrightarrow{B C^{\prime}}$ and $\overleftrightarrow{B^{\prime} C}$ meet at $A^{\prime \prime}$, prove that points $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ are collinear.
(This theorem was first published by Pappus of Alexandria about 300 A.D.)

9. The Simson Line

If perpendiculars are drawn from a point on the circumcircle of a triangle to its sides, their feet lie on a line. Although this famous line was discovered by William Wallace in 1797, careless misquotes have, in time, attributed it to Robert Simson (1687-1768). The following problems present several properties and applications of the Simson Line.

9-1 Prove that the feet of the perpendiculars drawn from any point on the circumcircle of a given triangle to the sides of the triangle are collinear. (Simson's Theorem)
Challenge 1 State and prove the converse of Simson's Theorem.
Challenge 2 Which points on the circumcircle of a given triangle lie on their own Simson Lines with respect to the given triangle?

9-2 Altitude $\overleftrightarrow{A D}$ of $\triangle A B C$ meets the circumcircle at P. (Fig. 9-2) Prove that the Simson Line of P with respect to $\triangle A B C$ is parallel to the line tangent to the circle at A.
Challenge Investigate the special case where $B A=C A$.
9-3 From point P on the circumcircle of $\triangle A B C$, perpendiculars $\overline{P X}$, $\overline{P Y}$, and $\overline{P Z}$ are drawn to sides $\overleftrightarrow{A C}, \overleftrightarrow{A B}$, and $\overleftrightarrow{B C}$, respectively. Prove that $(P A)(P Z)=(P B)(P X)$.

9-2

9-4

9-4 In Fig. 9-4, sides $\overleftrightarrow{A B}, \overleftrightarrow{B C}$, and $\overleftrightarrow{C A}$ of $\triangle A B C$ are cut by a transversal at points Q, R, and S, respectively. The circumcircles of $\triangle A B C$ and $\triangle S C R$ intersect at P. Prove that quadrilateral $A P S Q$ is cyclic.

9-5 In Fig. 9-5, right $\triangle A B C$, with right angle at A, is inscribed in circle O. The Simson Line of point P, with respect to $\triangle A B C$, meets $\overline{P A}$ at M. Prove that $\overline{M O}$ is perpendicular to $\overline{P A}$.
Challenge Show that $\overline{P A}$ is a side of the inscribed hexagon if $m \angle A O M=30$.

9-6 From a point P on the circumference of circle O, three chords are drawn meeting the circle at points A, B, and C. Prove that the three points of intersection of the three circles with $\overline{P A}, \overline{P B}$, and $\overline{P C}$ as diameters, are collinear.

Challenge Prove the converse.
9-7 P is any point on the circumcircle of cyclic quadrilateral $A B C D$. If $\overline{P K}, \overline{P L}, \overline{P M}$, and $\overline{P N}$ are the perpendiculars from P to sides $\overleftrightarrow{A B}, \overleftrightarrow{B C}, \overleftrightarrow{C D}$, and $\overleftrightarrow{D A}$, respectively, prove that $(P K)(P M)=$ $(P L)(P N)$.

9-8

9-8 In Fig. 9-8, line segments $\overline{A B}, \overline{B C}, \overline{E C}$, and $\overline{E D}$ form triangles $A B C, F B D, E F A$, and EDC. Prove that the four circumcircles of these triangles meet at a common point.

Challenge Prove that point P is concyclic with the centers of these four circumcircles.

9-9 The line joining the orthocenter of a given triangle with a point on the circumcircle of the triangle is bisected by the Simson Line (with respect to that point).

9-10 The measure of the angle determined by the Simson Lines of two given points on the circumcircle of a given triangle is equal to one-half the measure of the arc determined by the two points.

Challenge Prove that if three points are chosen at random on a circle, the triangle formed by these three points is similar to the triangle formed by the Simson Lines of these points with respect to any inscribed triangle.

9-11 If two triangles are inscribed in the same circle, a single point on the circumcircle determines a Simson Line for each triangle. Prove that the angle formed by these two Simson Lines is constant, regardless of the position of the point.

9-12 In the circumcircle of $\triangle A B C$, chord $\overline{P Q}$ is drawn parallel to side $\overline{B C}$. Prove that the Simson Lines of $\triangle A B C$, with respect to points P and Q, are concurrent with the altitude $\overline{A D}$ of $\triangle A B C$.

10. The Theorem of Stewart

The geometry student usually feels at ease with medians, angle bisectors, and altitudes of triangles. What about 'internal line segments' (segments with endpoints on a vertex and its opposite side) that are neither medians, angle bisectors, nor altitudes? As the problems in this section show, much can be learned about such segments thanks to Stewart's Theorem. Named after Matthew Stewart who published it in 1745, this theorem describes the relationship between an 'internal line segment', the side to which it is drawn, the two parts of this side, and the other sides of the triangle.

10-1

10-1 A classic theorem known as Stewart's Theorem, is very useful as a means of finding the measure of any line segment from the vertex of a triangle to the opposite side. Using the letter designations in Fig. 10-1, the theorem states the following relationship: $a^{2} n+b^{2} m=c\left(d^{2}+m n\right)$. Prove the validity of the theorem.

Challenge If a line from C meets $\overrightarrow{A B}$ at F, where F is not between A and B, prove that

$$
\left.(B C)^{2}(A F)-(A C)^{2}(B F)=A B[C F)^{2}-(A F)(B F)\right]
$$

10-2 In an isosceles triangle with two sides of measure 17, a line measuring 16 is drawn from the vertex to the base. If one segment of the base, as cut by this line, exceeds the other by 8 , find the measures of the two segments.

10-3 In $\triangle A B C$, point E is on $\overline{A B}$, so that $A E=\frac{1}{2} E B$. Find $C E$ if $A C=4, C B=5$, and $A B=6$.

Challenge Find the measure of the segment from E to the midpoint of $\overline{C B}$.
10.4 Prove that the sum of the squares of the distances from the vertex of the right angle, in a right triangle, to the trisection points along the hypotenuse, is equal to $\frac{5}{9}$ the square of the measure of the hypotenuse.

Challenge 1 Verify that the median to the hypotenuse of a right triangle is equal in measure to one-half the hypotenuse. Use Stewart's Theorem.

Challenge 2 Try to predict, from the results of Problem 10-4 and Challenge 1 , the value of the sum of the squares for a quadrisection of the hypotenuse.

10-5 Prove that the sum of the squares of the measures of the sides of a parallelogram equals the sum of the squares of the measures of the diagonals.

Challenge A given parallelogram has sides measuring 7 and 9 , and a shorter diagonal measuring 8 . Find the measure of the longer diagonal.

10-6 Using Stewart's Theorem, prove that in any triangle the square of the measure of the internal bisectors of any angle is equal to the product of the measures of the sides forming the bisected angle decreased by the product of the measures of the segments of the side to which this bisector is drawn.

Challenge 1 Can you also prove the theorem in Problem 10-6 without using Stewart's Theorem?

Challenge 2 Prove that in $\triangle A B C, t_{a}=\frac{b c}{b+c} \sqrt{2}$, when $\angle B A C$ is a right angle.

10-7 The two shorter sides of a triangle measure 9 and 18. If the internal angle bisector drawn to the longest side measures 8, find the measure of the longest side of the triangle.

Challenge Find the measure of a side of a triangle if the other two sides and the bisector of the included angle have measures 12 , 15 , and 10 , respectively.

10-8 In a right triangle, the bisector of the right angle divides the hypotenuse into segments that measure 3 and 4. Find the measure of the angle bisector of the larger acute angle of the right triangle.

10-9 In a $30-60-90$ right triangle, if the measure of the hypotenuse is 4 , find the distance from the vertex of the right angle to the point of intersection of the angle bisectors.

SOLUTIONS

1. Congruence and Parallelism

1-1 In any $\triangle \mathrm{ABC}, \mathrm{E}$ and D are interior points of $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BC}}$, respectively (Fig. Sl-1a). $\overline{\mathrm{AF}}$ bisects $\angle \mathrm{CAD}$, and $\overline{\mathrm{BF}}$ bisects $\angle \mathrm{CBE}$. Prove $\mathrm{m} \angle \mathrm{AEB}+\mathrm{m} \angle \mathrm{ADB}=2 \mathrm{~m} \angle \mathrm{AFB}$.

$$
\begin{align*}
& m \angle A F B=180-[(x+w)+(y+z)](\# 13) \tag{I}\\
& m \angle A E B=180-[(2 x+w)+z](\# 13) \\
& m \angle A D B=180-[(2 y+z)+w](\# 13) \\
& \hline m \angle A E B+m \angle A D B=360-[2 x+2 y+2 z+2 w] \\
& 2 m \angle A F B=2[180-(x+y+z+w)] \tag{twiceI}\\
& 2 m \angle A F B=360-[2 x+2 y+2 z+2 w] \\
& \text { Therefore, } m \angle A E B+m \angle A D B=2 m \angle A F B .
\end{align*}
$$

Challenge 1 Prove that this result holds if E coincides with C (Fig. S1-1b).

PROOF:
We must show that $m \angle A E B+m \angle A D B=2 m \angle A F B$.
Let $m \angle C A F=m \angle F A D=x$.

Since $\angle A D B$ is an exterior angle of $\triangle A F D$, $m \angle A D B=m \angle A F D+x(\# 12)$.

Similarly, in $\triangle A E F$, $m \angle A F D=m \angle A E B+x(\# 12)$.
$m \angle A D B+m \angle A E B+x=2 m \angle A F D+x$, thus, $m \angle A E B+m \angle A D B=2 m \angle A F B$.

1-2 In $\triangle \mathrm{ABC}$, a point D is on $\overline{\mathrm{AC}}$ so that $\mathrm{AB}=\mathrm{AD}$ (Fig. S1-2). $\mathrm{m} \angle \mathrm{ABC}-\mathrm{m} \angle \mathrm{ACB}=30$. Find $\mathrm{m} \angle \mathrm{CBD}$.

$$
m \angle C B D=m \angle A B C-m \angle A B D
$$

$$
\text { Since } A B=A D, m \angle A B D=m \angle A D B(\# 5)
$$

Therefore, by substitution,

$$
\begin{gather*}
m \angle C B D=m \angle A B C-m \angle A D B . \tag{I}\\
\text { But } m \angle A D B=m \angle C B D+m \angle C(\# 12) . \tag{II}
\end{gather*}
$$

Substituting (II) into (I), we have

$$
\begin{gathered}
m \angle C B D=m \angle A B C-[m \angle C B D+m \angle C] . \\
m \angle C B D=m \angle A B C-m \angle C B D-m \angle C
\end{gathered}
$$

Therefore, $2 m \angle C B D=m \angle A B C-m \angle A C B=30$, and $m \angle C B D=15$.
COMMENT: Note that $m \angle A C B$ is undetermined.

1-3 The interior bisector of $\angle \mathrm{B}$, and the exterior bisector of $\angle \mathrm{C}$ of $\triangle \mathrm{ABC}$ meet at D (Fig. S1-3). Through D , a line parallel to $\overline{\mathrm{CB}}$ meets $\overline{\mathrm{AC}}$ at L and $\overline{\mathrm{AB}}$ at M . If the measures of legs $\overline{\mathrm{LC}}$ and $\overline{\mathrm{MB}}$ of trapezoid CLMB are 5 and 7, respectively, find the measure of base $\overline{\mathrm{LM}}$. Prove your result.

$m \angle 1=m \angle 2$ and $m \angle 2=m \angle 3$ (\#8).
Therefore, $m \angle 1=m \angle 3$ (transitivity).
In isosceles $\triangle D M B, D M=M B(\# 5)$.
Similarly, $m \angle 4=m \angle 5$ and $m \angle 5=m \angle L D C$ (\#8).
Therefore, $m \angle 4=m \angle L D C$ (transitivity).
Thus, in isosceles $\triangle D L C, D L=C L$ (\#5).
Since $D M=D L+L M$, by substitution, $M B=L C+L M$, or $L M=M B-L C$.
Since $L C=5$ and $M B=7, L M=2$.
Challenge Find LM if $\triangle \mathrm{ABC}$ is equilateral.
answer: Zero
1-4 In right $\triangle \mathrm{ABC}, \overline{\mathrm{CF}}$ is the median drawn to hypotenuse $\overline{\mathrm{AB}}, \overline{\mathrm{CE}}$ is the bisector of $\angle \mathrm{ACB}$, and $\overline{\mathrm{CD}}$ is the altitude to $\overline{\mathrm{AB}}$ (Fig. S1-4a). Prove that $\angle \mathrm{DCE} \cong \angle \mathrm{ECF}$.

S1-4a

METHOD I: In right $\triangle A B C, C F=\frac{1}{2} A B=F A$ (\#27).
Since $\triangle C F A$ is isosceles, $\angle F C A \cong \angle A$ (\#5).
In right $\triangle B D C, \angle B$ is complementary to $\angle B C D$.
In right $\triangle A B C, \angle B$ is complementary to $\angle A$.

$$
\begin{gather*}
\text { Therefore, } \angle B C D \cong \angle A \tag{II}\\
\text { From (I) and (II), } \angle F C A \cong \angle B C D \text {. } \tag{III}
\end{gather*}
$$

Since $\overline{C E}$ is the bisector of $\angle A C B, \angle A C E \cong \angle B C E$.
In right $\triangle A B C, \overline{P C} \perp \overline{C A}$ and $P C=B C$ and $\overline{A E}$ bisects $\angle A$. By subtracting (III) from (IV), we have $\angle D C E \cong \angle E C F$.
METHOD II: Let a circle be circumscribed about right $\triangle A B C$. Extend $\overline{C E}$ to meet the circle at G; then draw $\overline{F G}$ (Fig. S1-4b).

Since $\overline{C E}$ bisects $\angle A C B$, it also bisects $\overparen{A G B}$. Thus, G is the midpoint of $\overparen{A G B}$, and $\overline{F G} \perp \overline{A B}$. Since both $\overline{F G}$ and $\overline{C D}$ are perpendicular to $\overline{A B}$,

$$
\begin{equation*}
\overline{F G} \| \overline{C D}(\# 9), \text { and } \angle D C E \cong \angle F G E(\# 8) . \tag{I}
\end{equation*}
$$

Since radius $\overline{C F} \cong$ radius $\overline{F G}, \triangle C F G$ is isosceles and

$$
\begin{equation*}
\angle E C F \cong \angle F G E \tag{II}
\end{equation*}
$$

Thus, by transitivity, from (I) and (II), $\angle D C E \cong \angle E C F$.
Challenge Does this result hold for a non-right triangle?
ANSWER: No, since it is a necessary condition that $\overline{B A}$ pass through the center of the circumcircle.

1-5 The measure of a line segment $\overline{\mathrm{PC}}$, perpendicular to hypotenuse $\overline{\mathrm{AC}}$ of right $\triangle \mathrm{ABC}$, is equal to the measure of leg $\overline{\mathrm{BC}}$. Show $\overline{\mathrm{BP}}$ may be perpendicular or parallel to the bisector of $\angle \mathrm{A}$.
CASE I: We first prove the case for $\overline{B P} \| \overline{A E}$ (Fig. S1-5a).
In right $\triangle A B C, \overline{P C} \perp \overline{A C}, P C=B C$, and $\overline{A E}$ bisects $\angle A$. $\angle C E A$ is complementary to $\angle C A E$, while $\angle B D A$ is complementary to $\angle D A B$ (\#14).
Since $\angle C A E \cong \angle D A B, \angle B D A \cong \angle C E A$. However, $\angle B D A \cong$ $\angle E D C$ (\#1). Therefore, $\angle C E D \cong \angle C D E$, and $\triangle C E D$ is
isosceles (\#5). Since isosceles triangles CED and CPB share the same vertex angle, they are mutually equiangular. Thus, since $\angle C E D \cong \angle C P B, \overline{E A} \| \overline{P B}$ (\#7).

CASE II: We now prove the case for $\overline{A E} \perp \overline{B P}$ (Fig. Sl-5b). $\angle C P F$ is complementary to $\angle C F P$ (\#14). Since $\angle C F P \cong$ $\angle B F A$ (\#1), $\angle C P F$ is complementary to $\angle B F A$. However, in $\triangle C P B, \overline{C P} \cong \overline{C B}$ and $\angle C P B \cong \angle C B P$ (\#5); hence, $\angle C B P$ is complementary to $\angle B F A$. But $\angle C B P$ is complementary to $\angle P B A$. Therefore, $\angle B F A \cong \angle F B A$ (both are complementary to $\angle C B P$). Now we have $\triangle F A B$ isosceles with $\overline{A D}$ an angle bisector; thus, $\overline{A D} \perp \overline{B F P}$ since the bisector of the vertex angle of an isosceles triangle is perpendicular to the base.

1-6 Prove the following: if, in $\triangle \mathrm{ABC}$, median $\overline{\mathrm{AM}}$ is such that $\mathrm{m} \angle \mathrm{BAC}$ is divided in the ratio $1: 2$, and $\overline{\mathrm{AM}}$ is extended through M to D so that $\angle \mathrm{DBA}$ is a right angle, then $\mathrm{AC}=\frac{1}{2} \mathrm{AD}$ (Fig. S1-6).

Let $m \angle B A M=x$; then $m \angle M A C=2 x$. Choose point P on $\overline{A D}$ so that $A M=M P$.
Since $B M=M C, A C P B$ is a parallelogram (\#21f). Thus, $B P=A C$.
Let T be the midpoint of $\overline{A D}$ making $\overline{B T}$ the median of right $\triangle A B D$.

It follows that $B T=\frac{1}{2} A D$, or $B T=A T$ (\#27), and, consequently, $m \angle T B A=x . \angle B T P$ is an exterior angle of isosceles $\triangle B T A$. Therefore, $m \angle B T P=2 x$ (\#12). However, since $\overline{B P} \| \overline{A C}$ (\#2la), $m \angle C A P=m \angle B P A=2 x(\# 8)$. Thus, $\triangle T B P$ is isosceles with $B T=B P$.
Since $B T=\frac{1}{2} A D$ and $B T=B P=A C, A C=\frac{1}{2} A D$.
Question: What is the relation between points P and D when $m \angle A=90$?

1-7 In square $\mathrm{ABCD}, \mathrm{M}$ is the midpoint of $\overline{\mathrm{AB}}$. A line perpendicular to $\overline{\mathrm{MC}}$ at M meets $\overline{\mathrm{AD}}$ at K . Prove that $\angle \mathrm{BCM} \cong \angle \mathrm{KCM}$.
method I: Draw $\overline{M L} \| \overline{A D}$ (Fig. S1-7a). Since $A M=M B$ and $\overline{A D}\|\overline{M L}\| \overline{B C}, K P=P C$ (\#24). Consider right $\triangle K M C ; \overline{M P}$ is a median. Therefore, $M P=P C$ (\#27). Since $\triangle M P C$ is isosceles, $m \angle 1=m \angle 2$. However, since $\overline{M L} \| \overline{B C}, m \angle 1=m \angle 3$ (\#8), thus, $m \angle 2=m \angle 3$; that is, $\angle B C M \cong \angle K C M$.

S1.7a

method in: Extend $\overline{K M}$ to meet $\overline{C B}$ extended at G (Fig. Sl-7b). Since $A M=M B$ and $m \angle K A M=m \angle M B G$ (right angles) and $m \angle A M K=m \angle G M B, \quad \triangle A M K \cong \triangle B M G$ (A.S.A.). Then, $K M=M G$. Now, $\triangle K M C \cong \triangle G M C$ (S.A.S.), and $\angle B C M \cong$ $\angle K C M$.
method ill: Other methods may easily be found. Here is one without auxiliary constructions in which similarity is employed (Fig. S1-7c).
$A M=M B=\frac{1}{2} s$, where $B C=s$.
$\angle A M K$ is complementary to $\angle B M C$, and $\angle B C M$ is complementary to $\angle B M C$ (\#14).

Therefore, right $\triangle M A K \sim$ right $\triangle C B M$, and $A K=\frac{1}{4} s$.
In right $\triangle M A K, M K=\frac{s \sqrt{5}}{4}$ (\#55), while in right $\triangle C B M$, $M C=\frac{s \sqrt{5}}{2}(\# 55)$.
Therefore, since $\frac{M K}{M C}=\frac{\frac{\sqrt{5}}{4}}{\frac{\sqrt{5}}{2}}=\frac{1}{2}=\frac{M B}{B C}$, right $\triangle M K C \sim$ right $\triangle B M C(\# 50)$, and $\angle B C M \cong \angle K C M$.

1-8 Given any $\triangle \mathrm{ABC}, \overline{\mathrm{AE}}$ bisects $\angle \mathrm{BAC}, \overline{\mathrm{BD}}$ bisects $\angle \mathrm{ABC}$, $\overline{\mathrm{CP}} \perp \overline{\mathrm{BD}}$, and $\overline{\mathrm{CQ}} \perp \overline{\mathrm{AE}}$, prove that $\overline{\mathrm{PQ}}$ is parallel to $\overline{\mathrm{AB}}$.

Extend $\overline{C P}$ and $\overline{C Q}$ to meet $\overline{A B}$ at S and R, respectively (Fig. S1-8). It may be shown that $\triangle C P B \cong \triangle S P B$, and $\triangle C Q A \cong$ $\triangle R Q A$ (A.S.A.).
It then follows that $C P=S P$ and $C Q=R Q$ or P and Q are midpoints of $\overline{C S}$ and $\overline{C R}$, respectively. Therefore, in $\triangle C S R$, $\overline{P Q} \| \overline{S R}(\# 26)$. Thus, $\overline{P Q} \| \overline{A B}$.

Challenge Identify the points P and Q when $\triangle \mathrm{ABC}$ is equilateral. ANSWER: P and Q are the midpoints of $\overline{C A}$ and $\overline{C B}$, respectively.

1-9 Given that ABCD is a square, $\overline{\mathrm{CF}}$ bisects $\angle \mathrm{ACD}$, and $\overline{\mathrm{BPQ}} \perp \overline{\mathrm{CF}}$ (Fig. Sl-9), prove $\mathrm{DQ}=2 \mathrm{PE}$.

S 1.9

Draw $\overline{R E} \| \overline{B P Q}$. Since E is the midpoint of $\overline{D B}$ (\#2ln) in $\triangle D Q B, D R=Q R$ (\#25). Since $\overline{R E} \perp \overline{C F}(\# 10), \triangle R G C \cong$ $\triangle E G C$, and $\angle C R G=\angle C E G$.
Therefore, $R Q P E$ is an isosceles trapezoid (\#23), and $P E=Q R$. $2 R Q=D Q$ and, therefore, $D Q=2 P E$.

1-10 Given square ABCD with $\mathrm{m} \angle \mathrm{EDC}=\mathrm{m} \angle \mathrm{ECD}=15$, prove $\triangle \mathrm{ABE}$ is equilateral.
METHOD I: In square $A B C D$, draw $\overline{A F}$ perpendicular to $\overline{D E}$ (Fig. S1-10a). Choose point G on $\overline{A F}$ so that $m \angle F D G=60$. Why does point G fall inside the square? $m \angle A G D=150$ (\#12). Since $m \angle E D C=m \angle E C D=15, m \angle D E C=150$ (\#13); thus, $\angle A G D \cong \angle D E C$.
Therefore, $\triangle A G D \cong \triangle D E C$ (S.A.A.), and $D E=D G$.
In right $\triangle D F G, D F=\frac{1}{2}(D G)(\# 55 \mathrm{c})$.
Therefore, $D F=\frac{1}{2}(D E)$, or $D F=E F$.
Since $\overline{A F}$ is the perpendicular bisector of $\overline{D E}, A D=A E$ (\#18).
A similar argument shows $B C=B E$. Therefore, $A E=$ $B E=A B$ (all are equal to the measure of a side of square $A B C D$).

METHOD II: In square $A B C D$, with $m \angle E D C=m \angle E C D=15$, draw $\triangle A F D$ on $\overline{A D}$ such that $m \angle F A D=m \angle F D A=15$. Then draw $\overline{F E}$ (Fig. S1-10b).
$\triangle F A D \cong \triangle E D C$ (A.S.A.), and $D E=D F$.
Since $\angle A D C$ is a right angle, $m \angle F D E=60$ and $\triangle F D E$ is equilateral so that $D F=D E=F E$. Since $m \angle D F E=60$ and $m \angle A F D=150(\# 13), m \angle A F E=150$. Thus, $m \angle F A E=15$ and $m \angle D A E=30$.
Therefore, $m \angle E A B=60$. In a similar fashion it may be proved that $m \angle A B E=60$; thus, $\triangle A B E$ is equilateral.

METHOD III: In square $A B C D$, with $m \angle E D C=m \angle E C D=15$, draw equilateral $\triangle D F C$ on $\overline{D C}$ externally; then draw $\overline{E F}$ (Fig. S1-10c).
$\overline{E F}$ is the perpendicular bisector of $\overline{D C}$ (\#18).
Since $A D=F D$, and $m \angle A D E=m \angle F D E=75, \triangle A D E \cong$ $\triangle F D E$ (S.A.S.).
Since $m \angle D F E=30, m \angle D A E=30$.
Therefore, $m \angle B A E=60$.
In a similar fashion, it may be proved that $m \angle A B E=60$; thus, $\triangle A B E$ is equilateral.

method iv: Extend $\overline{D E}$ and $\overline{C E}$ to meet $\overline{B C}$ and $\overline{A D}$ at K and H, respectively (Fig. S1-10d). In square $A B C D, m \angle K D C=$ $m \angle H C D=15$, therefore, $E D=E C$ (\#5).
Draw $\overline{A F}$ and $\overline{C G}$ perpendicular to $\overline{D K}$.
In right $\triangle D G C, m \angle G C D=75$ (\#14), while $m \angle A D F=75$ also. Thus, $\triangle A D F \cong \triangle D C G$, and $D F=C G . m \angle G E C=30$ (\#12). In $\triangle G E C, C G=\frac{1}{2}(E C)(\# 55 \mathrm{c})$. Therefore, $C G=\frac{1}{2}(E D)$, or $D F=\frac{1}{2}(E D)$.

Since $\overline{A F}$ is the perpendicular bisector of $\overline{D E}, A D=A E$ (\#18). In a similar fashion, it may be proved that $B E=B C$; therefore, $\triangle A B E$ is equilateral.

1-11 In any $\triangle \mathrm{ABC}, \mathrm{D}, \mathrm{E}$, and F are midpoints of the sides $\overline{\mathrm{AC}}, \overline{\mathrm{AB}}$, and $\overline{\mathrm{BC}}$, respectively. $\overline{\mathrm{BG}}$ is an altitude of $\triangle \mathrm{ABC}$ (Fig. S1-11). Prove that $\angle \mathrm{EGF} \cong \angle \mathrm{EDF}$.

$\overline{G F}$ is the median to hypotenuse $\overline{C B}$ of right $\triangle C G B$, therefore, $G F=\frac{1}{2}(C B)(\# 27)$.
$D E=\frac{1}{2} C B(\# 26)$, therefore, $D E=G F$.
Join midpoints E and F. Thus, $\overline{E F} \| \overline{A C}(\# 26)$.
Therefore, DGFE is an isosceles trapezoid (\#23).
Then $\angle D E F \cong \angle G F E$.
Thus, $\triangle G F E \cong \triangle D E F$ (S.A.S.), and $\angle E G F \cong \angle E D F$.
1-12 In right $\triangle \mathrm{ABC}$, with right angle at $\mathrm{C}, \mathrm{BD}=\mathrm{BC}, \mathrm{AE}=\mathrm{AC}$, $\overline{\mathrm{EF}} \perp \overline{\mathrm{BC}}$, and $\overline{\mathrm{DG}} \perp \overline{\mathrm{AC}}$. Prove that $\mathrm{DE}=\mathrm{EF}+\mathrm{DG}$.

Draw $\overline{C P} \perp \overline{A B}$, also draw $\overline{C E}$ and $\overline{C D}$ (Fig. Sl-12).

$$
\begin{gathered}
m \angle 3+m \angle 1+m \angle 2=90 \\
m \angle 3+m \angle 1=m \angle 4(\# 5)
\end{gathered}
$$

By substitution, $m \angle 4+m \angle 2=90$;
but in right $\triangle C P E, m \angle 4+m \angle 1=90$ (\#14).
Thus, $\angle 1 \cong \angle 2$ (both are complementary to $\angle 4$), and right $\triangle C P E \cong$ right $\triangle C F E$, and $P E=E F$.
Similarly, $m \angle 9+m \angle 7+m \angle 6=90$,

$$
m \angle 9+m \angle 7=m \angle 5(\# 5) .
$$

By substitution, $m \angle 5+m \angle 6=90$.
However, in right $\triangle C P D, m \angle 5+m \angle 7=90$ (\#14).
Thus, $\angle 6 \cong \angle 7$ (both are complementary to $\angle 5$), and right $\triangle C P D \cong$ right $\triangle C G D$, and $D P=D G$.
Since $D E=D P+P E$, we get $D E=D G+E F$.
1-13 Prove that the sum of the measures of the perpendiculars from any point on a side of a rectangle to the diagonals is constant.

Let P be any point on side $\overline{A B}$ of rectangle $A B C D$ (Fig. Sl-13). $\overline{P G}$ and $\overline{P F}$ are perpendiculars to the diagonals.
Draw $\overline{A J}$ perpendicular to $\overline{D B}$, and then $\overline{P H}$ perpendicular to $\overline{A J}$. Since $P H J F$ is a rectangle (a quadrilateral with three right angles), we get $P F=H J$.
Since $\overline{P H}$ and $\overline{B D}$ are both perpendicular to $\overline{A J}, \overline{P H}$ is parallel to $\overline{B D}(\# 9)$.
Thus, $\angle A P H \cong \angle A B D$ (\#7).
Since $A E=E B$ (\#21f, 2lh), $\angle C A B \cong \angle A B D$ (\#5). Thus, by transitivity, $\angle E A P \cong \angle A P H$; also in $\triangle A P K, A K=P K$ (\#5). Since $\angle A K H \cong \angle P K G$ (\#1), right $\triangle A H K \cong$ right $\triangle P G K$ (S.A.A.). Hence, $A H=P G$ and, by addition, $P F+P G=$ $H J+A H=A J$, a constant.

1-14 The trisectors of the angles of a rectangle are drawn. For each pair of adjacent angles, those trisectors that are closest to the
enclosed side are extended until a point of intersection is established. The line segments connecting those points of intersection form a quadrilateral. Prove that the quadrilateral is a rhombus.

As a result of the trisections,
isosceles $\triangle A H D \cong$ isosceles $\triangle B F C$, and
isosceles $\triangle A G B \cong$ isosceles $\triangle D E C$ (Fig. S1-14a).
Since $A H=H D=F B=F C$, and $A G=G B=D E=C E$, and $\angle H A G \cong \angle G B F \cong \angle F C E \cong \angle H D E \cong \frac{1}{3}$ right angle, $\triangle H A G \cong \triangle F B G \cong \triangle F C E \cong \triangle H D E$ (S.A.S.).
Therefore, $H G=F G=F E=H E$, and $E F G H$ is a rhombus (\#21-1).

Challenge 1 What type of quadrilateral would be formed if the original rectangle were replaced by a square?
Consider $A B C D$ to be a square (Fig. S1-14b). All of the above still holds true; thus we still maintain a rhombus. However, we now can easily show $\triangle A H G$ to be isosceles, $m \angle A G H=m \angle A H G=75$.
Similarly, $\quad m \angle B G F=75 . \quad m \angle A G B=120, \quad$ since $m \angle G A B=m \angle G B A=30$.
Therefore, $m \angle H G F=90$. We now have a rhombus with one right angle; hence, a square.

1-15 In Fig. S1-15, $\overline{\mathrm{BE}}$ and $\overline{\mathrm{AD}}$ are altitudes of $\triangle \mathrm{ABC} . \mathrm{F}, \mathrm{G}$, and K are midpoints of $\overline{\mathrm{AH}}, \overline{\mathrm{AB}}$, and $\overline{\mathrm{BC}}$, respectively. Prove that $\angle \mathrm{FGK}$ is a right angle.
In $\triangle A H B, \overline{G F} \| \overline{B H}(\# 26)$.
And in $\triangle A B C, \overline{G K} \| \overline{A C}$ (\#26).
Since $\overline{B E} \perp \overline{A C}, \overline{B E} \perp \overline{G K}$,
then $\overline{G F} \perp \overline{G K}(\# 10)$; that is, $\angle F G K$ is a right angle.

1-16 In parallelogram $\mathrm{ABCD}, \mathrm{M}$ is the midpoint of $\overline{\mathrm{BC}} . \overline{\mathrm{DT}}$ is drawn from D perpendicular to $\stackrel{\mathrm{MA}}{ }$ (Fig. $\mathrm{Si}-16$). Prove $\mathrm{CT}=\mathrm{CD}$.
Let R be the midpoint of $\overline{A D}$; draw $\overrightarrow{C R}$ and extend it to meet $\overline{T D}$ at P. Since $A R=\frac{1}{2} A D$, and $M C=\frac{1}{2} B C, A R=M C$. Since $\overline{A R} \| \overline{M C}, A R C M$ is a parallelogram (\#22). Thus, $\overline{C P} \| \overline{M T}$. In $\triangle A T D$, since $\overline{R P} \| \overrightarrow{A T}$ and passes through the midpoint of $\overline{A D}$, it must also pass through the midpoint of $\overline{T D}$ (\#25). Since $\overline{M T} \| \overline{C P}$, and $\overline{M T} \perp \overline{T \bar{D}}, \overline{C P} \perp \overline{T D}$ (\#10). Thus, $\overline{C P}$ is the perpendicular bisector of $\overline{T D}$, and $C T=C D$ (\#18).

1-17 Prove that the line segment joining the midpoints of two opposite sides of any quadrilateral bisects the line segment joining the midpoints of the diagonals.
$A B C D$ is any quadrilateral. K, L, P, and Q are midpoints of $\overline{A D}$, $\overline{B C}, \overline{B D}$, and $\overline{A C}$, respectively. We are to prove that $\overline{K L}$ bisects $\overline{P Q}$. Draw $\overline{K P}$ and $\overline{Q L}$ (Fig. Sl-17).

In $\triangle A D B, K P=\frac{1}{2} A B$, and $\overline{K P} \| \overline{A B}(\# 26)$.
Similarly, in $\triangle A C B, Q L=\frac{1}{2} A B$, and $\overline{Q L} \| \overline{A B}$ (\#26).
By transitivity, $K P=Q L$, and $\overline{K P} \| \overline{Q L}$. It then follows that $K P L Q$ is a parallelogram (\#22), and so $P M=Q M$ (\#21f).

1-18 In any $\triangle \mathrm{ABC}, \overleftrightarrow{\mathrm{XYZ}}$ is any line through the centroid G . Perpendiculars are drawn from each vertex of $\triangle \mathrm{ABC}$ to this line. Prove $\mathrm{CY}=\mathrm{AX}+\mathrm{BZ}$.

Draw medians $\overline{C D}, \overline{A F}$, and $\overline{B H}$.
From E, the midpoint of $\overline{C G}$, draw $\overline{E P} \perp \overline{X Z}$.
Also draw $\overline{D Q} \perp \overline{X Z}$ (Fig. Sl-18).
Since $\angle C G Y \cong \angle Q G D$ (\#1), and $E C=E G=D G$ (\#29),
$\triangle Q G D \cong \triangle P G E$, and $Q D=E P$.
$\overline{A X} \| \overline{B Z}$ (\#9), therefore, $\overline{Q D}$ is the median of trapezoid $A X Z B$, and $Q D=\frac{1}{2}(A X+B Z)(\# 28)$.
$E P=\frac{1}{2} C Y \quad$ (\#25, \#26), therefore, $\quad \frac{1}{2} C Y=\frac{1}{2}(A X+B Z)$ (transitivity), and $C Y=A X+B Z$.

1-19 In any $\triangle \mathrm{ABC}, \overleftrightarrow{\mathrm{CPQ}}$ is any line through C interior to $\triangle \mathrm{ABC}$. $\overline{\mathrm{BP}}$ is perpendicular to line $\overline{\mathrm{CPQ}}, \overline{\mathrm{AQ}}$ is perpendicular to line $\overline{\mathrm{CPQ}}$, and M is the midpoint of $\overline{\mathrm{AB}}$. Prove that $\mathrm{MP}=\mathrm{MQ}$.

Since $\overline{B P} \perp \overline{C G}$ and $\overline{A Q} \perp \overline{C G}, \overline{B P} \| \overline{A Q}$, (\#9).
Without loss of generality, let $A Q>B P$ (Fig. S1-19a).
Extend $\overline{B P}$ to E so that $B E=A Q$.
Therefore, $A E B Q$ is a parallelogram (\#22).
Draw diagonal $\overline{E Q}$.
$\overline{E Q}$ must pass through M, the midpoint of $A B$, since the diagonals of the parallelogram bisect each other. Consequently, M is also the midpoint of $E Q$.
In right $\triangle E P Q, \overline{M P}$ is the median to hypotenuse $\overline{E Q}$.
Therefore, $M P=\frac{1}{2} E Q=M Q(\# 27)$.

Challenge Show that the same result holds if the line through C is exterior to $\triangle \mathrm{ABC}$.

Extend $\overline{P B}$ through B to E so that $B E=A Q$ (Fig. S1-19b). Since $\overline{A Q} \| \overline{P E}$ (\#9), quadrilateral $A E B Q$ is a parallelogram (\#22).
Thus, if M is the midpoint of $\overline{A B}$, it must also be the midpoint of $\overline{Q E}$ (\#2If).
Therefore, in right $\triangle Q P E, M P=\frac{1}{2} E Q=M Q(\# 27)$.

S1-19b

S 1.20

1-20 In Fig. Sl-20, ABCD is a parallelogram with equilateral triangles ABF and ADE drawn on sides $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AD}}$, respectively. Prove that $\triangle \mathrm{FCE}$ is equilateral.

In order to prove $\triangle F C E$ equilateral, we must show $\triangle A F E \cong$ $\triangle B F C \cong \triangle D C E$ so that we may get $F E=F C=C E$.
Since $A B=D C(\# 21 \mathrm{~b})$, and $A B=A F=B F$ (sides of an equilateral triangle are equal), $D C=A F=B F$. Similarly, $A E=$ $D E=B C$.

We have $\angle A D C \cong \angle A B C$.
$m \angle E D C=360-m \angle A D E-m \angle A D C=360-m \angle A B F-$ $m \angle A B C=m \angle F B C$.
Now $m \angle B A D=180-m \angle A D C$ (\#21d),
and $m \angle F A E=m \angle F A B+m \angle B A D+m \angle D A E=120+$ $m \angle B A D=120+180-m \angle A D C=300-m \angle A D C=$ $m \angle E D C$.

Thus, $\triangle A F E \cong \triangle B F C \cong \triangle D C E$ (S.A.S.), and the conclusion follows.

1-21 If a square is drawn externally on each side of a parallelogram, prove that
(a) the quadrilateral, determined by the centers of these squares, is itself a square
(b) the diagonals of the newly formed square are concurrent with the diagonals of the original parallelogram.

(a) $A B C D$ is a parallelogram.

Points P, Q, R, and S are the centers of the four squares $A B G H$, $D A I J, D C L K$, and $C B F E$, respectively (Fig. S1-21).
$P A=D R$ and $A Q=Q D$ (each is one-half a diagonal).
$\angle A D C$ is supplementary to $\angle D A B$ (\#2ld), and
$\angle I A H$ is supplementary to $\angle D A B$ (since $\angle I A D \cong \angle H A B \cong$ right angle). Therefore, $\angle A D C \cong \angle I A H$.
Since $m \angle R D C=m \angle Q D A=m \angle H A P=m \angle Q A I=45$,
$\angle R D Q \cong \angle Q A P$. Thus, $\triangle R D Q \cong \triangle P A Q$ (S.A.S.), and $Q R=Q P$.
In a similar fashion, it may be proved that $Q P=P S$ and $P S=$ $R S$.
Therefore, $P Q R S$ is a rhombus.
Since $\triangle R D Q \cong \triangle P A Q, \angle D Q R \cong \angle A Q P$;
therefore, $\angle P Q R \cong \angle D Q A$ (by addition).
Since $\angle D Q A \cong$ right angle, $\angle P Q R \cong$ right angle, and $P Q R S$ is a square.
(b) To prove that the diagonals of square $P Q R S$ are concurrent with the diagonals of parallelogram $A B C D$, we must prove that a diagonal of the square and a diagonal of the parallelogram bisect each other. In other words, we prove that the diagonals of the square and the diagonals of the parallelogram all share the same midpoint, (i.e., point O).
$\angle B A C \cong \angle A C D$ (\#8), and
$m \angle P A B=m \angle R C D=45$; therefore, $\angle P A C \cong \angle R C A$.
Since $\angle A O P \cong \angle C O R(\# 1)$, and $A P=C R, \triangle A O P \cong \triangle C O R$ (S.A.A.).

Thus, $A O=C O$, and $P O=R O$.
Since $\overline{D B}$ passes through the midpoint of $\overline{A C}$ (\#2lf), and, similarly, $\overline{Q S}$ passes through the midpoint of $\overline{P R}$, and since $\overline{A C}$ and $\overline{P R}$ share the same midpoint (i.e., O), we have shown that $\overline{A C}, \overline{P R}, \overline{D B}$, and $\overline{Q S}$ are concurrent (i.e., all pass through point O).

2. Triangles in Proportion

2-1 In $\triangle \mathrm{ABC}, \overline{\mathrm{DE}}\|\overline{\mathrm{BC}}, \overline{\mathrm{FE}}\| \overline{\mathrm{DC}}, \mathrm{AF}=4$, and $\mathrm{FD}=6$ (Fig. S2-1). Find DB.

In $\triangle A D C, \frac{A F}{F D}=\frac{A E}{E C}(\# 46) . \quad$ So, $\frac{2}{3}=\frac{A E}{E C}$.
However in $\triangle A B C, \frac{A D}{D B}=\frac{A E}{E C}(\# 46)$,

$$
\begin{equation*}
\text { and } \frac{10}{D B}=\frac{A E}{E C} . \tag{II}
\end{equation*}
$$

From (I) and (II), $\frac{2}{3}=\frac{10}{D B}$. Thus, $D B=15$.
Challenge 1 Find DB if $\mathrm{AF}=\mathrm{m}_{1}$ and $\mathrm{FD}=\mathrm{m}_{2}$.
ANSWER: $D B=\frac{m_{2}}{m_{1}}\left(m_{1}+m_{2}\right)$
Challenge 2 In Fig. S2-1, $\overline{\mathrm{FG}} \| \overline{\mathrm{DE}}$, and $\overline{\mathrm{HG}} \| \overline{\mathrm{FE}}$. Find DB if $\mathrm{AH}=2$ and $\mathrm{HF}=4$.
ANSWER: $D B=36$
Challenge 3 Find DB if $\mathrm{AH}=\mathrm{m}_{1}$ and $\mathrm{HF}=\mathrm{m}_{2}$.

$$
\text { ANSWER: } D B=\frac{m_{2}}{m_{1}^{2}}\left(m_{1}+m_{2}\right)^{2}
$$

2-2 In isosceles $\triangle \mathrm{ABC}(\mathrm{AB}=\mathrm{AC}), \overline{\mathrm{CB}}$ is extended through B to P (Fig. S2-2). A line from P , parallel to altitude $\overline{\mathrm{BF}}$, meets $\overline{\mathrm{AC}}$ at D (where D is between A and F). From P , a perpendicular is drawn to meet the extension of $\overline{\mathrm{AB}}$ at E so that B is between E and A . Express BF in terms of PD and PE. Try solving this problem in two different ways.

METHOD I: Since $\triangle A B C$ is isosceles, $\angle C \cong \angle A B C$.
However, $\angle P B E \cong \angle A B C$ (\#1).
Therefore, $\angle C \cong \angle P B E$.
Thus, right $\triangle B F C \sim$ right $\triangle P E B$ (\#48), and $\frac{P E}{B F}=\frac{P B}{B C}$.
In $\triangle P D C$, since $\overline{B F}$ is parallel to $\overline{P D}, \frac{P D}{B F}=\frac{P B+B C}{B C}$ (\#49).
Using a theorem on proportions, we get

$$
\frac{P D-B F}{B F}=\frac{P B+B C-B C}{B C}=\frac{P B}{B C} .
$$

Therefore, $\frac{P D-B F}{B F}=\frac{P E}{B F}$.
Thus, $P D-B F=P E$, and $B F=P D-P E$.
METHOD II: Since $\overline{P D}$ is parallel to $\overline{B F}$, and $\overline{B F}$ is perpendicular to $\overline{A C}, \overline{P D}$ is perpendicular to $\overline{A C}(\# 10)$.
Draw a line from B perpendicular to $\overline{P D}$ at G.
$\angle A B C \cong \angle A C B$ (\#5), and $\angle A B C \cong \angle P B E$ (\#1);
therefore, $\angle A C B \cong \angle P B E$ (transitivity).
$\angle E$ and $\angle F$ are right angles; thus, $\triangle P B E$ and $\triangle B C F$ are mutually equiangular and, therefore, $\angle E P B \cong \angle F B C$.
Also, since $\overline{B F} \| \overline{P D}, \angle F B C \cong \angle D P C$ (\#7).
By transitivity, $\angle G P B(\angle D P C) \cong \angle E P B$.
Thus, $\triangle G P B \cong \triangle E P B$ (A.A.S.), and $P G=P E$.
Since quadrilateral $G B F D$ is a rectangle (a quadrilateral with three right angles is a rectangle), $B F=G D$.
However, since $G D=P D-P G$, by substitution we get, $B F=P D-P E$.

2-3 The measure of the longer base of a trapezoid is 97. The measure of the line segment joining the midpoints of the diagonals is 3 (Fig. S2-3). Find the measure of the shorter base. (Note that the figure is not drawn to scale.)

METHOD I: Since E and F are the midpoints of $\overline{D B}$ and $\overline{A C}$, respectively, $\overline{E F}$ must be parallel to $\overline{D C}$ and $\overline{A B}$ (\#24).
Since $\overline{E F}$ is parallel to $\overline{D C}, \triangle E G F \sim \triangle D G C$ (\#49), and $\frac{G C}{G F}=\frac{D C}{E F}$.
However, since $D C=97$ and $E F=3, \frac{G C}{G F}=\frac{97}{3}$.
Then, $\frac{G C-G F}{G F}=\frac{97-3}{3}$, or $\frac{F C}{G F}=\frac{94}{3}$.

Since $F C=F A, \frac{F A}{G F}=\frac{94}{3}$, or $\frac{G A}{G F}=\frac{91}{3}$.
Since $\triangle A G B \sim \triangle F G E(\# 48), \frac{G A}{G F}=\frac{A B}{E F}$.
Thus, $\frac{91}{3}=\frac{A B}{3}$, and $A B=91$.
method in: Extend $\overline{F E}$ to meet $\overline{A D}$ at H. In $\triangle A D C, H F=\frac{1}{2}(D C)$ (\#25, \#26).
Since $D C=97, H F=\frac{97}{2}$.
Since $E F=3, H E=\frac{91}{2}$.
In $\triangle A D B, H E=\frac{1}{2}(A B)(\# 25, \# 26)$.
Hence, $A B=91$.
Challenge Find a general solution applicable to any trapezoid.
ANSWER: $b-2 d$, where b is the length of the longer base and d is the length of the line joining the midpoints of the diagonals.

2-4 In $\triangle \mathrm{ABC}, \mathrm{D}$ is a point on side $\overline{\mathrm{BA}}$ such that $\mathrm{BD}: \mathrm{DA}=1: 2$ (Fig. S2-4). E is a point on side $\overline{\mathrm{CB}}$ so that $\mathrm{CE}: \mathrm{EB}=1: 4$. Segments $\overline{\mathrm{DC}}$ and $\overline{\mathrm{AE}}$ intersect at F . Express $\mathrm{CF}: \mathrm{FD}$ in terms of two positive relatively prime integers.
Draw $\overline{D G} \| \overline{B C}$.
$\triangle A D G \sim \triangle A B E(\# 49)$, and $\frac{A D}{A B}=\frac{D G}{B E}=\frac{2}{3}$.
Then $D G=\frac{2}{3}(B E)$.
But $\triangle D G F \sim \triangle C E F(\# 48)$, and $\frac{C F}{F D}=\frac{E C}{D G}$.
Since $E C=\frac{1}{4}(B E), \frac{C F}{F D}=\frac{\frac{1}{4}(B E)}{\frac{2}{3}(B E)}=\frac{3}{8}$.

2-5 In $\triangle \mathrm{ABC}, \overline{\mathrm{BE}}$ is a median and O is the midpoint of $\overline{\mathrm{BE}}$ (Fig. S2-5). Draw $\overline{\mathrm{AO}}$ and extend it to meet $\overline{\mathrm{BC}}$ at D . Draw $\overline{\mathrm{CO}}$ and extend it to meet $\overline{\mathrm{BA}}$ at F . If $\mathrm{CO}=15, \mathrm{OF}=5$, and $\mathrm{AO}=12$, find the measure of $\overline{\mathrm{OD}}$.

Draw $\overline{E H}$ parallel to $\overline{A D}$. Since E is the midpoint of $\overline{A C}, E G=$ $\frac{1}{2}(A O)=6(\# 25, \# 26)$. Since H is the midpoint of $\overline{C D}, G H=$ $\frac{1}{2}(O D)(\# 25, \# 26)$. In $\triangle B E H, \overline{O D}$ is parallel to $\overline{E H}$ and O is the midpoint of $\overline{B E}$; therefore, $O D=\frac{1}{2} E H$ (\#25, \#26).
Then $O D=\frac{1}{2}[E G+G H]$, so $O D=\frac{1}{2}\left[6+\frac{1}{2} O D\right]=4$.
Note that the measures of $\overline{C O}$ and $\overline{O F}$ were not necessary for the solution of this problem.

Challenge Can you establish a relationship between OD and AO?
ANSWER: $O D=\frac{1}{3} A O$, regardless of the measures of $\overline{C O}$, $\overline{O F}$, and $\overline{A O}$.

2-6 In parallelogram ABCD , points E and F are chosen on diagonal $\overline{\mathrm{AC}}$ so that $\mathrm{AE}=\mathrm{FC}$ (Fig. S2-6). If $\overline{\mathrm{BE}}$ is extended to meet $\overline{\mathrm{AD}}$ at H , and $\overline{\mathrm{BF}}$ is extended to meet $\overline{\mathrm{DC}}$ at G , prove that $\overline{\mathrm{HG}}$ is parallel to $\overline{\mathrm{AC}}$.

In $\square A B C D, A E=F C$.
Since $\angle B E C \cong \angle H E A(\# 1)$, and $\angle H A C \cong \angle A C B$ (\#8),
$\triangle H E A \sim \triangle B E C$ (\#48), and $\frac{A E}{E F+F C}=\frac{H E}{B E}$.
Similarly, $\triangle B F A \sim \triangle G F C$ (\#48), and $\frac{F C}{A E+E F}=\frac{F G}{B F}$.
However, since $F C=A E, \frac{H E}{B E}=\frac{F G}{B F}$ (transitivity).
Therefore, in $\triangle H B G, \overline{H G} \| \overline{E F}$ (\#46), or $\overline{H G} \| \overline{A C}$.

2-7 $\overline{\mathrm{AM}}$ is the median to side $\overline{\mathrm{BC}}$ of $\triangle \mathrm{ABC}$, and P is any point on $\overline{\mathrm{AM}}$ (Fig. S2-7). $\overline{\mathrm{BP}}$ extended meets $\overline{\mathrm{AC}}$ at E , and $\overline{\mathrm{CP}}$ extended meets $\overline{\mathrm{AB}}$ at D . Prove that $\overline{\mathrm{DE}}$ is parallel to $\overline{\mathrm{BC}}$.
Extend $\overline{A P M}$ to G so that $P M=M G$. Then draw $\overline{B G}$ and $\overline{C G}$.
Since $B M=M C, \overline{P G}$ and $\overline{B C}$ bisect each other, making $B P C G$ a parallelogram (\#21f). Thus, $\overline{P C} \| \overline{B G}$ and $\overline{B P} \| \overline{G C}$ (\#21a), or $\overline{B E} \| \overline{G C}$ and $\overline{D C} \| \overline{B G}$. It follows that $\overline{D P} \| \overline{B G}$.
Therefore, in $\triangle A B G, \frac{A D}{D B}=\frac{A P}{P G}$ (\#46).
Similarly, in $\triangle A G C$ where $\overline{P E} \| \overline{G C}, \frac{A E}{E C}=\frac{A P}{P G}(\# 46)$.
From (I) and (II), $\frac{A D}{D B}=\frac{A E}{E C}$.
Therefore, $\overline{D E}$ is parallel to $\overline{B C}$, since in $\triangle A B C, \overline{D E}$ cuts sides $\overline{A B}$ and $\overline{A C}$ proportionally (\#46).

2-8 In $\triangle \mathrm{ABC}$, the bisector of $\angle \mathrm{A}$ intersects $\overline{\mathrm{BC}}$ at D (Fig. S2-8). A perpendicular to $\overline{\mathrm{AD}}$ from B intersects $\overline{\mathrm{AD}}$ at E . A line segment through E and parallel to $\overline{\mathrm{AC}}$ intersects $\overline{\mathrm{BC}}$ at G , and $\overline{\mathrm{AB}}$ at H . If $\mathrm{AB}=26, \mathrm{BC}=28, \mathrm{AC}=30$, find the measure of $\overline{\mathrm{DG}}$.
$\angle 1 \cong \angle 2$ (\#8), $\angle 1 \cong \angle 5$ (angle bisector),
therefore, $\angle 2 \cong \angle 5$.
In $\triangle A H E, A H=H E$ (\#5).
In right $\triangle A E B, \angle 4$ is complementary to $\angle 5$ (\#14), and $\angle 3$ is complementary to $\angle 2$.
Since $\angle 2 \cong \angle 5, \angle 3$ is complementary to $\angle 5$.
Therefore, since both $\angle 3$ and $\angle 4$ are complementary to $\angle 5$, they are congruent. Thus, in $\triangle B H E, B H=H E$ (\#5) and, therefore, $B H=A H$. In $\triangle A B C$, since $\overline{H G} \| \overline{A C}$ and H is the midpoint of $\overline{A B}, G$ is the midpoint of $\overline{B C}(\# 25)$, and $B G=14$.

In $\triangle A B C, \overline{A D}$ is an angle bisector, therefore,

$$
\frac{A B}{A C}=\frac{B D}{D C}(\# 47) .
$$

Let $B D=x$; then $D C=28-x$. By substituting,

$$
\frac{26}{30}=\frac{x}{28-x}, \text { and } x=13=B D .
$$

Since $B G=14$, and $B D=13$, then $D G=1$.
2-9 In $\triangle \mathrm{ABC}$, altitude $\overline{\mathrm{BE}}$ is extended to G so that $\mathrm{EG}=$ the measure of altitude $\overline{\mathrm{CF}}$. A line through G and parallel to $\overline{\mathrm{AC}}$ meets $\overleftrightarrow{\mathbf{B A}}$ at H (Fig. S2-9). Prove that $\mathrm{AH}=\mathrm{AC}$.

Since $\overline{B E} \perp \overline{A C}$ and $\overline{H G} \| \overline{A C}, \overline{H G} \perp \overline{B G}$.
$\angle H \cong \angle B A C$ (\#7)
Since $\angle A F C$ is also a right angle, $\triangle A F C \sim \triangle H G B$ (\#48),

$$
\begin{equation*}
\text { and } \frac{A C}{F C}=\frac{B H}{G B} . \tag{I}
\end{equation*}
$$

In $\triangle B H G, \overline{A E} \| \overline{H G} ;$

$$
\begin{equation*}
\text { therefore, } \frac{A H}{G E}=\frac{B H}{G B}(\# 46) \text {. } \tag{II}
\end{equation*}
$$

From (I) and (II), $\frac{A C}{F C}=\frac{A H}{G E}$.
Since the hypothesis stated that $G E=F C$, it follows that $A C=A H$.

2-10 In trapezoid $\mathrm{ABCD}(\overline{\mathrm{AB}} \| \overline{\mathrm{DC}})$, with diagonals $\overline{\mathrm{AC}}$ and $\overline{\mathrm{DB}}$ intersecting at $\mathrm{P}, \overline{\mathrm{AM}}$, a median of $\triangle \mathrm{ADC}$, intersects $\overline{\mathrm{BD}}$ at E (Fig. S2-10). Through E, a line is drawn parallel to $\overline{\mathrm{DC}}$ cutting $\overline{\mathrm{AD}}, \overline{\mathrm{AC}}$, and $\overline{\mathrm{BC}}$ at points H, F, and G , respectively. Prove that $\mathrm{HE}=\mathrm{EF}=\mathrm{FG}$.

S2.10

In $\triangle A D M$, since $\overline{H E} \| \overline{D M}, \triangle A H E \sim \triangle A D M(\# 49)$.
Therefore, $\frac{H E}{D M}=\frac{A E}{A M}$. In $\triangle A M C$, since $\overline{E F} \| \overline{M C}$,
$\triangle A E F \sim \triangle A M C$ (\#49). Therefore, $\frac{E F}{M C}=\frac{A E}{A M}$.
In $\triangle D B C$, since $\overline{E G} \| \overline{D C}, \triangle B E G \sim \triangle B D C$ (\#49).
Therefore, $\frac{E G}{D C}=\frac{B G}{B C}$.
But $\frac{B G}{B C}=\frac{A E}{A M}$ (\#24); thus, $\frac{E G}{D C}=\frac{A E}{A M}$ (transitivity).
It then follows that $\frac{H E}{D M}=\frac{E F}{M C}=\frac{E G}{D C}$.
But, since M is the midpoint of $\overline{D C}, D M=M C$, and $D C=2 M C$.
Substituting (II) in (I), we find that $H E=E F$, and $\frac{E F}{M C}=\frac{E G}{2(M C)}$.
Thus, $E F=\frac{1}{2}(E G)$ and $E F=F G$.
We therefore get $H E=E F=F G$ (transitivity).
2-11 A line segment $\overline{\mathrm{AB}}$ is divided by points K and L in such a way that $(\mathrm{AL})^{2}=(\mathrm{AK})(\mathrm{AB})$ (Fig. $S 2-11$). A line segment $\overline{\mathrm{AP}}$ is drawn congruent to $\overline{\mathrm{AL}}$. Prove that $\overline{\mathrm{PL}}$ bisects $\angle \mathrm{KPB}$.

Since $A P=A L,(A L)^{2}=(A K)(A B)$ may be written $(A P)^{2}=$ $(A K)(A B)$, or, as a proportion, $\frac{A K}{A P}=\frac{A P}{A B}$.
$\triangle K A P \sim \triangle P A B(\# 50)$.
It then follows that $\angle P K A \cong \angle B P A$, and $\angle K P A \cong \angle P B A$.
Since $\angle P K A$ is an exterior angle of $\triangle K P B$,
$m \angle P K A=m \angle K P B+m \angle P B K$ (\#12).
$\angle P K A \cong \angle B P A$ may be written as

$$
\begin{equation*}
m \angle P K A=m \angle B P L+m \angle K P L+m \angle A P K \tag{I}
\end{equation*}
$$

Since $A P=A L$, in $\triangle A P L$,

$$
\begin{equation*}
m \angle A L P=m \angle K P L+m \angle A P K(\# 5) . \tag{II}
\end{equation*}
$$

Considering $\angle P K A$ as an exterior angle of $\triangle K P L$,

$$
\begin{equation*}
m \angle P K A=m \angle A L P+m \angle K P L(\# 12) . \tag{III}
\end{equation*}
$$

Combine lines (I) and (III) to get

$$
m \angle B P L+m \angle K P L+m \angle A P K=m \angle A L P+m \angle K P L .
$$

Therefore, $m \angle B P L+m \angle A P K=m \angle A L P$ (by subtraction).
Combine lines (II) and (IV) to get

$$
m \angle K P L+m \angle A P K=m \angle B P L+m \angle A P K
$$

Therefore, $m \angle K P L=m \angle B P L$ (by subtraction), and $\overline{P L}$ bisects $\angle K P B$.

2-12 P is any point on altitude $\overline{\mathrm{CD}}$ of $\triangle \mathrm{ABC}$ (Fig. S2-12). $\overline{\mathrm{AP}}$ and $\overline{\mathrm{BP}}$ meet sides $\overline{\mathrm{CB}}$ and $\overline{\mathrm{CA}}$ at points Q and R , respectively. Prove that $\angle \mathrm{QDC} \cong \angle \mathrm{RDC}$.

Draw $\overline{R U S} \| \overline{C D}$, and $\overline{Q V T} \| \overline{C D}$.
$\triangle A U R \sim \triangle A P C$ (\#49), so $\frac{R U}{C P}=\frac{A U}{A P}$.
$\triangle A S U \sim \triangle A D P(\# 49)$, so $\frac{U S}{P D}=\frac{A U}{A P}$.
Therefore, $\frac{R U}{C P}=\frac{U S}{P D}$, and $\frac{R U}{U S}=\frac{C P}{P D}$.
$\triangle B V Q \sim \triangle B P C(\# 49)$, so $\frac{Q V}{C P}=\frac{B V}{B P}$.
$\triangle B T V \sim \triangle B D P$ (\#49), so $\frac{V T}{P D}=\frac{B V}{B P}$.
Therefore, $\frac{Q V}{C P}=\frac{V T}{P D}$ (transitivity), and $\frac{Q V}{V T}=\frac{C P}{P D}$.
$\frac{R U}{U S}=\frac{Q V}{V T}$ (transitivity), and $1+\frac{U S}{R U}=\frac{V T}{Q V}+1$;
therefore, $\frac{R U+U S}{R U}=\frac{Q V+V T}{Q V}$.
$\frac{R S}{R U}=\frac{Q T}{Q V}, \frac{R S}{Q T}=\frac{R U}{Q V}$.
Since $\overline{R S}\|\overline{C D}\| \overline{Q T}, \frac{U P}{P Q}=\frac{D S}{D T}(\# 24)$.
$\triangle R P U \sim \triangle V P Q$ (\#48), and $\frac{R U}{Q V}=\frac{U P}{P Q}$.
Therefore, $\frac{R S}{Q T}=\frac{D S}{D T}$ (transitivity).
$\angle R S D \cong \angle Q T D \cong$ right angle, $\triangle R S D \sim \triangle Q T D$ (\#50);
$\angle S D R \cong \angle T D Q, \angle R D C \cong \angle Q D C$ (subtraction).

2-13 In $\triangle \mathrm{ABC}, \mathrm{Z}$ is any point on base $\overline{\mathrm{AB}}$ as shown in Fig. S2-13a. $\overline{\mathrm{CZ}}$ is drawn. A line is drawn through A parallel to $\overline{\mathrm{CZ}}$ meeting $\overleftrightarrow{\mathrm{BC}}$ at X . A line is drawn through B parallel to $\overline{\mathrm{CZ}}$ meeting $\overleftrightarrow{\mathrm{AC}}$ at Y . Prove that $\frac{1}{\mathrm{AX}}+\frac{1}{\mathrm{BY}}=\frac{1}{\mathrm{CZ}}$.
Consider $\triangle A Y B$; since $\overline{C Z} \| \overline{B Y}, \triangle A C Z \sim \triangle A Y B$ (\#49), and $\frac{A Z}{C Z}=\frac{A B}{B Y}$.
Consider $\triangle B X A$; since $\overline{C Z} \| \overline{A X}, \triangle B C Z \sim \triangle B X A$ (\#49), and $\frac{B Z}{C Z}=\frac{A B}{A X}$.
By addition, $\frac{A Z}{C Z}+\frac{B Z}{C Z}=\frac{A B}{B Y}+\frac{A B}{A X}$.
But $A Z+B Z=A B$, therefore, $\frac{A B}{C Z}=\frac{A B}{B Y}+\frac{A B}{A X}$.
Dividing by $(A B)$ we obtain $\frac{1}{C Z}=\frac{1}{B Y}+\frac{1}{A X}$.

Challenge Two telephone cable poles, 40 feet and 60 feet high, respectively, are placed near each other. As partial support, a line runs from the top of each pole to the bottom of the other, as shown in Fig. S2-13b. How high above the ground is the point of intersection of the two support lines?
Using the result of Problem 2-13, we immediately obtain the following relationship:

$$
\frac{1}{X}=\frac{1}{40}+\frac{1}{60} ; \frac{1}{X}=\frac{100}{2400}=\frac{1}{24} .
$$

Therefore, $X=24$. Thus, the point of intersection of the two support lines is 24 feet above the ground.

2-14 In $\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{A}=120$ (Fig. S2-14). Express the measure of the internal bisector of $\angle \mathrm{A}$ in terms of the two adjacent sides.

Draw a line through B parallel to $\overline{A D}$ meeting $\overleftrightarrow{C A}$ at E, and a line through C parallel to $\overline{A D}$ meeting $\overleftrightarrow{B A}$ at F.
Since $\angle E A B$ is supplementary to $\angle B A C, m \angle E A B=60$, as does the measure of its vertical angle, $\angle F A C$.
Now, $m \angle B A D=m \angle E B A=60$ (\#8), and $m \angle D A C=$ $m \angle A C F=60$ (\#8).

Therefore, $\triangle E A B$ and $\triangle F A C$ are equilateral triangles since they each contain two 60° angles.
Thus, $A B=E B$ and $A C=F C$.
From the result of Problem 2-13, we also know that

$$
\frac{1}{A D}=\frac{1}{E B}+\frac{1}{F C} .
$$

By substitution, $\frac{1}{A D}=\frac{1}{A B}+\frac{1}{A C}$.
Combining fractions, $\frac{1}{A D}=\frac{A C+A B}{(A B)(A C)}$.
Therefore, $A D=\frac{(A B)(A C)}{A C+A B}$.
2-15 Prove that the measure of the segment passing through the point of intersection of the diagonals of a trapezoid and parallel to the bases, with its endpoints on the legs, is the harmonic mean between the measures of the parallel sides. (See Fig. S2-15.) The harmonic mean of two numbers is defined as the reciprocal of the average of the reciprocals of two numbers. The harmonic mean between a and b is equal to $\left(\frac{\mathrm{a}^{-1}+\mathrm{b}^{-1}}{2}\right)^{-1}=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}$.

In order for $F G$ to be the harmonic mean between $A B$ and $D C$ it must be true that $F G=\frac{2}{\frac{1}{A B}+\frac{1}{D C}}$.
From the result of Problem 2-13, $\frac{1}{F E}=\frac{1}{A B}+\frac{1}{D C}$, and $F E=\frac{1}{\frac{1}{A B}+\frac{1}{D C}} . \quad$ Similarly, $E G=\frac{1}{\frac{1}{A B}+\frac{1}{D C}}$.
Therefore, $F E=E G$. Thus, since $F G=2 F E$,
$F G=\frac{2}{\frac{1}{A B}+\frac{1}{C D}}$, and $F G$ is the harmonic mean between $A B$ and $C D$.

2-16 In parallelogram $\mathrm{ABCD}, \mathrm{E}$ is on $\overline{\mathrm{BC}} . \overline{\mathrm{AE}}$ cuts diagonal $\overline{\mathrm{BD}}$ at G and $\stackrel{\mathrm{DC}}{ }$ at F , as shown in Fig. S2-16. If $\mathrm{AG}=6$ and $\mathrm{GE}=4$, find EF.

$\triangle F D G \sim \triangle A B G(\# 48)$, and $\frac{G F}{A G}=\frac{G D}{G B}$.
$\triangle B G E \sim \triangle D G A(\# 48)$, and $\frac{G D}{G B}=\frac{A G}{G E}$.
Therefore, by transitivity, $\frac{G F}{A G}=\frac{A G}{G E}$.
By substitution, $\frac{4+E F}{6}=\frac{6}{4}$ and $E F=5$.
NOTE: $A G$ is the mean proportional between $G F$ and $G E$.

3. The Pythagorean Theorem

3-1 In any $\triangle \mathrm{ABC}, \mathrm{E}$ is any point on altitude $\overline{\mathrm{AD}}$ (Fig. S3-1). Prove that $(\mathrm{AC})^{2}-(\mathrm{CE})^{2}=(\mathrm{AB})^{2}-(\mathrm{EB})^{2}$.

By the Pythagorean Theorem (\#55),

$$
\begin{align*}
& \text { for } \triangle A D C,(C D)^{2}+(A D)^{2}=(A C)^{2} \\
& \text { for } \triangle E D C,(C D)^{2}+(E D)^{2}=(E C)^{2} . \tag{I}
\end{align*}
$$

By subtraction, $(A D)^{2}-(E D)^{2}=(A C)^{2}-(E C)^{2}$.
By the Pythagorean Theorem (\#55),

$$
\begin{align*}
& \text { for } \triangle A D B,(D B)^{2}+(A D)^{2}=(A B)^{2} \\
& \text { for } \triangle E D B,(D B)^{2}+(E D)^{2}=(E B)^{2} . \tag{II}
\end{align*}
$$

By subtraction, $(A D)^{2}-(E D)^{2}=(A B)^{2}-(E B)^{2}$.
Thus, from (I) and (II),

$$
(A C)^{2}-(E C)^{2}=(A B)^{2}-(E B)^{2}
$$

NOTE: For E coincident with D or A, the theorem is trivial.
3-2 In $\triangle \mathrm{ABC}$, median $\overline{\mathrm{AD}}$ is perpendicular to median $\overline{\mathrm{BE}}$ (Fig. S3-2). Find AB if $\mathrm{BC}=6$ and $\mathrm{AC}=8$.

Let $A D=3 x$; then $A G=2 x$ and $D G=x(\# 29)$.
Let $B E=3 y$; then $B G=2 y$ and $G E=y$ (\#29).
By the Pythagorean Theorem, for $\triangle D G B, x^{2}+(2 y)^{2}=9(\# 55)$;
for $\triangle E G A, y^{2}+(2 x)^{2}=16(\# 55)$.
By addition, $5 x^{2}+5 y^{2}=25$;
therefore, $x^{2}+y^{2}=5$.
However, in $\triangle B G A,(2 y)^{2}+(2 x)^{2}=(A B)^{2}(\# 55)$,

$$
\text { or } 4 y^{2}+4 x^{2}=(A B)^{2}
$$

Since $x^{2}+y^{2}=5,4 x^{2}+4 y^{2}=20$.
By transitivity, $(A B)^{2}=20$, and $A B=2 \sqrt{5}$.
Challenge 1 Express AB in general terms for $\mathrm{BC}=\mathrm{a}$, and $\mathrm{AC}=\mathrm{b}$.

$$
\text { ANSWER: } A B=\sqrt{\frac{a^{2}+b^{2}}{5}}
$$

Challenge 2 Find the ratio of AB to the measure of its median. ANSWER: 2:3

3-3 On hypotenuse $\overline{\mathrm{AB}}$ of right $\triangle \mathrm{ABC}$, draw square ABLH externally (Fig. S3-3). If $\mathrm{AC}=6$ and $\mathrm{BC}=8$, find CH .
Draw $\overline{C D G}$ perpendicular to $\overline{A B}$.
In right $\triangle A B C, A B=10$ (\#55), and $\frac{A D}{A C}=\frac{A C}{A B}$ (\#51b).
Substituting in this ratio, we find $A D=3.6$; therefore, $D B=6.4$.
In right $\triangle A B C, \frac{A D}{C D}=\frac{C D}{D B}$ (\#51a);
therefore, $C D=4.8$.
Since $D G=10, C G=14.8 . H G=A D=3.6$.
In right $\triangle H G C,(H G)^{2}+(C G)^{2}=(H C)^{2}(\# 55)$, and $H C=$ $2 \sqrt{58}$.

Challenge 1 Find the area of quadrilateral HLBC. ANSWER: 106

Challenge 2 Solve the problem if square ABLH overlaps $\triangle \mathrm{ABC}$. ANSWER: $2 \sqrt{10}$

3-4 The measures of the sides of a right triangle are 60, 80, and 100 (Fig. S3-4). Find the measure of a line segment, drawn from the vertex of the right angle to the hypotenuse, that divides the triangle into two triangles of equal perimeters.

Let $A B=60, A C=80$, and $B C=100$. If $\triangle A B D$ is to have the same perimeter as $\triangle A C D$, then $A B+B D$ must equal $A C+D C$, since both triangles share $A D$; that is, $60+B D=$ $80+100-B D$. Therefore, $B D=60$ and $D C=40$.
Draw $\overline{D E}$ perpendicular to $\overline{A C}$.
Right $\triangle E D C \sim$ right $\triangle A B C$ (\#49); therefore, $\frac{E D}{A B}=\frac{D C}{B C}$.
By substituting the appropriate values, we have $\frac{E D}{60}=\frac{40}{100}$, and $E D=24$.

By the Pythagorean Theorem (\#55), for $\triangle E D C$, we find $E C=32$; then, by subtraction, $A E=48$. Again using the Pythagorean Theorem (\#55), in $\triangle A E D, A D=24 \sqrt{5}$.

3-5 On sides $\overline{\mathrm{AB}}$ and $\overline{\mathrm{DC}}$ of rectangle ABCD , points F and E are chosen so that AFCE is a rhombus, as in Fig. S3-5a. If $\mathrm{AB}=16$ and $\mathrm{BC}=12$, find EF .

METHOD I: Let $A F=F C=E C=A E=x(\# 21-1)$.
Since $A F=x$ and $A B=16, B F=16-x$.
Since $B C=12$, in right $\triangle F B C,(F B)^{2}+(B C)^{2}=(F C)^{2}(\# 55)$, or $(16-x)^{2}+(12)^{2}=x^{2}$, and $x=\frac{25}{2}$.
Again by applying the Pythagorean Theorem (\#55) to $\triangle A B C$, we get $A C=20$.
Since the diagonals of a rhombus are perpendicular and bisect each other, $\triangle E G C$ is a right triangle, and $G C=10$.
Once more applying the Pythagorean Theorem (\#55), in $\triangle E G C,(E G)^{2}+(G C)^{2}=(E C)^{2}$.
$(E G)^{2}+100=\frac{625}{4}$, and $E G=\frac{15}{2}$.
Thus, $F E=2(E G)=15$.
METHOD II: Since $x=\frac{25}{2}$ (see Method I), $E C=\frac{25}{2}$.
Draw a line through B parallel to $\overline{E F}$ meeting $\overline{D C}$ at H (Fig. S3-5b).

Since quadrilateral $B F E H$ is a parallelogram (\#21a), and $F B=$ $A B-A F=\frac{7}{2}, E H=\frac{7}{2}$. Therefore, $H C=9$.
In right $\triangle B C H,(B H)^{2}=(B C)^{2}+(H C)^{2}(\# 55)$, so that $B H=15$.
Therefore, $E F=B H=15$ (\#2lb).
Challenge If $\mathrm{AB}=\mathrm{a}$ and $\mathrm{BC}=\mathrm{b}$, what general expression will give the measure of $\overline{\mathrm{EF}}$?
ANSWER: $\frac{b}{a} \sqrt{a^{2}+b^{2}}$
3-6 A man walks one mile east, then one mile northeast, then another mile east (Fig. S3-6). Find the distance, in miles, between the man's initial and final positions.

Let S and F be the starting and finishing positions, respectively. Draw $\overline{F D} \perp \overleftrightarrow{S A}$, then draw $\overline{F C} \| \overrightarrow{A B}$.
In rhombus $A B F C, C F=B F=A C=1(\# 21-1)$; also $S A=1$. In isosceles right $\triangle F D C, F D=C D=\frac{\sqrt{2}}{2}(\# 55 b)$.
Applying the Pythagorean Theorem (\#55) to right $\triangle D S F$,

$$
\begin{aligned}
(F D)^{2}+(S D)^{2} & =(S F)^{2} \\
\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(2+\frac{\sqrt{2}}{2}\right)^{2} & =(S F)^{2} \\
\sqrt{5+2 \sqrt{2}} & =S F .
\end{aligned}
$$

Challenge How much shorter (or longer) is the distance if the course is one mile east, one mile north, then one mile east?
ANSWER: The new course is shorter by $\sqrt{5+2 \sqrt{2}}-\sqrt{5}$.
3-7 If the measures of two sides and the included angle of a triangle are $7, \sqrt{50}$, and 135 , respectively, find the measure of the segment joining the midpoints of the two given sides (Fig. S3-7).

Draw altitude $\overline{C D}$. Since $m \angle C A B=135, m \angle D A C=45$, therefore, $\triangle A D C$ is an isosceles right triangle. If $A C=\sqrt{50}=$ $5 \sqrt{2}$, then $D A=D C=5$ (\#55b).
In $\triangle D B C$, since $D B=12$ and $D C=5, B C=13(\# 55)$.
Therefore, $E F=\frac{1}{2}(B C)=\frac{13}{2}(\# 26)$.
Challenge 4 On the basis of these results, predict the values of EF when $\mathrm{m} \angle \mathrm{A}=30,45,60$, and 90 .

When $m \angle A=30, E F=\frac{1}{2} \sqrt{b^{2}+c^{2}-b c \sqrt{3}}$;
when $m \angle A=45, E F=\frac{1}{2} \sqrt{b^{2}+c^{2}-b c \sqrt{2}}$;
when $m \angle A=60, E F=\frac{1}{2} \sqrt{b^{2}+c^{2}-b c \sqrt{1}}$;
when $m \angle A=90, E F=\frac{1}{2} \sqrt{b^{2}+c^{2}-b c \sqrt{0}}$.
3-8 Hypotenuse $\overline{\mathrm{AB}}$ of right $\triangle \mathrm{ABC}$ is divided into four congruent segments by points G, E, and H , in the order $\mathrm{A}, \mathrm{G}, \mathrm{E}, \mathrm{H}, \mathrm{B}$ (Fig. $S 3-8 a)$. If $\mathrm{AB}=20$, find the sum of the squares of the measures of the line segments from C to G, E, and H .

METHOD I: Since $A B=20, A G=G E=E H=H B=5$. Since the measures of $\overline{A C}, \overline{C B}$, and $\overline{C G}$ are not given, $\triangle A B C$ may be constructed so that $\overline{C G}$ is perpendicular to $\overline{A B}$ without affecting the sum required.
Since $\overline{C G}$ is the altitude upon the hypotenuse of right $\triangle A B C$,

$$
\frac{5}{C G}=\frac{C G}{15}(\# 51 a), \text { and }(C G)^{2}=75 .
$$

By applying the Pythagorean Theorem to right $\triangle H G C$, we find

$$
\begin{gathered}
(C G)^{2}+(G H)^{2}=(H C)^{2}(\# 55), \\
\text { or } 75+100=175=(H C)^{2} .
\end{gathered}
$$

Since $C E=G H(\# 27),(C E)^{2}=(G H)^{2}=100$. Therefore,

$$
(C G)^{2}+(C E)^{2}+(H C)^{2}=75+100+175=350
$$

method ii: In Fig. S3-8b, $\overline{C J}$ is drawn perpendicular to $\overline{A B}$. Since $A B=20, C E=10(\# 27)$. Let $G J=x$, and $J E=5-x$. In $\triangle C J G$ and $\triangle C J E,(C G)^{2}-x^{2}=10^{2}-(5-x)^{2}(\# 55)$, or $(C G)^{2}=75+10 x$.
Similarly, in $\triangle C J H$ and $\triangle C J E$,
$(C H)^{2}-(10-x)^{2}=10^{2}-(5-x)^{2}$,
or $(\mathrm{CH})^{2}=175-10 x$.
By addition of (I) and (II), $(\mathrm{CG})^{2}+(\mathrm{CH})^{2}+(\mathrm{CE})^{2}=$ $75+10 x+175-10 x+100=350$.

Notice that Method II gives a more general proof than Method I.
Challenge Express the result in general terms when $\mathrm{AB}=\mathrm{c}$.

$$
\text { ANSWER: } \frac{7 c^{2}}{8}
$$

3-9 In quadrilateral $\mathrm{ABCD}, \mathrm{AB}=9, \mathrm{BC}=12, \mathrm{CD}=13, \mathrm{DA}=14$, and diagonal $\mathrm{AC}=15$. Perpendiculars are drawn from B and D to $\overline{\mathrm{AC}}$, meeting $\overline{\mathrm{AC}}$ at points P and Q , respectively (Fig. S3-9). Find PQ .

Consider $\triangle A C D$. If we draw the altitude from C to $\overline{A D}$ we find that $C E=12, A E=9$, and $E D=5$ (\#55e).

Therefore, $\triangle A B C \cong \triangle A E C$ (S.S.S.).
Thus, altitude $\overline{B P}$, when extended, passes through E. In $\triangle A B C$, $\frac{A C}{A B}=\frac{A B}{A P}(\# 51 \mathrm{~b})$, and $\frac{15}{9}=\frac{9}{A P} ;$ therefore, $A P=\frac{27}{5}$.

Now consider $\triangle A Q D$, where $\overline{P E} \| \overline{Q D}(\# 9)$.

$$
\frac{A E}{E D}=\frac{A P}{P Q}(\# 46), \text { and } \frac{9}{5}=\frac{\frac{27}{5}}{P Q} ; \text { thus, } P Q=3 .
$$

3-10 In $\triangle \mathrm{ABC}$, angle C is a right angle (Fig. S3-10). AC and BC are each equal to $1 . \mathrm{D}$ is the midpoint of $\overline{\mathrm{AC}} . \overline{\mathrm{BD}}$ is drawn, and a line perpendicular to $\overline{\mathrm{BD}}$ at P is drawn from C . Find the distance from P to the intersection of the medians of $\triangle \mathrm{ABC}$.

Applying the Pythagorean Theorem to $\triangle D C B$,

$$
\begin{aligned}
& (D C)^{2}+(C B)^{2}=(D B)^{2}(\# 55) . \\
& \frac{1}{4}+1=(D B)^{2}, D B=\frac{1}{2} \sqrt{5}
\end{aligned}
$$

Since the centroid of a triangle trisects each of the medians (\#29),

$$
D G=\frac{1}{3}(D B)=\frac{1}{3}\left(\frac{1}{2} \sqrt{5}\right)=\frac{1}{6} \sqrt{5}
$$

Consider right $\triangle D C B$ where $\overline{C P}$ is the altitude drawn upon the hypotenuse.
Therefore, $\frac{D B}{D C}=\frac{D C}{D P}$ (\#51b).

$$
\frac{\frac{1}{2} \sqrt{5}}{\frac{1}{2}}=\frac{\frac{1}{2}}{D P}, D P=\frac{\sqrt{5}}{10}
$$

Thus, $P G=D G-D P$, and

$$
P G=\frac{1}{6} \sqrt{5}-\frac{1}{10} \sqrt{5}=\frac{1}{15} \sqrt{5} .
$$

3-11 A right triangle contains a 60° angle. If the measure of the hypotenuse is 4 , find the distance from the point of intersection of the 2 legs of the triangle to the point of intersection of the angle bisectors.

In Fig. S3-11, $A B=4, m \angle C A B=60$; therefore $m \angle B=30$ and $A C=2(\# 55 \mathrm{c})$. Since $\overline{A E}$ and $\overline{C D}$ are angle bisectors, $m \angle C A E=30$, and $m \angle A C D=45$. From the point of intersection, I, of the angle bisectors draw $\overline{F I} \perp \overline{A C}$. Thus, the angles of $\triangle A I F$ measure $30^{\circ}, 60^{\circ}$, and 90°.
Let $A F=y$. Since $y=\frac{1}{2}(A I) \sqrt{3}(\# 55 \mathrm{~d})$, then $A I=\frac{2 y}{\sqrt{3}}$, and $F I=\frac{y}{\sqrt{3}}=\frac{y \sqrt{3}}{3}(\# 55 \mathrm{c})$.
Since $m \angle F C I=45, F C=F I=(2-y)(\# 5)$.
Therefore, $(2-y)=\frac{y \sqrt{3}}{3}$, and $y=(3-\sqrt{3})$.
Hence, $F C=(2-y)=\sqrt{3}-1$.
Then $C I=(F C) \sqrt{2}=\sqrt{2}(\sqrt{3}-1)$, and $C I=\sqrt{6}-\sqrt{2}(\# 55 \mathrm{a})$.

3-12 From point P inside $\triangle \mathrm{ABC}$, perpendiculars are drawn to the sides meeting $\overline{\mathrm{BC}}, \overline{\mathrm{CA}}$, and $\overline{\mathrm{AB}}$, at points D, E, and F , respectively (Fig. S3-12). If $\mathrm{BD}=8, \mathrm{DC}=14, \mathrm{CE}=13, \mathrm{AF}=12$, and $\mathrm{FB}=6$, find AE . Derive a general theorem, and then make use of it to solve this problem.

The Pythagorean Theorem is applied to each of the six right triangles shown in Fig. S3-12.
$(B D)^{2}+(P D)^{2}=(P B)^{2}, \quad(F B)^{2}+(P F)^{2}=(P B)^{2} ;$
therefore, $(B D)^{2}+(P D)^{2}=(F B)^{2}+(P F)^{2}$.
$(D C)^{2}+(P D)^{2}=(P C)^{2}, \quad(C E)^{2}+(P E)^{2}=(P C)^{2} ;$
therefore, $(D C)^{2}+(P D)^{2}=(C E)^{2}+(P E)^{2}$.
$(E A)^{2}+(P E)^{2}=(P A)^{2}, \quad(A F)^{2}+(P F)^{2}=(P A)^{2} ;$
therefore, $(E A)^{2}+(P E)^{2}=(A F)^{2}+(P F)^{2}$.
Subtracting (II) from (I), we have

$$
\begin{equation*}
(B D)^{2}-(D C)^{2}=(F B)^{2}+(P F)^{2}-(C E)^{2}-(P E)^{2} . \tag{IV}
\end{equation*}
$$

Rewriting (III) in the form $(E A)^{2}=(A F)^{2}+(P F)^{2}-(P E)^{2}$, and subtracting it from (IV) we obtain

$$
\begin{gathered}
(B D)^{2}-(D C)^{2}-(E A)^{2}=(F B)^{2}-(C E)^{2}-(A F)^{2}, \text { or } \\
(B D)^{2}+(C E)^{2}+(A F)^{2}=(D C)^{2}+(E A)^{2}+(F B)^{2} .
\end{gathered}
$$

Thus, if, from any point P inside a triangle, perpendiculars are drawn to the sides, the sum of the squares of the measures of every other segment of the sides so formed equals the sum of the squares of the measures of the other three segments.
Applying the theorem to the given problem, we obtain
$8^{2}+13^{2}+12^{2}=6^{2}+14^{2}+X^{2}, 145=X^{2}, \sqrt{145}=X$.

3-13 For $\triangle \mathrm{ABC}$ with medians $\overline{\mathrm{AD}}, \overline{\mathrm{BE}}$, and $\overline{\mathrm{CF}}$, let $\mathrm{m}=\mathrm{AD}+$ $\mathrm{BE}+\mathrm{CF}$, and let $\mathrm{s}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$ (Fig. S3-13). Prove that $\frac{3}{2} \mathrm{~s}>\mathrm{m}>\frac{3}{4} \mathrm{~s}$.
$B G+G A>A B, C G+G A>A C$, and $B G+C G>B C(\# 41)$. By addition, $2(B G+G C+A G)>A B+A C+B C$.
Since $B G+G C+A G=\frac{2}{3}(B E+C F+A D)(\# 29)$, by substitution, $2\left(\frac{2}{3} m\right)>s$, or $\frac{4}{3} m>s$; therefore, $m>\frac{3}{4} s$. $\frac{1}{2} A B+F G>B G, \frac{1}{2} B C+G D>C G, \frac{1}{2} A C+G E>A G(\# 41)$ By addition, $\frac{1}{2}(A B+B C+A C)+F G+G D+G E>B G+$ $C G+A G$.
Substituting, $\frac{1}{2} s+\frac{1}{3} m>\frac{2}{3} m, \frac{1}{2} s>\frac{1}{3} m, m<\frac{3}{2} s$.
Thus, $\frac{3}{2} s>m>\frac{3}{4} s$.
3-14 Prove that $\frac{3}{4}\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)=\mathrm{m}_{\mathrm{a}}{ }^{2}+\mathrm{m}_{\mathrm{b}}{ }^{2}+\mathrm{m}_{\mathrm{c}}{ }^{2}$. $\left(\mathrm{m}_{\mathrm{c}}\right.$ means the measure of the median drawn to side c .)

In $\triangle A B C$, medians $\overline{A E}, \overline{B D}, \overline{C F}$, and $\overline{G P} \perp \overline{A B}$ are drawn, as in Fig. S3-14a. Let $G P=h$, and $P F=k$.
Since $A F=\frac{c}{2}$, then $A P=\frac{c}{2}-k$.
Apply the Pythagorean Theorem (\#55),
in $\triangle A G P, h^{2}+\left(\frac{c}{2}-k\right)^{2}=\left(\frac{2}{3} m_{a}\right)^{2}$,

$$
\begin{equation*}
\text { or } h^{2}+\frac{c^{2}}{4}-c k+k^{2}=\frac{4}{9} m_{a}^{2} \tag{I}
\end{equation*}
$$

In $\triangle B G P, h^{2}+\left(\frac{c}{2}+k\right)^{2}=\left(\frac{2}{3} m_{b}\right)^{2}$,

$$
\begin{equation*}
\text { or } h^{2}+\frac{c^{2}}{4}+c k+k^{2}=\frac{4}{9} m_{b}^{2} \tag{II}
\end{equation*}
$$

Adding (I) and (II), $2 h^{2}+\frac{2 c^{2}}{4}+2 k^{2}=\frac{4}{9} m_{a}{ }^{2}+\frac{4}{9} m_{b}{ }^{2}$,

$$
\begin{equation*}
\text { or } 2 h^{2}+2 k^{2}=\frac{4}{9} m_{a}^{2}+\frac{4}{9} m_{b}^{2}-\frac{c^{2}}{2} . \tag{III}
\end{equation*}
$$

However, in $\triangle F G P, h^{2}+k^{2}=\left(\frac{1}{3} m_{c}\right)^{2}$.

$$
\begin{equation*}
\text { Therefore, } 2 h^{2}+2 k^{2}=\frac{2}{9} m_{c}{ }^{2} \text {. } \tag{IV}
\end{equation*}
$$

By substitution of (IV) into (III),

$$
\frac{2}{9} m_{c}^{2}=\frac{4}{9} m_{a}^{2}+\frac{4}{9} m_{b}^{2}-\frac{c^{2}}{2}
$$

Therefore, $c^{2}=\frac{8}{9} m_{a}{ }^{2}+\frac{8}{9} m_{b}{ }^{2}-\frac{4}{9} m_{c}{ }^{2}$.
Similarly, $b^{2}=\frac{8}{9} m_{a}{ }^{2}+\frac{8}{9} m_{c}{ }^{2}-\frac{4}{9} m_{b}{ }^{2}$,

$$
\text { and } a^{2}=\frac{8}{9} m_{b}^{2}+\frac{8}{9} m_{c}^{2}-\frac{4}{9} m_{a}^{2}
$$

By addition, $a^{2}+b^{2}+c^{2}=\frac{4}{3}\left(m_{a}{ }^{2}+m_{b}{ }^{2}+m_{c}{ }^{2}\right)$,

$$
\text { or } \frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)=m_{a}^{2}+m_{b}^{2}+m_{c}^{2} .
$$

Challenge 2 The sum of the squares of the measures of the sides of a triangle is 120. If two of the medians measure 4 and 5, respectively, how long is the third median?

From the result of Problem 3-14, we know that

$$
m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right) .
$$

This gives us $5^{2}+4^{2}+m^{2}=\frac{3}{4}(120)$.
So $m^{2}=49$, and $m=7$.

Challenge 3 If $\overline{\mathrm{AE}}$ and $\overline{\mathrm{BF}}$ are medians drawn to the legs of right $\triangle \mathrm{ABC}$, find the numerical value of $\frac{(\mathrm{AE})^{2}+(\mathrm{BF})^{2}}{(\mathrm{AB})^{2}}$ (Fig. S3-14b).

Use the previously proved theorem (Problem 3-14) that the sum of the squares of the measures of the medians equals $\frac{3}{4}$ the sum of the squares of the measures of the sides of the triangle.

$$
\begin{align*}
(A E)^{2}+(B F)^{2} & +(C D)^{2} \\
& =\frac{3}{4}\left[(A C)^{2}+(C B)^{2}+(A B)^{2}\right] \tag{I}
\end{align*}
$$

By the Pythagorean Theorem (\#55),

$$
\begin{gather*}
(A C)^{2}+(C B)^{2}=(A B)^{2} \tag{II}\\
\text { Also, }(C D)=\frac{1}{2}(A B)(\# 27) . \tag{III}
\end{gather*}
$$

By substituting (II) and (III) into (I),

$$
\begin{gathered}
(A E)^{2}+(B F)^{2}+\left(\frac{1}{2} A B\right)^{2}={ }_{4}^{3}\left[(A B)^{2}+(A B)^{2}\right] \\
\text { or }(A E)^{2}+(B F)^{2}={ }_{2}^{3}(A B)^{2}-\frac{1}{4}(A B)^{2} . \\
\text { Then } \frac{(A E)^{2}+(B E)^{2}}{(A B)^{2}}=\frac{5}{4} .
\end{gathered}
$$

4. Circles Revisited

4-1 Two tangents from an external point P are drawn to a circle, meeting the circle at points A and B . A third tangent meets the circle at T , and tangents $\overrightarrow{\mathrm{PA}}$ and $\overrightarrow{\mathrm{PB}}$ at points Q and R , respectively. Find the perimeter p of $\triangle \mathrm{PQR}$.

We first consider the case shown in Fig. S4-1a where $A Q=Q T$ and $B R=R T$ (\#34).
Therefore, $p=P Q+Q T+R T+P R=P Q+Q A+B R+$ $P R=P A+P B$.
We next consider the case shown in Fig. S4-1b where $A Q=Q T$ and $B R=R T$ (\#34).

$$
\text { Therefore, } \begin{aligned}
p & =P A+A Q+Q T+R T+R B+P B \\
& =P A+Q R+Q R+P B \\
& =P A+P B+2 Q R .
\end{aligned}
$$

4-2 $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are tangent to circle O at B and C , respectively, and $\overline{\mathrm{CE}}$ is perpendicular to diameter $\overline{\mathrm{BD}}$ (Fig. S4-2). Prove $(\mathrm{BE})(\mathrm{BO})=$ (AB)(CE).

Draw $\overline{A O}, \overline{B C}$, and $\overline{O C}$, as in Fig. S4-2. We must first prove $\overline{A O} \perp \overline{B C}$. Since $A B=A C$ (\#34), and $B O=O C$ (radii), $\overline{A O}$ is the perpendicular bisector of $\overline{B C}$ (\#18). Since $\angle A B D$ is a right angle (\#32a), $\angle 3$ is complementary to $\angle 2$. In right $\triangle A P B, \angle 1$ is complementary to $\angle 2$. Therefore, $\angle 1 \cong \angle 3$.
Thus, right $\triangle B E C \sim$ right $\triangle A B O$, and

$$
\frac{A B}{B E}=\frac{B O}{C E}, \text { or }(B E)(B O)=(A B)(C E) .
$$

Challenge 3 Show that $\frac{\mathrm{AB}}{\sqrt{\mathrm{BE}}}=\frac{\mathrm{BO}}{\sqrt{E D}}$.
We have proved that $\frac{A B}{B E}=\frac{B O}{C E}$.
Since $\triangle B C D$ is a right triangle (\#36),
$(C E)^{2}=(B E)(E D)(\# 5 l a)$. Then $C E=\sqrt{B E} \sqrt{E D}$.
From (1) and (II) we get $\frac{A B}{B E}=\frac{B O}{\sqrt{B E} \sqrt{E D}}$.
By multiplying both sides of (III) by $\frac{1}{\sqrt{\overline{B E}}}$ we get:

$$
\frac{A B}{\sqrt{B E}}=\frac{B O}{\sqrt{E D}} .
$$

4-3 From an external point P , tangents $\overrightarrow{\mathrm{PA}}$ and $\overrightarrow{\mathrm{PB}}$ are drawn to a circle (Fig. S4-3a). From a point Q on the major (or minor) arc $\widehat{\mathrm{AB}}$, perpendiculars are drawn to $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{PA}}$, and $\overrightarrow{\mathrm{PB}}$. Prove that the perpendicular to $\overline{\mathrm{AB}}$ is the mean proportional between the other two perpendiculars.
$\overrightarrow{P A}$ and $\overrightarrow{P B}$ are tangents; $\overline{Q D} \perp \overrightarrow{P A}, \overline{Q E} \perp \overrightarrow{P B}$, and $\overline{Q C} \perp \overrightarrow{A B}$.
Draw $\overline{Q A}$ and $\overline{Q B}$.
$m \angle D A Q=\frac{1}{2} m \overparen{A Q}(\# 38) ; m \angle Q B A=\frac{1}{2} m \overparen{A Q}(\# 36)$
Therefore, $m \angle D A Q=m \angle Q B A$ (transitivity), right $\triangle D A Q \sim$ right $\triangle C B Q$ (\#48), and $\frac{Q D}{Q C}=\frac{Q A}{Q B}$.
$m \angle Q B E=\frac{1}{2} m \overparen{Q B}(\# 38) ; m \angle Q A B=\frac{1}{2} m \overparen{Q B}(\# 36)$
Therefore, $m \angle Q B E=m \angle Q A B$ (transitivity), and
right $\triangle Q B E \sim$ right $\triangle Q A C$ (\#48) so that $\frac{Q C}{Q E}=\frac{Q A}{Q B}$.
We therefore obtain $\frac{Q D}{Q C}=\frac{Q C}{Q E}$ (transitivity). In Fig. S4-3a, point

S4.3a

Q is on the major arc of circle O. Fig. S4-3b shows Q on the minor arc. Note that the proof applies equally well in either case.

4-4 Chords $\overline{\mathrm{AC}}$ and $\overline{\mathrm{DB}}$ are perpendicular to each other and intersect at point G (Fig. S4-4). In $\triangle \mathrm{AGD}$ the altitude from G meets $\overline{\mathrm{AD}}$ at E , and when extended meets $\overline{\mathrm{BC}}$ at P . Prove that $\mathrm{BP}=\mathrm{PC}$.

In right $\triangle A E G \angle A$ is complementary to $\angle 1$ (\#14), and $\angle 2$ is complementary to $\angle 1$. Therefore, $\angle A \cong \angle 2$.
However, $\angle 2 \cong \angle 4$ (\#1). Thus, $\angle A \cong \angle 4$.
Since $\angle A$ and $\angle B$ are equal in measure to $\frac{1}{2} m \overparen{D C}(\# 36)$, they are congruent. Therefore, $\angle 4 \cong \angle B$, and $B P=G P$ (\#5).
Similarly, $\angle D \cong \angle 3$ and $\angle D \cong \angle C$ so that $G P=P C$.
Thus, $C P=P B$.

4-5 Square ABCD is inscribed in a circle (Fig. S4-5). Point E is on the circle. If $\mathrm{AB}=8$, find the value of $(\mathrm{AE})^{2}+(\mathrm{BE})^{2}+(\mathrm{CE})^{2}+$ (DE) ${ }^{2}$.

In this problem we apply the Pythagorean Theorem to various right triangles. $\overline{D B}$ and $\overline{A C}$ are diameters; therefore, $\triangle D E B$, $\triangle D A B, \triangle A E C$, and $\triangle A B C$ are right triangles (\#36).
In $\triangle D E B,(D E)^{2}+(B E)^{2}=(B D)^{2}$;
in $\triangle D A B,(A D)^{2}+(A B)^{2}=(B D)^{2}(\# 55)$.
Therefore $(D E)^{2}+(B E)^{2}=(A D)^{2}+(A B)^{2}$.
In $\triangle A E C,(A E)^{2}+(C E)^{2}=(A C)^{2}$;
in $\triangle A B C(A B)^{2}+(B C)^{2}=(A C)^{2}(\# 55)$.
Therefore, $(A E)^{2}+(C E)^{2}=(A B)^{2}+(B C)^{2}$.
By addition, $(A E)^{2}+(C E)^{2}+(D E)^{2}+(B E)^{2}=(A B)^{2}+$ $(B C)^{2}+(A D)^{2}+(A B)^{2}$. Since the measures of all sides of square $A B C D$ equal 8 ,
$(A E)^{2}+(C E)^{2}+(D E)^{2}+(B E)^{2}=4\left(8^{2}\right)=256$.

To generalize, $(A E)^{2}+(C E)^{2}+(D E)^{2}+(B E)^{2}=4 s^{2}$ where s is the measure of the length of the side of the square. Interpret this result geometrically!

4-6 In Fig. S4-6, radius $\overline{\mathrm{AO}}$ is perpendicular to radius $\overline{\mathrm{OB}}, \overline{\mathrm{MN}}$ is parallel to $\overline{\mathrm{AB}}$ meeting $\overline{\mathrm{AO}}$ at P and $\overline{\mathrm{OB}}$ at Q , and the circle at M and N . If $\mathrm{MP}=\sqrt{56}$, and $\mathrm{PN}=12$, find the measure of the radius of the circle.

Extend radius $\overline{A O}$ to meet the circle at C. We first prove that $M P=N Q$ by proving $\triangle A M P \cong \triangle B N Q$.
Since $\triangle A O B$ is isosceles, $\angle O A B \cong \angle O B A$ (\#5), and trapezoid $A P Q B$ is isosceles (\#23); therefore, $A P=Q B$. Since $\overline{M N} \| \overline{A B}$, $\angle M P A \cong \angle P A B$ (\#8), and $\angle N Q B \cong \angle Q B A$ (\#8). Thus, by transitivity, $\angle M P A \cong \angle B Q N . \overparen{M A} \cong \overparen{B N}$ (\#33). Therefore, $\overparen{M A B} \cong \overparen{N B A}$ and $\angle A M N \cong \angle B N M \quad$ (\#36). Therefore, $\triangle A M P \cong \triangle B N Q$ (S.A.A.), and $M P=Q N$.
Let $P O=a$, and radius $O A=r$. Thus, $A P=r-a$.
$(A P)(P C)=(M P)(P N)(\# 52)$
$(r-a)(r+a)=(\sqrt{56})(12)$

$$
\begin{equation*}
r^{2}-a^{2}=12 \sqrt{56} \tag{I}
\end{equation*}
$$

We now find a^{2} by applying the Pythagorean Theorem to isosceles right $\triangle P O Q$.

$$
\begin{gathered}
(P O)^{2}+(Q O)^{2}=(P Q)^{2}, \text { so } a^{2}+a^{2}=(12-\sqrt{56})^{2}, \text { and } \\
a^{2}=100-12 \sqrt{56} .
\end{gathered}
$$

By substituting in equation (I),

$$
r^{2}=12 \sqrt{56}+100-12 \sqrt{56}, \text { and } r=10
$$

S4.6

S4.7

4-7 Chord $\overline{\mathrm{CD}}$ is drawn so that its midpoint is 3 inches from the center of a circle with a radius of 6 inches (Fig. S4-7). From A, the midpoint of minor arc $\widehat{\mathrm{CD}}$, any chord $\overline{\mathrm{AB}}$ is drawn intersecting $\overline{\mathrm{CD}}$ in M . Let v be the range of values of $(\mathrm{AB})(\mathrm{AM})$, as chord $\overline{\mathrm{AB}}$ is made to rotate in the circle about the fixed point A . Find v .

$$
\begin{aligned}
& (A B)(A M)=(A M+M B)(A M)=(A M)^{2}+(M B)(A M)= \\
& (A M)^{2}+(C M)(M D)(\# 52)
\end{aligned}
$$

E is the midpoint of $\overline{C D}$, and we let $E M=x$. In $\triangle O E D, E D=$ $\sqrt{27}(\# 55)$. Therefore, $C E=\sqrt{27}$.
$(C M)(M D)=(\sqrt{ } 27+x)(\sqrt{27}-x)$, and in $\triangle A E M,(A M)^{2}=$ $9+x^{2}$, (\#55).
$(A B)(A M)=9+x^{2}+(\sqrt{27}+x)(\sqrt{27}-x)=36$
Therefore, v has the constant value 36 .
Question: Is it permissible to reason to the conclusion that $v=36$ by considering the two extreme positions of point M, one where M is the midpoint of $\overline{C D}$, the other where M coincides with C (or D)?

4-8 A circle with diameter $\overline{\mathrm{AC}}$ is intersected by a secant at points B and D . The secant and the diameter intersect at point P outside the circle, as shown in Fig. S4-8. Perpendiculars $\overline{\mathrm{AE}}$ and $\overline{\mathrm{CF}}$ are drawn from the extremities of the diameter to the secant. If $\mathrm{EB}=2$, and $\mathrm{BD}=6$, find DF .

METHOD 1: Draw $\overline{B C}$ and $\overline{A D} . \angle A B C \cong \angle A D C \cong$ right angle, since they are inscribed in a semicircle. $m \angle F D C+m \angle E D A=$ 90 and $m \angle F C D+m \angle F D C=90$; therefore, $\angle E D A \cong \angle F C D$, since both are complementary to $\angle F D C$.
Thus, right $\triangle C F D \sim$ right $\triangle D E A$ (\#48), and $\frac{D F}{E A}=\frac{F C}{E D}$,

$$
\begin{equation*}
\text { or }(E A)(F C)=(D F)(E D) . \tag{I}
\end{equation*}
$$

Similarly, $\quad m \angle E A B+m \angle E B A=90$ and $m \angle F B C+$ $m \angle E B A=90$;
therefore, $\angle E A B \cong \angle F B C$, since both are complementary to $\angle E B A$. Thus, right $\triangle A E B \sim$ right $\triangle B F C$, and $\frac{E B}{F C}=\frac{E A}{F B}$,

$$
\begin{equation*}
\text { or }(E A)(F C)=(E B)(F B) \tag{II}
\end{equation*}
$$

From (I) and (II) we find $(D F)(E D)=(E B)(F B)$.
Substituting we get $(D F)(8)=(2)(D F+6)$, and $D F=2$.
mlthod if: By applying the Pythagorean Theorem (\#55),
in $\triangle A E D,(E D)^{2}+(E A)^{2}=(A D)^{2}$;
in $\triangle D F C,(D F)^{2}+(F C)^{2}=(D C)^{2}$.

$$
(E D)^{2}+(D F)^{2}=(A D)^{2}+(D C)^{2}-\left((E A)^{2}+(F C)^{2}\right)
$$

In $\triangle A E B,(E B)^{2}+(E A)^{2}=(A B)^{2}$;
in $\triangle B F C,(B F)^{2}+(F C)^{2}=(B C)^{2}$.

$$
(E B)^{2}+(B F)^{2}=(A B)^{2}+(B C)^{2}-\left((E A)^{2}+(F C)^{2}\right)
$$

Since $(A D)^{2}+(D C)^{2}=(A C)^{2}=(A B)^{2}+(B C)^{2}$,
we get $(E D)^{2}+(D F)^{2}=(E B)^{2}+(B F)^{2}$.
Let $D F=x$. Substituting, $(8)^{2}+x^{2}=(2)^{2}+(x+6)^{2}$, $64+x^{2}=4+x^{2}+12 x+36$, and $x=2$.

Challenge Does DF = EB? Prove it!
From Method I, (I) and (II), $(D F)(E D)=(E B)(F B)$.
Then, $(D F)(E B+B D)=(E B)(B D+D F)$,
and $(D F)(E B)+(D F)(B D)=(E B)(B D)+(E B)(D F)$.
Therefore, $D F=E B$.
From Method II, (I),
$(E D)^{2}+(D F)^{2}=(E B)^{2}+(B F)^{2}$.
Then, $(E B+B D)^{2}+(D F)^{2}=(E B)^{2}+(B D+D F)^{2}$, and $(E B)^{2}+2(E B)(B D)+(B D)^{2}+(D F)^{2}=(E B)^{2}+$ $(B D)^{2}+2(B D)(D F)+(D F)^{2}$.

Therefore, $E B=D F$.

4-9 A diameter $\overline{\mathrm{CD}}$ of a circle is extended through D to external point P . The measure of secant $\overline{\mathrm{CP}}$ is 77 . From P , another secant is drawn intersecting the circle first at A, then at B. (See Fig. S4-9a.) The measure of secant $\overline{\mathrm{PB}}$ is 33 . The diameter of the circle measures 74. Find the measure of the angle formed by the secants. (Note that the figure is not drawn to scale.)

Since $C D=74$ and $P C=77, P D=3$. Since $(P A)(P B)=$ $(P D)(P C)(\# 54),(P A)(33)=(3)(77)$, and $P A=7$.
Therefore, $B A=26$. Draw $\overline{O E} \perp \overline{A B}$. Then $A E=B E=13$ (\#30). Since $O D=37$ and $P D=3, O P=40$.
In right $\triangle P E O, P E=20$ and $P O=40$.
Therefore, $m \angle E O P=30$ and $m \angle P=60$ (\#55c).
Challenge Find the measure of secant $\overline{\mathrm{PB}}$ when $\mathrm{m} \angle \mathrm{CPB}=45$ (Fig. S4-9b).
In right $\triangle P E O, O E=20 \sqrt{2}$ (\#55b).
Since $O B=37$, in right $\triangle B E O, B E=\sqrt{569}$ (\#55).
Therefore, $P B=20 \sqrt{2}+\sqrt{569}$.
4-10 In $\triangle \mathrm{ABC}$, in which $\mathrm{AB}=12, \mathrm{BC}=18$, and $\mathrm{AC}=25$, a semicircle is drawn so that its diameter lies on $\overline{\mathrm{AC}}$, and so that it is tangent to $\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$ (Fig. S4-10). If O is the center of the circle, find the measure of $\overline{\mathrm{AO}}$.

Draw radii $\overline{O D}$ and $\overline{O E}$ to the points of contact of tangents $\overline{A B}$ and $\overline{B C}$, respectively. $O D=O E$ (radii), and $m \angle B D O=$ $m \angle B E O=90$ (\#32a). Since $D B=B E$ (\#34), right $\triangle B D O \cong$ right $\triangle B E O$ (\#17), and $\angle D B O \cong \angle E B O$.

In $\triangle A B C, \overline{B O}$ bisects $\angle B$ so that $\frac{A B}{A O}=\begin{aligned} & B C \\ & O C\end{aligned}(\# 47)$.
Let $A O=x$; then $\frac{12}{x}=\frac{18}{25-x}$, and $x=10=A O$.
Challenge Find the diameter of the semicircle.

$$
\text { ANSWER: } \frac{\sqrt{6479}}{6} \approx 13.4
$$

4-11 Two parallel tangents to circle O meet the circle at points M and N . A third tangent to circle O , at point P , meets the other two tangents at points K and L (Fig. S4-11). Prove that a circle, whose diameter is $\overline{\mathrm{KL}}$, passes through O , the center of the original circle.

Draw $\overline{K O}$ and $\overline{L O}$. If $\overline{K L}$ is to be a diameter of a circle passing through O, then $\angle K O L$ will be an angle inscribed in a semicircle, or a right angle (\#36).
Thus, we must prove that $\angle K O L$ is a right angle. It may easily be proved that $\overline{O K}$ bisects $\angle M K P$ and $\overline{O L}$ bisects $\angle P L N$ (Problem 4-10).

Since $m \angle M K P+m \angle N L P=180(\# 11)$, we determine that $m \angle O K L+m \angle O L K=90$ and $m \angle K O L=90$ (\#13).
It then follows that $\angle K O L$ is an inscribed angle in a circle whose diameter is $\overline{K L}$; thus, O lies on the new circle.

S4.11

S4.12

4-12 $\overline{\mathrm{LM}}$ is a chord of a circle, and is bisected at K (Fig. S4-12). $\overline{\mathrm{DKJ}}$ is another chord. A semicircle is drawn with diameter $\overline{\mathrm{DJ}} . \overline{\mathrm{KS}}$, perpendicular to $\overline{\mathrm{DJ}}$, meets this semicircle at S . Prove $\mathrm{KS}=\mathrm{KL}$.

Draw $\overline{D S}$ and $\overline{S J}$.
$\angle D S J$ is a right angle since it is inscribed in a semicircle. Since $\overline{S K}$ is an altitude drawn to the hypotenuse of a right triangle,

$$
\begin{align*}
& \frac{D K}{S K}=\frac{S K}{K J}(\# 51 \mathrm{a}), \text { or } \\
& (S K)^{2}=(D K)(K J) \tag{I}
\end{align*}
$$

However, in the circle containing chord $\overline{L M}, \overline{D J}$ is also a chord and $(D K)(K J)=(L K)(K M)(\# 52)$.

$$
\begin{equation*}
\text { Since } L K=K M,(D K)(K J)=(K L)^{2} \tag{II}
\end{equation*}
$$

From lines (I) and (II), $(S K)^{2}=(K L)^{2}$, or $S K=K L$.

4-13 Triangle ABC is inscribed in a circle with diameter $\overline{\mathrm{AD}}$, as shown in Fig. S4-13. A tangent to the circle at D cuts $\overline{\mathrm{AB}}$ extended at E and $\overline{\mathrm{AC}}$ extended at F . If $\mathrm{AB}=4, \mathrm{AC}=6$, and $\mathrm{BE}=8$, find CF . Draw $\overline{D C}$ and $\overline{B D}$.
$\angle A B D \cong \angle A C D \cong$ right angle, since they are inscribed in semicircles (\#36).
In right $\triangle A D E, \frac{A E}{A D}=\frac{A D}{A B}$ (\#51b);

$$
\text { thus, }(A D)^{2}=(A E)(A B)
$$

In right $\triangle A D F, \frac{A F}{A D}=\frac{A D}{A C}(\# 5 \mathrm{lb})$;

$$
\text { thus, }(A D)^{2}=(A F)(A C)
$$

By transitivity, $(A E)(A B)=(A F)(A C)$.
By substitution, $(12)(4)=(6+C F)(6)$, and $C F=2$.
Challenge 1 Find $\mathrm{m} \angle \mathrm{DAF}$.
ANSWER: 30

Challenge 2 Find BC.

$$
\text { ANSWER: } 2(\sqrt{6}+1)
$$

4-14 Altitude $\overline{\mathrm{AD}}$ of equilateral $\triangle \mathrm{ABC}$ is a diameter of circle O . If the circle intersects $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ at E and F , respectively, as in Fig. S4-14, find the ratio of $\mathrm{EF}: \mathrm{BC}$.
method i: Let $G D=1$, and draw $\overline{E D}$.
$\angle A E D$ is a right angle (\#36). $m \angle A B D=60$ and $\overline{A D} \perp \overline{B C}$; therefore, $m \angle B A D=30$, and $m \angle A D E=60$ (\#14).
Because of symmetry, $\overline{A D} \perp \overline{E F}$. Therefore, $m \angle G E D=30$.
In $\triangle G E D$, since $G D=1$, we get $E D=2(\# 55 \mathrm{c})$, and $E G=$ $\sqrt{3}$ (\#55d).
In $\triangle A E G$ (30-60-90 triangle), since $E G=\sqrt{3}$, we get $A G=3$.
$\triangle A E F \sim \triangle A B C$ (\#49), and $\frac{A G}{A D}=\frac{E F}{B C}$.
Since $A G: A D=3: 4$, the ratio $E F: B C=3: 4$.
METHOD II: $\triangle E O G$ is a $30-60-90$ triangle. Therefore, $O G=$ $\frac{1}{2} O E=\frac{1}{2} O D ;$ thus, $O G=G D$, and $A G=\frac{3}{4} A D$. However, $\triangle A E F \sim \triangle A B C$ (\#49). Therefore, $E F=\frac{3}{4} B C$, or $E F: B C=$ 3:4.

Challenge Find the ratio of EB:BD.
ANSWER: 1:2

4-15 Two circles intersect in A and B , and the measure of the common chord $\overline{\mathrm{AB}}=10$. The line joining the centers cuts the circles in P and Q (Fig. S4-15a). If $\mathrm{PQ}=3$ and the measure of the radius of one circle is 13, find the radius of the other circle. (Note that the illustration is not drawn to scale.)

Since $O^{\prime} A=O^{\prime} B$ and $O A=O B, \overline{O O^{\prime}}$ is the perpendicular bisector of $\overline{A B}$ (\#18).
Therefore, in right $\triangle A T O$, since $A O=13$ and $A T=5$, we find $O T=12(\# 55)$.

Since $O Q=13$ (also a radius of circle O), and $O T=12, T Q=1$.
We know that $P Q=3$.
In Fig. S4-15a, $P T=P Q-T Q$; therefore, $P T=2$. Let $O^{\prime} A=$ $O^{\prime} P=r$, and $P T=2, T O^{\prime}=r-2$.
Applying the Pythagorean Theorem in right $\triangle A T O^{\prime}$,

$$
(A T)^{2}+\left(T O^{\prime}\right)^{2}=\left(A O^{\prime}\right)^{2}
$$

Substituting, $5^{2}+(r-2)^{2}=r^{2}$, and $r=\frac{29}{4}$.
In Fig. S4-15b, $P T=P Q+T Q$; therefore, $P T=4$. Again, let $O^{\prime} A=O^{\prime} P=r$; then $T O^{\prime}=r-4$.
Applying the Pythagorean Theorem in right $\triangle A T O^{\prime}$,

$$
(A T)^{2}+\left(T O^{\prime}\right)^{2}=\left(A O^{\prime}\right)^{2}
$$

Substituting, $5^{2}+(r-4)^{2}=r^{2}$, and $r=\frac{41}{8}$.
Challenge Find the second radius if $\mathrm{PQ}=2$.

ANSWER: 13

S4-15b

4-16 ABCD is a quadrilateral inscribed in a circle. Diagonal $\overline{\mathrm{BD}}$ bisects $\overline{\mathrm{AC}}$, as in Fig. S4-16. If $\mathrm{AB}=10, \mathrm{AD}=12$, and $\mathrm{DC}=11$, find BC .
$m \angle D B C=\frac{1}{2} m(\overparen{D C}) ; m \angle D A C=\frac{1}{2} m(\overparen{D C})(\# 36)$.
Therefore, $\angle D B C \cong \angle D A C$, and $\angle C E B \cong \angle D E A$ (\#1).
Thus, $\triangle B E C \sim \triangle A E D$ (\#48), and

$$
\begin{equation*}
\frac{A D}{C B}=\frac{D E}{C E} . \tag{I}
\end{equation*}
$$

Similarly, $m \angle C A B=\frac{1}{2} m(\overparen{C B})$, and $m \angle C D B=\frac{1}{2} m(\overparen{C B})(\# 36)$.
Therefore, $\angle C A B \cong \angle C D B$, and $\angle A E B \cong \angle D E C$ (\#1).

Thus, $\triangle A E B \sim \triangle D E C$ (\#48), and $\frac{D C}{A B}=\frac{D E}{A E}$.
But $A E=C E$; hence, from (1) and (II), $\frac{A D}{C B}=\frac{D C}{A B}$.
Substituting, $\frac{12}{C B}=\frac{11}{10}$, and $C B=\frac{120}{11}$.
Challenge Solve the problem when diagonal $\overline{\mathrm{BD}}$ divides $\overline{\mathrm{AC}}$ into two segments, one of which is twice as long as the other.

$$
\text { ANSWER: } \begin{aligned}
C B & =\frac{240}{11}, \text { if } A E=\frac{1}{3} A C \\
C B & =\frac{60}{11}, \text { if } A E=\frac{2}{3} A C
\end{aligned}
$$

4-17 A is a point exterior to circle $\mathrm{O} . \overline{\mathrm{PT}}$ is drawn tangent to the circle so that PT $=$ PA. As shown in Fig. S4-17a, C is any point on circle O , and $\overline{\mathrm{AC}}$ and $\overline{\mathrm{PC}}$ intersect the circle at points D and B , respectively. $\overline{\mathrm{AB}}$ intersects the circle at E . Prove that $\overline{\mathrm{DE}}$ is parallel to $\overline{\mathrm{AP}}$.
$\frac{P C}{P T}=\frac{P T}{P B}$ (\#53). Since $P T=A P, \quad \frac{P C}{A P}=\frac{A P}{P B}$.
Since $\triangle A P C$ and $\triangle B P A$ share the same angle (i.e., $\angle A P C$), and the sides which include this angle are proportional, $\triangle A P C \sim$ $\triangle B P A$ (\#50). Thus, $\angle B A P \cong \angle A C P$. However, since $\angle A C P$ is supplementary to $\angle D E B$ (\#37), and $\angle A E D$ is supplementary to $\angle D E B, \angle A C P \cong \angle A E D$.
By transitivity, $\angle B A P \cong \angle A E D$ so that $\overline{D E} \| \overline{A P}(\# 8)$.
Challenge 1 Prove the theorem for A interior to circle O .
As in the proof just given, we can establish that $\angle B A P \cong$ $\angle A C P$. See Fig. S4-17b. In this case, $\angle D E B \cong \angle A C P$ (\#36); therefore, $\angle B A P \cong \angle D E B$, and $\overline{D E}$ is parallel to $\overline{A P}(\# 7)$.

S4.17a

Challenge 2 Explain the situation when A is on circle O .
ANSWER: $\overline{D E}$ reduces to a point on $\overline{P A}$; thus we have a limiting case of parallel lines.

4-18 $\overline{\mathrm{PA}}$ and $\overline{\mathrm{PB}}$ are tangents to a circle, and $\overline{\mathrm{PCD}}$ is a secant. Chords $\overline{\mathrm{AC}}, \overline{\mathrm{BC}}, \overline{\mathrm{BD}}$, and $\overline{\mathrm{DA}}$ are drawn, as illustrated in Fig. S4-18. If $\mathrm{AC}=9, \mathrm{AD}=12$, and $\mathrm{BD}=10$, find BC .
$m \angle P B C=\frac{1}{2} m(\overparen{B C})(\# 38) . m \angle P D B={ }_{2}^{1} m(\overparen{B C})(\# 36)$.
Therefore, $\angle P B C \cong \angle P D B$.
Thus, $\triangle D P B \sim \triangle B P C(\# 48)$, and $\frac{C B}{D B}=\frac{P B}{P D}$.
Since $P A=P B(\# 34)$, by substituting in (1) we get $\frac{C B}{D B}=\frac{P A}{P D}$.
Similarly, $\triangle D A P \sim \triangle A C P$ (\#48), and $\frac{A C}{A D}=\frac{P A}{P D}$.
From (I) and (II), $\frac{A C}{A D}=\frac{C B}{D B}$, and $\frac{9}{12}=\frac{C B}{10}$, or $C B=7 \frac{1}{2}$.
Challenge If in addition to the information given above, $\mathrm{PA}=15$ and $\mathrm{PC}=9$, find AB .
ANSWER: $A B=11 \frac{1}{4}$

S4-18

4-19 The altitudes of $\triangle \mathrm{ABC}$ meet at O (Fig. $S 4-19 a$). $\overline{\mathrm{BC}}$, the base of the triangle, has a measure of 16 . The circumcircle of $\triangle \mathrm{ABC}$ has a diameter with a measure of 20. Find AO. (Figure not drawn to scale.)
METHOD I: Let $\overline{B P}$ be a diameter of the circle circumscribed about $\triangle A B C$. Draw $\overline{P C}$ and $\overline{P A}$. Draw $\overline{P T}$ perpendicular to $\overline{A D}$. Since $\angle B C P$ is inscribed in a semicircle, it is a right angle (\#36). Therefore, since $B P=20$ and $B C=16$, we get, by the Pythagorean Theorem, $P C=12$. $\angle B A P$ is a right angle (\#36).

Therefore, $\angle P A O$ is complementary to $\angle E A O$.
Also, in right $\triangle E A O, \angle E O A$ is complementary to $\angle E A O$ (\#14).
Thus, $\angle P A O \cong \angle E O A$; hence, $\overline{E C} \| \overline{A P}$ (\#8).
Since $\overline{A D} \perp \overline{B C}$ and $\overline{P C} \perp \overline{B C}$ (\#36), $\overline{A D} \| \overline{P C}$ (\#9).
It then follows that $A P C O$ is a parallelogram (\#21a), and $A O=$ $P C=12$.

method in: The solution above is independent of the position of point A on the circle. But we may more easily do this problem by letting $\overline{A D}$ be the perpendicular bisector of $\overline{B C}$, in other words letting $\triangle A B C$ be isosceles ($A B=A C$). Our purpose for doing this is to place the circumcenter on altitude $\overline{A D}$ as shown in Fig. S4-19b.
The circumcenter P is equidistant from the vertices ($A P=B P$), and lies on the perpendicular bisectors of the sides (\#44).
Since altitude $\overline{A D}$ is the perpendicular bisector of $\overline{B C}, P$ lies on $\overline{A D}$.
Since the circumdiameter is $20, A P=B P=10$.
In $\triangle P B D$, since $B P=10$ and $B D=8$, then $P D=6(\# 55)$.
Thus, $A D=16$.
$\angle D A C$ is complementary to $\angle D C A$, and
$\angle D B O$ is complementary to $\angle B C A$ (\#14).
Therefore, $\angle D A C \cong D B O$.
Thus, right $\triangle A C D \sim$ right $\triangle B O D$ (\#48), and $\frac{A D}{B D}=\frac{D C}{O D}$.
Substituting, $\frac{16}{8}=\frac{8}{O D}$; then $O D=4$, and by subtraction, $A O=12$.

4-20 Two circles are tangent internally at \mathbf{P}, and a chord, $\overline{\mathrm{AB}}$, of the larger circle is tangent to the smaller circle at $\mathrm{C} . \overline{\mathrm{PB}}$ and $\overline{\mathrm{PA}}$ cut the smaller circle at E and D , respectively (Fig. S4-20). If $\mathrm{AB}=15$, while $\mathrm{PE}=2$ and $\mathrm{PD}=3$, find AC .

Draw $\overline{E D}$ and the common external tangent through P.
$m \angle P E D={ }_{2}^{1} m(\overparen{P D})(\# 36), m \angle T P D=\frac{1}{2} m(\overparen{P D})(\# 38)$.
Therefore, $\angle P E D \cong \angle T P D$.
Similarly, $m \angle P B A=\frac{1}{2} m(\overparen{P A})(\# 36)$.
$m \angle T P A=\frac{1}{2} m(\overparen{P A})(\# 38)$.
Therefore, $\angle P B A \cong \angle T P A$.
Thus, from (I) and (II), $\angle P E D \cong \angle P B A$, and $\overline{E D} \| \overline{B A}$ (\#7).
In $\triangle P B A, \frac{P B}{P A}=\frac{P E}{P D}$ (\#46). Thus, $\frac{P B}{P A}=\frac{2}{3} \cdot$ Now draw $\overline{C D}$. (III)
$m \angle P D C=\frac{1}{2} m(\overparen{P C})(\# 36)$, while $m \angle P C B=\frac{1}{2} m(\overparen{P C})(\# 38)$.
Therefore, $\angle P D C \cong \angle P C B$.
Since $m \angle P C D=\frac{1}{2} m(\overparen{P D})(\# 36)$, and $m \angle T P D=\frac{1}{2} m(\overparen{P D})(\# 38)$,
$\angle P C D \cong \angle T P D$. Since, from (II), $\angle P B A \cong \angle T P D, \angle P C D \cong$ $\angle P B A$.
Thus, $\triangle P B C \sim \triangle P C D$ (\#48), and $\angle B P C \cong \angle D P C$.
Since, in $\triangle P B A, \overline{P C}$ bisects $\angle B P A, \frac{P B}{P A}=\frac{B C}{A C}$ (\#47).
From (III), $\frac{2}{3}=\frac{B C}{A C}$.
Since $A B=15, B C=A B-A C=15-A C$; therefore, $\frac{2}{3}=$ $\frac{15-A C}{A C}$, and $A C=9$.

Challenge Express AC in terms of AB, PE, and PD .

$$
\text { ANSWER: } A C=\frac{(A B)(P D)}{P E+P D}
$$

4-21 A circle, center O , is circumscribed about $\triangle \mathrm{ABC}$, a triangle in which $\angle \mathrm{C}$ is obtuse (Fig. S4-21). With $\overline{\mathrm{OC}}$ as diameter, a circle is drawn intersecting $\overline{\mathrm{AB}}$ in D and D^{\prime}. If $\mathrm{AD}=3$, and $\mathrm{DB}=4$, find CD.

Extend $\overline{C D}$ to meet circle O at E. In the circle with diameter $\overline{O C}$, $\overline{O D}$ is perpendicular to $\overline{C D}$ (\#36). In circle O, since $\overline{O D}$ is perpendicular to $\overline{C E}, C D=D E$ ($\# 30$). Again in circle O, $(C D)(D E)=(A D)(D B)(\# 52)$.
Since $C D=D E,(C D)^{2}=(3)(4)$, and $C D=\sqrt{12}=2 \sqrt{3}$.

S4.22

4-22 In circle O , perpendicular chords $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ intersect at E so that $\mathrm{AE}=2, \mathrm{~EB}=12$, and $\mathrm{CE}=4$ (Fig. S4-22). Find the measure of the radius of circle O .
From the center O, drop perpendiculars to $\overline{C D}$ and $\overline{A B}$, meeting these chords at points F and G, respectively. Join O and D.
Since $(A E)(E B)=(C E)(E D)(\# 52), E D=6$.
$\overline{O F}$ bisects $\overline{C D}(\# 30)$, and $C D=10$; therefore, $F D=5$.
Similarly, since $A B=14$, then $G B=7$ and $G E=5$.
Quadrilateral $E F O G$ is a rectangle (a quadrilateral with three right angles is a rectangle). Therefore, $G E=F O=5$.

Applying the Pythagorean Theorem to isosceles right $\triangle F O D$, we find $D O=5 \sqrt{2}$, the radius of circle O.

Challenge Find the shortest distance from E to the circle.

$$
\text { ANSWER: } 5 \sqrt{2}-\sqrt{26}
$$

4-23 Prove that the sum of the squares of the measures of the segments made by two perpendicular chords is equal to the square of the measure of the diameter of the given circle.
Draw $\overline{A D}, \overline{C B}$, diameter $\overline{C O F}$, and $\overline{B F}$ as illustrated in Fig. S4-23.
Since $\overline{A B} \perp \overline{C D}, \triangle C E B$ is a right triangle, and $c^{2}+b^{2}=y^{2}$ (\#55). In right $\triangle A E D, a^{2}+d^{2}=x^{2}$. (\#55)
By addition, $a^{2}+b^{2}+c^{2}+d^{2}=x^{2}+y^{2}$.

In right $\triangle C B F, y^{2}+z^{2}=m^{2}$.
$\angle 4$ is complementary to $\angle 2$ (\#14), and $\angle 3$ is complementary to $\angle 1$.
However, $\angle 2=\angle 1$ (\#36); therefore, $\angle 4=\angle 3$. Thus, $\overparen{A D F} \cong$ $\overparen{B F D}$, and $\overparen{A D} \cong \overparen{B F}$; hence, $x=z$.
Therefore, $y^{2}+x^{2}=m^{2}$, and $a^{2}+b^{2}+c^{2}+d^{2}=m^{2}$.

4-24 Two equal circles are tangent externally at T. Chord $\overline{\mathrm{TM}}$ in circle O is perpendicular to chord $\overline{\mathrm{TN}}$ in circle Q (Fig. S4-24). Prove that $\overline{\mathrm{MN}} \| \overline{\mathrm{OQ}}$ and $\mathrm{MN}=\mathrm{OQ}$.

Draw the line of centers $\overline{O Q}, \overline{M O}$, and $\overline{N Q}$; then draw the common internal tangent $\overline{K T}$ meeting $\overline{M N}$ at K.
$m \angle K T N=\frac{1}{2} m \overparen{N T}$ and $m \angle K T M=\frac{1}{2} m \overparen{M T}(\# 38)$.
$m \angle K T N+m \angle K T M=m \angle M T N=90$.
Therefore, $\frac{1}{2} m \overparen{N T}+\frac{1}{2} m \overparen{M T}=90$,
or $m \overparen{N T}+m \overparen{M T}=180$.
Thus, $m \angle M O T+m \angle N Q T=180(\# 35)$, and $\overline{M O} \| \overline{N Q}(\# 11)$.
Since $M O=N Q$ (radii of equal circles), $M N Q O$ is a parallelogram (\#22).
It then follows that $M N=O Q$ and $\overline{M N} \| \overline{O Q}$.

4-25 As illustrated, from point A on the common internal tangent of tangent circles O and O^{\prime}, secants $\overline{\mathrm{AEB}}$ and $\overline{\mathrm{ADC}}$ are drawn, respectively. If $\overline{\mathrm{DE}}$ is the common external tangent, and points C and B are collinear with the centers of the circles, prove
(a) $\mathrm{m} \angle 1=\mathrm{m} \angle 2$, and
(b) $\angle \mathrm{A}$ is a right angle.
(a) Draw common internal tangent $\overrightarrow{A P}$ (Fig. S4-25).

For circle $O^{\prime},(A P)^{2}=(A C)(A D)(\# 53)$;
for circle $O,(A P)^{2}=(A B)(A E)(\# 53)$.
Therefore, $(A C)(A D)=(A B)(A E)$, or $\frac{A C}{A E}=\frac{A B}{A D}$.
Thus, $\triangle A D E \sim \triangle A B C$ (\#50), and $m \angle 1=m \angle 2$.
(b) METHOD I: Draw $\overline{D P}$ and $\overline{P E}$. $G E=G P$ and $D G=G P$ (\#34). Therefore, in isosceles $\triangle D G P, \angle 3 \cong \angle 4$; and in isosceles $\triangle E G P, \angle 5 \cong \angle 6$. Since $m \angle 3+m \angle 4+m \angle 5+m \angle 6=$ $180, m \angle 4+m \angle 5=90=m \angle D P E$.
Since $m \angle C D P=90$ and $m \angle P E B=90(\# 36)$, in quadrilateral $A D P E \angle A$ must also be a right angle (\#15).
METHOD II: Draw ${\overline{D O^{\prime}}}^{\prime}$ and $\overline{O E} . \overline{D O}^{\prime} \perp \overline{D E}$ and $\overline{E O} \perp \overline{D E}$ (\#32a). Therefore, $\overline{D O^{\prime}} \| \overline{O E}$, and $m \angle D O^{\prime} B+m \angle E O C=180$. Thus, $m \overparen{D P}+m \overparen{E P}=180$ (\#35).
However, $m \angle D C P=\frac{1}{2} m \overparen{D P}$, and $m \angle E B P=\frac{1}{2} m \overparen{E P}(\# 36)$.
By addition, $\quad m \angle D C P+m \angle E B P=\frac{1}{2}(m \overparen{D P}+m \overparen{E P})=$ $\frac{1}{2}(180)=90$. Therefore, $m \angle B A C=90(\# 13)$.

4-26 Two equal intersecting circles O and O^{\prime} have a common chord $\overline{\mathrm{RS}}$ (Fig. S4-26). From any point P on $\overline{\mathrm{RS}}$ a ray is drawn perpendicular to $\overline{\mathrm{RS}}$ cutting circles O and O^{\prime} at A and B , respectively. Prove that $\overline{\mathrm{AB}}$ parallel to the line of centers $\stackrel{\mathrm{OO}}{ }^{\prime}$, and that $\mathrm{AB}=$ OO'.

Draw $\overline{O A}$ and $\overline{O^{\prime} B}$; then draw $\overline{A E} \perp \overline{O O}^{\prime}$ and $\overline{B D} \perp \overline{O O}^{\prime}$.
Since $\overline{P A B} \perp \overline{R S}$ and the line of centers ${\overline{O O^{\prime}}}^{\prime} \perp \overline{R S}, \overline{A B} \|{\overline{O O^{\prime}}}^{\prime}$ (\#9).

Consider $\triangle A O E$ and $\triangle B O^{\prime} D$. Since $\overline{A B}\left|\mid \overline{O O^{\prime} D}, A E=B D\right.$ (\#20), and $A O=O^{\prime} B$ since they are radii of equal circles.
Thus, right $\triangle A O E \cong$ right $\triangle B O^{\prime} D$ (\#17).
Therefore, $\angle A O E \cong \angle B O^{\prime} D$, and $\overline{A O} \| \overline{O^{\prime} B}$ (\#7).
It follows that $A B O^{\prime} O$ is a parallelogram (\#22).
Thus, $A B=O O^{\prime}(\# 21 \mathrm{~b})$.

4-27 A circle is inscribed in a triangle whose sides are 10, 10, and 12 units in measure (Fig. S4-27). A second, smaller circle is inscribed tangent to the first circle and to the equal sides of the triangle. Find the measure of the radius of the second circle.

Draw $\overline{A O^{\prime} O F}, \overline{O E}$, and $\overline{O^{\prime} D .} \overline{O E} \perp \overline{A C}$ and $\overline{O^{\prime} D} \perp \overline{A C}$ (\#32a). $C F=C E=6(\# 34)$
Since $A C=10, A E=4$. In right $\triangle A F C, A F=8(\# 55)$.
Right $\triangle A E O \sim$ right $\triangle A F C$ (\#48), and $\frac{F C}{O E}=\frac{A F}{A E}$.
Substituting, $\frac{6}{O E}=\frac{8}{4}$, and $O E=3$.
Therefore, $G F=6$, and $A G=2$.
Let $O^{\prime} D=O^{\prime} G=r$. Then $O^{\prime} A=2-r$
Since $\overline{O^{\prime} D} \| \overline{O E}$ (\#9), right $\triangle A D O^{\prime} \sim$ right $\triangle A E O$, and $\frac{O^{\prime} D}{O^{\prime} A}=\frac{O E}{O A}$.
Since in right $\triangle A E O, A E=4$ and $O E=3, A O=5(\# 55)$.
Thus, $\frac{r}{2-r}=\frac{3}{5}$, and $r=\frac{3}{4}$.
Challenge 1 Solve the problem in general terms if $\mathrm{AC}=\mathrm{a}, \mathrm{BC}=2 \mathrm{~b}$.

$$
\text { ANSWER: } r=\frac{b(a-b)^{3 / 2}}{(a+b)^{3 / 2}}
$$

Challenge 2 Inscribe still another, smaller circle, tangent to the second circle and to the equal sides. Find its radius by inspection. ANSWER: $\frac{1}{4} \cdot \frac{3}{4}=\frac{3}{16}$

Challenge 3 Extend the legs of the triangles through B and C , and draw a circle tangent to the original circle and to the extensions of the legs. What is its radius?
answer: 12
4-28 A circle with radius 3 is inscribed in a square, as illustrated in Fig. S4-28. Find the radius of the circle that is inscribed between two sides of the square and the original circle.

Since $\overline{O A}$ bisects right angle $A, \triangle D A O$ and $\triangle E A O^{\prime}$ are isosceles right triangles. Let $E O^{\prime}=x$; then $A O^{\prime}=x \sqrt{2}$ (\#55a).
Since $O^{\prime} F=x$ and $O F=3, O A=3+x+x \sqrt{2}$.
But in $\triangle A D O, A O=3 \sqrt{2}$ (\#55a). It then follows that $3 \sqrt{2}=$ $3+x+x \sqrt{2}$, and $x=\frac{3 \sqrt{2}-3}{\sqrt{2}+1}=3(3-2 \sqrt{2})$.

4-29 $\overline{\mathrm{AB}}$ is a diameter of circle O (Fig. S4-29). Two circles are drawn with $\overline{\mathrm{AO}}$ and $\overline{\mathrm{OB}}$ as diameters. In the region between the circumferences, a circle D is inscribed tangent to the three previous circles. If the measure of the radius of circle D is 8 , find AB .
Let radius $A E=x$. Since $C D=8, D E=A E+C D=x+8$. Thus, by applying the Pythagorean Theorem in $\triangle D E O$, $(E O)^{2}+(D O)^{2}=(D E)^{2}, x^{2}+(D O)^{2}=(x+8)^{2}$, and $D O=4 \sqrt{x+4}$.
However, $D O+C D=C O=O A=A E+E O$.
Substituting, $4 \sqrt{x+4}+8=2 x$, and $x=12$.
Therefore, $A B=4 x=48$.

4-30 A carpenter wishes to cut four equal circles from a circular piece of wood whose area is equal to 9π square feet. He wants these circles of wood to be the largest that can possibly be cut from this piece of wood. Find the measure of the radius of each of the four new circles (Fig. S4-30).
Let the length of the radius of the four small circles be x. By joining the centers of the four small circles, we get a square whose side equals $2 x$ and whose diagonal equals $2 x \sqrt{2}$ (\#55a). Therefore, the diameter of circle O equals $2 x+2 x \sqrt{2}$, and its radius equals $x(1+\sqrt{ } 2)$. Since the area of circle O is 9π, the radius is 3 .
Therefore, $x(1+\sqrt{2})=3$, and $x=\frac{3}{1+\sqrt{2}}=3(\sqrt{2}-1)$ feet.
Challenge 1 Find the correct radius if the carpenter decides to cut out three equal circles of maximum size.
ANSWER: $3(2 \sqrt{3}-3)$
Challenge 2 Which causes the greater waste of wood, the four circles or the three circles?
answer: Three circles

4-31 A circle is inscribed in a quadrant of a circle of radius 8, as shown in Fig. S4-31. What is the measure of the radius of the inscribed circle?
Draw radii $\overline{P C}$ and $\overline{P D}$ to points of tangency with $\overline{A O}$ and $\overline{B O}$.
Then $\overline{P C} \perp \overline{A O}, \overline{P D} \perp \overline{O B}$ (\#32a).
Since $\angle A O B$ is a right angle, $P C O D$ is a rectangle (a quadrilateral with three right angles is a rectangle). Moreover, since radius $P C=$ radius $P D, P C O D$ is a square.
Let $P C=P D=r$; then $C O=O D=r$, and $O P=r \sqrt{2}(\# 55 \mathrm{a})$, while $P T=r$. Therefore, $O T=r+r \sqrt{2}$, but $O T=8$ also; thus, $r+r \sqrt{2}=8$, and $r=8(\sqrt{2}-1)$, (approximately $\left.3 \frac{1}{3}\right)$. QUESTION: Explain why $\overline{O T}$ goes through P.

Challenge Find the area of the shaded region.

$$
\text { ANSWER: } 16\left[4\left(\backslash^{\prime} 2-\pi\right)+3\left(\pi \^{\prime} 2-2\right)\right]
$$

4-32 Three circles intersect. Each pair of circles has a common chord (Fig S4-32). Prove that these three chords are concurrent.
Let chords $\overline{A B}$ and $\overline{C D}$ intersect at P. These are the common chords for circles O and Q, and circles O and R, respectively. Circles R and Q intersect at points E and F. Draw $\overline{E P}$ and extend it.
Assume that $\stackrel{\leftrightarrow}{E P}$ does not pass through F. It therefore meets circles Q and R at points X and Y, respectively.
In circle $O,(A P)(P B)=(C P)(P D)(\# 52)$.
Similarly, in circle $Q,(A P)(P B)=(E P)(P X)(\# 52)$.
By transitivity, $(C P)(P D)=(E P)(P X)$.
However, in circle $R,(C P)(P D)=(E P)(P Y)(\# 52)$.
It then follows that X and Y must be the same point and must lie both on circle Q and circle R.
Thus, $\overleftrightarrow{E P}$ will meet the intersection of circles Q and R at F.

S4-32

4-33 The bisectors of the angles of a quadrilateral are drawn. From each pair of adjacent angles, the two bisectors are extended until they intersect, as shown in Fig. S4-33. The line segments connecting the points of intersection form a quadrilateral. Prove that this figure is cyclic (i.e., can be inscribed in a circle).
$m \angle B A D+m \angle A D C+m \angle D C B+m \angle C B A=360(\# 15) ;$
therefore, $\frac{1}{2} m \angle B A D+{ }_{2}^{1} m \angle A D C+\frac{1}{2} m \angle D C B+$
$\frac{1}{2} m \angle C B A=\frac{1}{2}(360)=180$. Substituting,
$m \angle E D C+m \angle E C D+m \angle G A B+m \angle A B G=180$.

Consider $\triangle A B G$ and $\triangle D E C$.

$$
\begin{align*}
m \angle E D C+m \angle E C D & +m \angle G A B+m \angle A B G \\
& +m \angle A G B+m \angle D E C=2(180) \tag{II}
\end{align*}
$$

Now, subtracting (I) from (II), we find that

$$
m \angle A G B+m \angle D E C=180 .
$$

Since one pair of opposite angles of quadrilateral $E F G H$ are supplementary, the other pair must also be supplementary, and hence quadrilateral $E F G H$ is cyclic (\#37).

4-34 In cyclic quadrilateral ABCD , perpendiculars $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are erected at B and D and extended until they meet sides $\overleftrightarrow{\mathrm{CD}}$ and $\overleftrightarrow{\mathrm{AB}}$ at B^{\prime} and D^{\prime}, respectively (Fig. S4-34). Prove $\overline{\mathrm{AC}}$ is parallel to $\overline{\mathbf{B}^{\prime} \mathbf{D}^{\prime}}$.

S4-34

Draw $\overline{B D}$. Consider cyclic quadrilateral $A B C D$.

$$
\begin{equation*}
\angle A C D \cong \angle A B D\left(\angle D B D^{\prime}\right)(\# 36) \tag{I}
\end{equation*}
$$

Since $\angle D^{\prime} B B^{\prime} \cong \angle D^{\prime} D B^{\prime} \cong$ right angle, quadrilateral $D^{\prime} B B^{\prime} D$ is also cyclic (\#37).

$$
\begin{equation*}
\text { Therefore, } \angle D B^{\prime} D^{\prime} \cong \angle D B D^{\prime}(\# 36) \text {. } \tag{II}
\end{equation*}
$$

Thus, from (I) and (II), $\angle A C D \cong \angle D B^{\prime} D^{\prime}$, and $\overline{A C} \| \overline{B^{\prime} D^{\prime}}$ (\#7).
4-35 Perpendiculars $\overline{\mathrm{BD}}$ and $\overline{\mathrm{CE}}$ are drawn from vertices B and C of $\triangle \mathrm{ABC}$ to the interior bisectors of angles C and B , meeting them at D and E , respectively (Fig. S4-35). Prove that $\overleftrightarrow{\mathrm{DE}}$ intersects $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ at their respective points of tangency, F and G , with the circle that is inscribed in $\triangle \mathrm{ABC}$.

Let a, b, and c respresent the measures of angles A, B, and C, respectively. Draw $\overline{A O}$. Since the angle bisectors of a triangle are concurrent, $\overline{A O}$ bisects $\angle B A C$. Also, $F O=G O$, and $A F=A G$ (\#34); therefore, $\overline{A O} \perp \overline{F G}$ at N (\#18).
Now, in right $\triangle A F N, m \angle G F A=90-\frac{a}{2}$ (\#14).
Since $\overline{C O}$ and $\overline{B O}$ are angle bisectors, in $\triangle B O C$,

$$
\begin{equation*}
m \angle B O C=180-\frac{1}{2}(b+c)(\# 13) \tag{II}
\end{equation*}
$$

However, $b+c=180-a(\# 13)$.
Therefore, from (II), $m \angle B O C=180-\frac{1}{2}(180-a)=90+\frac{a}{2}$.
Since $\angle B O D$ is supplementary to $\angle B O C, m \angle B O D=90-{ }_{2}^{a}$.
But $\angle D B O$ is complementary to $\angle B O D$ (\#14); therefore, $m \angle D B O=\frac{a}{2}$. Since $m \angle D B F=m \angle D B O-m \angle F B O$,

$$
\begin{equation*}
m \angle D B F=\frac{a}{2}-\frac{b}{2}=\frac{1}{2}(a-b) . \tag{III}
\end{equation*}
$$

$\angle B F O \cong \angle B D O \cong$ right angle; therefore, quadrilateral $B D F O$ is cyclic (\#36á), and $\angle F D O \cong \angle F B O$ (\#36). Thus, $m \angle F D O=\frac{b}{2}$. It then follows that $m \angle F D B=90+\frac{b}{2}$.
Thus, in $\triangle D F B, m \angle D F B=180-(m \angle F D B+m \angle D B F)$. (V) By substituting (III) and (IV) into (V),

$$
\begin{equation*}
m \angle D F B=180-\left[90+\frac{b}{2}+\frac{1}{2}(a-b)\right]=90-\frac{a}{2} . \tag{VI}
\end{equation*}
$$

Since $\overline{A F B}$ is a straight line, and $m \angle G F A=90-\frac{a}{2}=m \angle D F B$ (See (I) and (VI)), points D, F, and G must be collinear (\#1). In a similar manner, points E, G, and F are proved collinear. Thus, points D, F, G, and E are collinear, and $\overleftrightarrow{D E}$ passes through F and G.

4-36 A line, $\overline{\mathrm{PQ}}$, parallel to base $\overline{\mathrm{BC}}$ of $\triangle \mathrm{ABC}$, cuts $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ at P and Q , respectively (Fig. S4-36). The circle passing through P and tangent to $\overline{\mathrm{AC}}$ at Q cuts $\overline{\mathrm{AB}}$ again at R . Prove that the points $\mathrm{R}, \mathrm{Q}, \mathrm{C}$, and B lie on a circle.

Draw $R Q . m \angle 2=\frac{1}{2}(m \overparen{P Q})(\# 36)$; also $m \angle 3=\frac{1}{2}(m \overparen{P Q})(\# 38)$; therefore, $\angle 3 \cong \angle 2$, and $\angle 3 \cong \angle 5$ (\#7).
By transitivity we find that $\angle 2 \cong \angle 5$. But $m \angle 2+m \angle 4=180$. Therefore, $m \angle 4+m \angle 5=180$. Since one pair of opposite angles of a quadrilateral are supplementary, the other pair of opposite angles must also be supplementary, and the quadrilateral is cyclic. Thus, R, Q, C, and B lie on a circle.

4-37 In equilateral $\triangle \mathrm{ABC}, \mathrm{D}$ is chosen on $\overline{\mathrm{AC}}$ so that $\mathrm{AD}=\frac{1}{3}(\mathrm{AC})$, and E is chosen on $\overline{\mathrm{BC}}$ so that $\mathrm{CE}=\frac{1}{3}(\mathrm{BC})$ (Fig. S4-37). $\overline{\mathrm{BD}}$ and $\overline{\mathrm{AE}}$ intersect at F . Prove that $\angle \mathrm{CFB}$ is a right angle.

Draw $\overline{D E}$. Since $A D=C E$ and $A C=A B$ and $\angle A C B \cong \angle C A B$, $\triangle A C E \cong \triangle B A D$ (S.A.S.), and $m \angle A B D=m \angle C A E=x$.
Since $m \angle F A B=60-x, m \angle A F B=120(\# 13)$.
Then $m \angle D F E=120(\# 1)$. Since $m \angle A C B=60$, quadrilateral $D C E F$ is cyclic because the opposite angles are supplementary.
In $\triangle C E D, C E=\frac{1}{2}(C D)$ and $m \angle C=60$; therefore, $\angle C E D$ is a right angle ($\# 55 \mathrm{c}$).
Since $\angle D F C$ is inscribed in the same arc as $\angle C E D$, $\angle C E D \cong \angle D F C \cong$ right angle. Thus, $\angle C F B \cong$ right angle.

4-38 The measure of the sides of square ABCD is $\mathrm{x} . \mathrm{F}$ is the midpoint of $\overline{\mathrm{BC}}$, and $\overline{\mathrm{AE}} \perp \overline{\mathrm{DF}}$ (Fig. S4-38). Find BE .

Draw $\overline{A F}$. Since $C F=F B$, and $D C=A B$, right $\triangle D C F \cong$ right $\triangle A B F$ (S.A.S.). Then $m \angle C D F=m \angle B A F=\alpha$.
$\angle A E F \cong A B F \cong$ right angle; therefore, quadrilateral $A E F B$ is cyclic (\#37).
It follows that $m \angle B A F=m \angle B E F=\alpha$ since both are angles inscribed in the same arc.
Since $\angle D A E$ and $\angle C D F$ are both complementary to $\angle A D E$,

$$
m \angle D A E=m \angle C D F=\alpha .
$$

Both $\angle B E A$ and $\angle B A E$ are complementary to an angle of measure α; therefore, they are congruent. Thus, $\triangle A B E$ is isosceles, and $A B=B E=x(\# 5)$.

4-39 If equilateral $\triangle \mathrm{ABC}$ is inscribed in a circle, and a point P is chosen on minor arc $\overparen{\mathrm{AC}}$, prove that $\mathrm{PB}=\mathrm{PA}+\mathrm{PC}$ (Fig. S4-39).
Choose a point Q on $\overline{B P}$ such that $P Q=Q C$.
Since $\triangle A B C$ is equilateral, $m \overparen{A B}=m \overparen{B C}=m \overparen{C A}=120$.
Therefore, $m \angle B P C=\frac{1}{2} m \overparen{B C}=60(\# 36)$.
Since in $\triangle P Q C, P Q=Q C$, and $m \angle B P C=60, \triangle Q P C$ is equilateral.
$m \angle P Q C=60, m \angle B Q C=120$, and $m \angle A P C=\frac{1}{2} m \overparen{A B C}=$ 120. Therefore, $\angle A P C \cong \angle B Q C$.
$P C=Q C$ and $\angle C A P \cong \angle C B P$ as both are equal in measure to $\frac{1}{2} m \overparen{P C}(\# 36)$.
Thus, $\triangle B Q C \cong \triangle A P C$ (S.A.A.), and $B Q=A P$. Since $B Q+$ $Q P=B P$, by substitution, $A P+P C=P B$.

4-40 From point A , tangents are drawn to circle O , meeting the circle at B and C . Chord $\overline{\mathrm{BF}} \|$ secant $\overline{\mathrm{ADE}}$, as in Fig. S4-40. Prove that $\overline{\mathrm{FC}}$ bisects $\overline{\mathrm{DE}}$.

METHOD I: Draw $\overline{B C}, \overline{O B}$, and $\overline{O C}$.
$m \angle B A E=\frac{1}{2}(m \overparen{B F E}-m \overparen{B D})(\# 40)$
Since $\overparen{B D} \cong \overparen{F E}(\# 33), m \angle B A E=\frac{1}{2} m \overparen{B F}$.
However, $m \angle B C F=\frac{1}{2} m \overparen{B F}$ (\#36).
Therefore, $\angle B A E \cong \angle B C F$, or $\angle B A G \cong \angle B C G$.
It is therefore possible to circumscribe a circle about quadrilateral $A B G C$ since the angles which would be inscribed in the same arc are congruent. Because the opposite angles of quadrilateral $A B O C$ are supplementary, it, too, is cyclic.
We know that three points determine a unique circle, and that points A, B, and C are on both circles; we may therefore conclude that points A, B, O, G, and C lie on the same circle. Since $\angle A C O$ is a right angle ($\# 32 \mathrm{a}$), $\overline{A O}$ must be the diameter of the new circle (\#36). $\angle A G O$ is then inscribed in a semicircle and is a right angle (\#36). As $\overline{O G} \perp \overline{D E}$, it follows that $D G=E G$ (\#30).
method in: Draw $\bar{B} \bar{G}$ and extend it to meet the circle at H; draw $\overline{C H}$.
$m \angle A G C=\frac{1}{2}(m \overparen{D C}+m \overparen{F E})(\# 39)$
Since $\overparen{F E} \cong \overparen{B D}(\# 33), m \angle A G C=\frac{1}{2}(m \overparen{D C}+m \overparen{B D})=\frac{1}{2}(m \overparen{B C})$.
$m \angle A B C=\frac{1}{2}(m \overparen{B C})(\# 38)$, and $m \angle B F C=\frac{1}{2}(m \overparen{B C})(\# 36)$.
Therefore, $\angle A G C \cong \angle A B C \cong \angle B F C$.
Now we know a circle may be drawn about A, B, G, and C, since $\angle A B C$ and $\angle A G C$ are congruent angles that would be inscribed in the same arc.
It then follows that $\angle C A G \cong \angle C B G$ since they are both inscribed in $\operatorname{arc}(\overparen{C G})$.
In circle $O, m \angle C A G(\angle C A E)=\frac{1}{2}(m \overparen{C H}+m \overparen{H E}-m \overparen{C D})$ (\#40).

However, $m \angle C B G=\frac{1}{2} m \overparen{C H}(\# 36)$; therefore, $\overparen{H E} \cong \overparen{C D}$.
Thus, $\overline{C H}\|\overline{A E}\| \overline{B F}$ (\#33).
Since $\overparen{F E H} \cong B D C, \angle H B F \cong \angle C F B(\# 36)$.
Thus, $B G=G F$ (\#5), and $B O=F O$.
Therefore, $\overline{O G}$ is the perpendicular bisector of $\overline{B F}$ (\#18).
Then $\overline{O G} \perp \overline{D E}(\# 10)$, and $\overline{O G}$ must bisect $\overline{D E}(\# 30)$.

5. Area Relationships

5-1 As shown in Fig. S5-1, E is on $\overline{\mathrm{AB}}$ and C is on $\overline{\mathrm{FG}}$. Prove that parallelogram ABCD is equal in area to parallelogram EFGD .
Draw $\overline{E C}$. Since $\triangle E D C$ and $\square A B C D$ share the same base ($\overline{D C}$) and a common altitude (from E to $\overleftrightarrow{D C}$), the area of $\triangle E D C$ is equal to one-half the area of $\square A B C D$.
Similarly, $\triangle E D C$ and $\square E F G D$ share the same base ($\overline{E D}$), and the same altitude to that base; thus, the area of $\triangle E D C$ is equal to one-half the area of $\square E F D G$.

Since the area of $\triangle E D C$ is equal to one-half the area of each parallelogram, the parallelograms are equal in area.

5-2 The measures of the bases of trapezoid ABCD are 15 and 9, and the measure of the altitude is 4. Legs $\overline{\mathrm{DA}}$ and $\overline{\mathrm{CB}}$ are extended to meet at E , as in Fig. S5-2. If F is the midpoint of $\overline{\mathrm{AD}}$, and G is the midpoint of $\overline{\mathrm{BC}}$, find the area of $\triangle \mathrm{FGE}$. (The figure is not drawn to scale.)
METHOD I: $\overline{F G}$ is the median of trapezoid $A B C D$, and
$F G=\frac{15+9}{2}=12(\# 28)$.

Since $\triangle E F G \sim \triangle E D C(\# 49), \quad \frac{E J}{E H}=\frac{F G}{D C}$.
$K H=4$ and $H J={ }_{2}^{1} K H=2(\# 24)$. Therefore,
$\frac{E J}{E J+2}=\frac{12}{15}$ and $E J=8$.
Hence, the area of $\triangle E F G=\frac{1}{2}(F G)(E J)=\frac{1}{2}(12)(8)=48$.
меTHOD II: Since $\triangle E F G \sim \triangle E D C$ (\#49),
$\frac{\text { Area of } \triangle E F G}{\text { Area of } \triangle E D C}=\frac{(F G)^{2}}{(D C)^{2}}=\frac{(12)^{2}}{(15)^{2}}=\frac{16}{25}$.
Thus, $\frac{\left(\frac{1}{2}\right)(F G)(E J)}{\left(\frac{1}{2}\right)(D C)(E H)}=\frac{\left(\frac{1}{2}\right)(12)(E J)}{\left(\frac{1}{2}\right)(15)(E J+2)}=\frac{16}{25}$ (Formula \#5a).
Therefore, $E J=8$, and the area of $\triangle E F G=48$.
Challenge Draw $\overline{\mathrm{GL}} \| \overline{\mathrm{ED}}$ and find the ratio of the area of $\triangle \mathrm{GLC}$ to the area of $\triangle \mathrm{EDC}$.

ANSWER: 1:25
5-3 The distance from a point A to a line $\overleftrightarrow{\mathrm{BC}}$ is 3 . Two lines I and 1^{\prime}, parallel to $\dot{B} \dot{C}$, divide $\triangle \mathrm{ABC}$ into three parts of equal area, as shown in Fig. S5-3. Find the distance between 1 and 1^{\prime}.

Line l meets $\overline{A B}$ and $\overline{A C}$ at G and H, and line l^{\prime} meets $\overline{A B}$ and $\overline{A C}$ at J and K. Let $A E=x$.
$\triangle A G H \sim \triangle A J K \sim \triangle A B C$ (\#49)
Since l and l^{\prime} cut off three equal areas, the area of $\triangle A G H=\frac{1}{2}$ the area of $\triangle A J K$, and the area of $\triangle A G H={ }_{3}^{1}$ the area of $\triangle A B C$.
Since the ratio of the areas is $\triangle A G H: \triangle A J K=1: 2$, the ratio of the corresponding altitudes is $A E: A F=1: \sqrt{2}$.

Similarly, another ratio of the areas is $\triangle A G H: \triangle A B C=1: 3$.
The ratio of the corresponding altitudes is $A E: A D=1: \sqrt{3}$.
Since $A E=x, A D=x \sqrt{3}$. However, $A D=3$, so $x \sqrt{3}=3$, or $x=\sqrt{3}$.
Similarly, $A F=x \sqrt{2}=\sqrt{6}$. Since $E F=A F-A E, E F=$ $\sqrt{6}-\sqrt{3}$.

5-4 Find the ratio between the area of a square inscribed in a circle, and an equilateral triangle circumscribed about the same circle (Fig. S5-4).

In order to compare the areas of the square and the equilateral triangle we must represent their areas in terms of a common unit, in this instance, the square of the radius r of circle O.

Since the center of the inscribed circle of an equilateral triangle is also the point of intersection of the medians, $E A=$ $3 r$ (\#29).

The area of $\triangle E F G=\frac{(3 r)^{2} \sqrt{3}}{3}=3 r^{2} \sqrt{3}$ (Formula \#5f).
Since the diagonal of square $A B C D$ is equal to $2 r$, the area of square $A B C D=\frac{1}{2}(2 r)^{2}=2 r^{2}$ (Formula \#4b).

Therefore, the ratio of the area of square $A B C D$ to the area of equilateral triangle $E F G$ is
$\frac{2 r^{2}}{3 r^{2} \sqrt{3}}=\frac{2}{3 \sqrt{3}}=\frac{2 \sqrt{3}}{9}$, approximately 7:18.

Challenge 1 Using a similar procedure, find the ratio between the area of a square circumscribed about a circle, and an equilateral triangle inscribed in the same circle.

$$
\text { ANSWER: } \frac{16 \sqrt{3}}{9}
$$

Challenge 2 Let D represent the difference in areas between the circumscribed triangle and the inscribed square. Let K represent the area of the circle. Is the ratio $\mathrm{D}: \mathrm{K}$ greater than one, equal to one, or less than one?
answer: Slightly greater than one
Challenge 3 Let D represent the difference in areas between the circumscribed square and the circle. Let T represent the area of the inscribed equilateral triangle. Find the ratio $\mathrm{D}: \mathrm{T}$.
ANSWER: Approximately $2: 3$

5-5 A circle O is tangent to the hypotenuse $\overline{\mathrm{BC}}$ of isosceles right $\triangle \mathrm{ABC}, \overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are extended and are tangent to circle O at E and F , respectively, as shown in Fig. S5-5. The area of the triangle is X^{2}. Find the area of the circle.

$\overline{O D}$ extended will pass through A (\#18).
Since the area of isosceles right $\triangle A B C=X^{2}, A B=A C=$ $X \sqrt{2}$ (Formula \#5a).
$B C=2 X$ (\#55a). Since $m \angle O A F=45, \triangle A D C$ is also an isosceles right triangle, and $A D=D C=X$.
$\triangle A D C \sim \triangle A F O$ (\#48), and $\frac{D C}{O F}=\frac{A C}{O A}$.
Let radii $O F$ and $O D$ equal r.
Then $\frac{X}{r}=\frac{X \sqrt{2}}{r+X}$, and $r=X(\sqrt{2}+1)$.
Hence, the area of the circle $=\pi X^{2}(3+2 \sqrt{2})($ Formula \#10).
Challenge Find the area of trapezoid EBCF.

$$
\text { ANSWER: } X^{2}\left(\sqrt{2}+\frac{1}{2}\right)
$$

5-6 In Fig. S5-6a, $\overline{\mathrm{PQ}}$ is the perpendicular bisector of $\overline{\mathrm{AD}}, \overline{\mathrm{AB}} \perp \overline{\mathrm{BC}}$, and $\overline{\mathrm{DC}} \perp \overline{\mathrm{BC}}$. If $\mathrm{AB}=9, \mathrm{BC}=8$, and $\mathrm{DC}=7$, find the area of quadrilateral APQB .
METHOD I: To find the area of $A P Q B$ we must find the sum of the areas of $\triangle A B Q$ and $\triangle P A Q$. Let $B Q=x$.
By the Pythagorean Theorem

$$
9^{2}+x^{2}=A Q^{2}, \text { and } 7^{2}+(8-x)^{2}=Q D^{2}
$$

But $A Q=Q D(\# 18)$;
therefore, $81+x^{2}=49+64-16 x+x^{2}$, and $x=2$.
Thus, $A Q=\sqrt{ } 8 \overline{5}$.
Draw $\overline{E D} \perp \overline{A B}$. Since $E D B C$ is a rectangle, $D C=E B=7$, and $A E=2$.
In $\triangle A E D,(A E)^{2}+(E D)^{2}=(A D)^{2}$, and $A D=2 \^{\prime} 17$.
Since $A P=\sqrt{17}$ and $A Q=\sqrt{85}$, we can now find $P Q$ by applying the Pythagorean Theorem to $\triangle A P Q$.

$$
(\sqrt{85})^{2}-(\sqrt{17})^{2}=P Q^{2}, \text { and } P Q=2 \sqrt{ } 17
$$

We may now find the area of quadrilateral $A P Q B$ by adding.
The area of $\triangle A B Q=\frac{1}{2}(9)(2)=9 . \quad$ (Formula \#5a)
The area of $\triangle A P Q=\frac{1}{2}(\sqrt{17})(2 \sqrt{17})=17$.
Therefore, the area of quadrilateral $A P Q B=26$.

MLTHOD II: Draw $\overline{H P F} \mid \overline{B C}$ (Fig. S5-6b). Then $\triangle A P H \cong$ $\triangle D P F$. Since $H F=8, H P=P F=4$.
Draw $\overline{P G} \perp \overline{B C}$. Since $\overline{P G}$ is the median of trapezoid $A D C B$,
$P G=\frac{1}{2}(A B+D C)=8$.
Thus, $A H=F D=1$.

In Method I we found $B Q=2$; therefore, since $B G=4$, $Q G=2$. The area of quadrilateral $A P Q B$ is area of rectangle $H P G B$ - area of $\triangle P G Q+$ area of $\triangle A P H$
$=(4)(8)-\left(\frac{1}{2}\right)(2)(8)+\left(\frac{1}{2}\right)(1)(4)=26$.
5-7 A triangle has sides that measure 13, 14, and 15. A line perpendicular to the side of measure 14 divides the interior of the triangle into two regions of equal area (Fig. S5-7). Find the measure of the segment of the perpendicular that lies within the triangle.

In $\triangle A B C, A B=13, A C=15$, and $B C=14$; therefore, $A D=12$ (\#55e), $B D=5, D C=9$.
Since $\overline{F E} \| \overline{A D}(\# 9), \triangle F E C \sim \triangle A D C$ (\#49), and $\frac{F E}{E C}=\frac{A D}{D C}=\frac{4}{3}$.
It follows that $E C=\frac{3(F E)}{4}$.
Now the area of $\triangle A B C=\frac{1}{2}(14)(12)=84$ (Formula \#5a).
The area of right $\triangle F E C$ is to be $\frac{1}{2}$ the area of $\triangle A B C$, or 42 .
Therefore, the area of right $\triangle F E C=\frac{1}{2}(F E)(E C)=42$.
Substituting for $E C$,

$$
42=\frac{1}{2}(F E)\left(\frac{3(F E)}{4}\right), \text { and } F E=4 \sqrt{7} .
$$

Challenge Find the area of trapezoid ADEF.
ANSWER: 12
5-8 Given $\triangle \mathrm{ABC}$ with $\mathrm{AB}=20, \mathrm{AC}=22 \frac{1}{2}$, and $\mathrm{BC}=27$. Points X and Y are taken on $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$, respectively, so that $\mathrm{AX}=\mathrm{AY}$ (Fig. S5-8). If the area of $\triangle \mathrm{AXY}=\frac{1}{2}$ area of $\triangle \mathrm{ABC}$, find AX .

The area of $\triangle A B C=\frac{1}{2}(A B)(A C) \sin A$ (Formula \#5b)

$$
\begin{aligned}
& =\frac{1}{2}(20)\left(22 \frac{1}{2}\right) \sin A \\
& =(225) \sin A .
\end{aligned}
$$

However, the area of $\triangle A X Y=\frac{1}{2}(A X)(A Y) \sin A$.
Since $A X=A Y$, the area of $\triangle A X Y=\frac{1}{2}(A X)^{2} \sin A$.
Since the area of $\triangle A X Y=\frac{1}{2}$ the area of $\triangle A B C$, $\frac{1}{2}(A X)^{2} \sin A=\frac{1}{2}[(225) \sin A]$, and $A X=15$.

Challenge Find the ratio of the area of $\triangle \mathrm{BXY}$ to that of $\triangle \mathrm{CXY}$.
Draw $B Y$ and $C X$. Area of $\triangle B X Y=\frac{5}{\text { Area of } \triangle A X Y}=\frac{1}{3}$, since they share the same altitude (i.e., from Y to $A B$).
Similarly, $\frac{\text { area of } \triangle C X Y}{\text { area of } \triangle A X Y}=\frac{7 \frac{1}{2}}{15}=\frac{1}{2}$.
Therefore, the ratio $\frac{\text { area of } \triangle B X Y}{\text { area of } \triangle C X Y}=\frac{2}{3}$.

5-9 In $\triangle \mathrm{ABC}, \mathrm{AB}=7, \mathrm{AC}=9$. On $\overline{\mathrm{AB}}$, point D is taken so that $\mathrm{BD}=3 . \overline{\mathrm{DE}}$ is drawn cutting $\overline{\mathrm{AC}}$ in E so that quadrilateral BCED has $\frac{5}{7}$ the area of $\triangle \mathrm{ABC}$. Find CE .

In Fig. S5-9, $A D=4$ while $A B=7$.
If two triangles share the same altitude, then the ratio of their areas equals the ratio of their bases.
Since $\triangle A D C$ and $\triangle A B C$ share the same altitude (from C to $\overleftarrow{A} \vec{B}$), the area of $\triangle A D C=\frac{4}{7}$ area of $\triangle A B C$.
Since the area of quadrilateral $D E C B=\frac{5}{7}$ area of $\triangle A B C$, the area of $\triangle D A E=\frac{2}{7}$ area of $\triangle A B C$.

Thus, the ratio of the areas of $\triangle D A E$ and $\triangle A D C$ equals $1: 2$. Both triangles $D A E$ and $A D C$ share the same altitude (from D to $\overleftrightarrow{A C}$); therefore, their bases are also in the ratio $1: 2$.
Thus, $\frac{A E}{A C}=\frac{1}{2}$.
Since $A C=9, A E=4 \frac{1}{2}$, as does $C E$.

5-10 An isosceles triangle has a base of measure 4, and sides measuring 3. A line drawn through the base and one side (but not through any vertex) divides both the perimeter and the area in half, as shown in Fig. S5-10. Find the measures of the segments of the base defined by this line.

$A B=A C=3$, and $B C=4$. If $D C=x$, then $B D=4-x$.
Since the perimeter of $A B C=10, E C+D C$ must be one-half the perimeter, or 5 . Thus, $E C=5-x$.
Now the area of $\triangle E D C=\frac{1}{2}(x)(5-x) \sin C$ (Formula \#5b), and the area of $\triangle A B C=\frac{1}{2}(4)(3) \sin C$.
Since the area of $\triangle E D C$ is one-half the area of $\triangle A B C$,

$$
\begin{gathered}
\frac{1}{2}(x)(5-x) \sin C=\frac{1}{2}\left[\frac{1}{2}(4)(3) \sin C\right], \text { and } \\
5 x-x^{2}=6
\end{gathered}
$$

Solving the quadratic equation $x^{2}-5 x+6=0$, we find its roots to be $x=2$ and $x=3$.
If $x=2$, then $E C=3=A C$, but this cannot be since $\overline{D E}$ may not pass through a vertex.
Therefore, $x=3$. Thus, $\overline{B C}$ is divided so that $B D=1$, and $D C=3$.

Challenge Find the measure of DE .
ANSWER: $\sqrt{5}$

5-11 Through D, a point on base $\overline{\mathrm{BC}}$ of $\triangle \mathrm{ABC}, \overline{\mathrm{DE}}$ and $\overline{\mathrm{DF}}$ are drawn parallel to sides $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$, respectively, meeting $\overline{\mathrm{AC}}$ at E and $\overline{\mathrm{AB}}$ at F (Fig. S5-11). If the area of $\triangle \mathrm{EDC}$ is four times the area of $\triangle \mathrm{BFD}$, what is the ratio of the area of $\triangle \mathrm{AFE}$ to the area of $\triangle \mathrm{ABC}$?

METHOD I: $\frac{\text { Area of } \triangle F D B}{\text { Area of } \triangle E C D}=\frac{1}{4} \cdot \triangle F D B \sim \triangle E C D$ (\#48), and the ratio of the corresponding altitudes is $\begin{aligned} & J D \\ & C \bar{G}\end{aligned}=\frac{1}{2}$. (The ratio of the corresponding linear parts of two similar polygons equals the square root of the ratio of their areas.)
$J D=H G(\# 20) ;$ therefore, $\frac{J D}{G C}=\frac{H G}{G C}=\frac{1}{2}$,
and $\frac{H G+G C}{G C}=\frac{1+2}{2}$, or $\frac{H C}{G C}=\frac{3}{2}$.
Thus, the ratio of area of $\triangle A B C=\frac{9}{4}$. (The square of the ratio of corresponding linear parts of two similar polygons equals the ratio of the areas.)
The ratio of area of $\triangle A B C$ to area of $\triangle E D C$ to area of $\triangle F B D=$ 9:4:1.
Area of $\square A E D F=$ area of $\triangle E D C$, and the ratio of area of $\square A E D F$ to area of $\triangle A B C=4: 9$.
But since area of $\triangle A F E=\frac{1}{2}$ area of $\square A E D F$, area of $\triangle A F E$: area of $\triangle A B C=2: 9$.
method is: Since $\overline{F D} \| \overline{A C}, \triangle B F D \sim \triangle B A C$ (\#49), and since $\overline{E D} \| \overline{A B}, \triangle D E C \sim \triangle B A C$ (\#49).

Therefore, $\triangle B F D \sim \triangle D E C$.
Since the ratio of the areas of $\triangle B F D$ to $\triangle D E C$ is $1: 4$, the ratio of the corresponding sides is $1: 2$.
Let $B F=x$, and $F D=y ; \quad$ then $E D=2 x$ and $E C=2 y$.

Since $A E D F$ is a parallelogram (\#21a), $F D=A E=y$, and $E D=A F=2 x$.
Now, area of $\triangle A F E=\frac{1}{2}(2 x)(y) \sin A$,
and area of $\triangle A B C=\frac{1}{2}(3 x)(3 y) \sin A$ (Formula \#5b).
Thus, the ratio of the area of $\triangle A F E$ to the area of $\triangle A B C=\frac{2}{9}$ (from (I) and (II)).

The problem may easily be solved by designating triangle $A B C$ as an equilateral triangle. This approach is left to the student.

5-12 Two circles, each of which passes through the center of the other, intersect at points M and N . A line from M intersects the circles at K and L , as illustrated in Fig. S5-12. If $\mathrm{KL}=6$ compute the area of $\triangle \mathrm{KLN}$.

Draw the line of centers $\overline{O Q}$. Then draw $\overline{O N}, \overline{O M}, \overline{Q N}$, and $\overline{Q M}$. Since $O N=O Q=Q N=O M=Q M, \triangle N O Q$ and $\triangle M O Q$ are each equilateral.
$m \angle N Q O=m \angle M Q O=60$, so $m \angle N Q M=120$.
Therefore, we know that in circle $O, m \angle N L M=60(\# 36)$.
Since $m \overparen{N C M}=240$, in circle $Q, m \angle N K M=120(\# 36)$.
Since $\angle N K L$ is supplementary to $\angle N K M, m \angle N K L=60$.
Thus, $\triangle L K N$ is equilateral (\#6).
The area of $\triangle K L N=\frac{(K L)^{2} \sqrt{3}}{4}=9 \sqrt{3}$ (Formula \#5e).
Challenge If r is the measure of the radius of each circle, find the least value and the greatest value of the area of $\triangle \mathrm{KLN}$.
ANSWER: The least value is zero, and the greatest value is $\frac{3 r^{2} \sqrt{3}}{4}$.

5-13 Find the area of a triangle whose medians have measures 39, 42, 45 (Fig. S5-13).

Let $A D=39, C E=42, B F=45$; then $C G=28, G E=14$, $A G=26, G D=13, B G=30$, and $G F=15(\# 29)$. Now extend $\overline{A D}$ to K so that $G D=D K$. Quadrilateral $C G B K$ is a parallelogram (\#21f).
$C K=B G=30(\# 21 \mathrm{~b}) . G D=D K=13$; therefore, $G K=26$. We may now find the area of $\triangle G C K$ by applying Hero's formula (Formula \#5c), or by noting that the altitude to side $\overline{G C}$ must equal 24 (\#55e).
In either case, the area of $\triangle G C K=336$.
Consider the area of $\triangle G C D$ which equals $\frac{1}{3}$ the area of $\triangle A C D$ (\#29). However, the area of $\triangle A C D=\frac{1}{2}$ the area of $\triangle A B C$. Therefore, the area of $\triangle G C D$ equals $\frac{1}{6}$ the area of $\triangle A B C$. But the area of $\triangle G C K$ is twice the area of $\triangle G C D$, and thus the area of $\triangle G C K=\frac{1}{3}$ the area of $\triangle A B C$. Then, since the area of $\triangle C G K=336$, the area of $\triangle A B C=3(336)=1008$.

5-14 The measures of the sides of a triangle are 13, 14, and 15. A second triangle is formed in which the measures of the three sides are the same as the measures of the medians of the first triangle (Fig. $S 5-14 a$). What is the area of the second triangle?

Let $A B=13, A C=15$, and $B C=14$.
In $\triangle A B C$, the altitude to side $\overline{B C}$ equals 12 ($\# 55 \mathrm{e}$).
Therefore, the area of $\triangle A B C=\frac{1}{2}(B C)(A D)$

$$
=\frac{1}{2}(14)(12)=84 \text {. }
$$

Another possible method to find the area of $\triangle A B C$ would be to apply Hero's formula (Formula \#5c) to obtain $\sqrt{(21)(6)(7)(8)}$. Breaking the expression down into prime factors we have $\sqrt{7 \cdot 3 \cdot 3 \cdot 2 \cdot 7 \cdot 2 \cdot 2 \cdot 2}=7 \cdot 3 \cdot 2 \cdot 2=84$.

Let us now consider $\triangle A B C$ and its medians, $\overline{A F}, \overline{B J}$, and $\overline{C K}$. Extend $\overline{G F}$ its own length to H.
$G C H B$ is a parallelogram ($\# 21 \mathrm{f}$).
Now consider $\triangle G H C . H C=B G=\frac{2}{3}(B J)(\# 21 \mathrm{~b}, \# 29)$.
$G C=\frac{2}{3} C K$, and $G F=\frac{1}{3} A F(\# 29) ;$ but $G H=\frac{2}{3} A F$.
Since the measure of each side of $\triangle G H C=\frac{2}{3}$ times the measure of each side of the triangle formed by the lengths of the medians, $\triangle G H C \sim \Delta$ of medians. The ratio of their areas is the square of their ratio of similitude, or $\frac{4}{9}$.

We must now find the area of $\triangle G H C$.
Since $\overline{A F}$ is a median, area of $\triangle A F C=\frac{1}{2}$ area of $\triangle A B C=42$.
The area of $\triangle G C F=\frac{1}{3}$ area of $\triangle A F C=14$.
However, the area of $\triangle G H C=t$ wice the area of $\triangle G C F=28$.
Since the ratio of $\frac{\text { area of } \triangle G H C}{\text { area of triangle of medians }}=\frac{4}{9}$,

$$
\frac{28}{\text { area of triangle of medians }}=\frac{4}{9},
$$

and the area of triangle of medians $=63$.
Challenge 1 Show that $\mathrm{K}(\mathrm{m})=\frac{3}{4} \mathrm{~K}$ where K represents the area of $\triangle \mathrm{ABC}$, and $\mathrm{K}(\mathrm{m})$ represents the area of a triangle with sides $\mathrm{m}_{\mathrm{a}}, \mathrm{m}_{\mathrm{b}}, \mathrm{m}_{\mathrm{c}}$, the medians of $\triangle \mathrm{ABC}$. (See Fig. S5-14b.)

Let $K\left(\frac{2}{3} m\right)$ represent the area of $\triangle B G H$.
We have already shown that $K\left(\frac{2}{3} m\right)=\frac{1}{3} K$.

$$
\frac{K(m)}{K\left(\frac{2}{3} m\right)}=\frac{m_{a}{ }^{2}}{\left(\frac{2}{3} m_{a}\right)^{2}}=\frac{9}{4}
$$

Therefore, $K(m)=\frac{9}{4} K\left(\frac{2}{3} m\right)=\left(\frac{9}{4}\right)\left(\frac{1}{3} K\right)=\frac{3}{4} K$.

5-15 Find the area of a triangle formed by joining the midpoints of the sides of a triangle whose medians have measures 15, 15, and 18 (Fig. S5-15).

METHOD I: $A E=18, B D=C F=15$
In $\triangle A B C, \overline{F D} \| \overline{B C}(\# 26)$, and in $\triangle A E C, A H=H E$ ($\# 25$). Since $A E=18, H E=9$. Since $G E=6(\# 29), G H=3 . G D=$ 5 (\#29). Since $B D=C F, \triangle A B C$ is isosceles, and median $\overline{A E} \perp \overline{B C}$, so $\overline{A E} \perp \overline{F D}(\# 10)$.
Thus, in right $\triangle H G D, H D=4(\# 55)$.
Since $F H=H D=4, F D=8$.
Hence, the area of $\triangle F D E=\frac{1}{2}(F D)(H E)$

$$
=\frac{1}{2}(8)(9)=36 .
$$

MLTHOD II: Since the area of the triangle formed by the three medians is $\frac{3}{4}$ the area of $\triangle A B C$ (see Problem 5-14), and the area of the triangle formed by the three medians is equal to 108 , the area of $\triangle A B C$ is $\frac{4}{3}(108)=144$.
Since the area of $\triangle A F D=$ area of $\triangle B F E=$ area of $\triangle C D E=$ area of $\triangle F D E$, area of $\triangle F D E=\frac{1}{4}(144)=36$.

Challenge Express the required area in terms of $\mathrm{K}(\mathrm{m})$, where $\mathrm{K}(\mathrm{m})$ is the area of the triangle formed from the medians. ANSWER: $\frac{1}{3} K(m)$

5-16 In $\triangle \mathrm{ABC}, \mathrm{E}$ is the midpoint of $\overline{\mathrm{BC}}$, while F is the midpoint of $\overline{\mathrm{AE}}$, and $\overleftrightarrow{\mathrm{BF}}$ meets AC at D , as shown in Fig. S5-16. If the area of $\triangle \mathrm{ABC}=48$, find the area of $\triangle \mathrm{AFD}$.

The area of $\triangle A B E=\frac{1}{2}$ the area of $\triangle A B C$ (\#56).
Similarly, the area of $\triangle A B F=\frac{1}{2}$ the area of $\triangle A B E$ (\#56).
Therefore, since the area of $\triangle A B C=48$,
the area of $\triangle A B F=12$.
Draw $\overline{E G} \| \overline{B D}$. In $\triangle E A G, A D=D G(\# 25)$.
Similarly, in $\triangle B C D, D G=G C$ (\#25).
Therefore, $A D=D G=G C$, or $A D=\frac{1}{3}(A C)$.
Since $\triangle A B D$ and $\triangle A B C$ share the same altitude (from B to $\overleftrightarrow{A C}$) and their bases are in the ratio $1: 3$,
the area of $\triangle A B D=\frac{1}{3}$ area of $\triangle A B C=16$.
Thus, the area of $\triangle A F D=$ area of $\triangle A B D-$ area of $\triangle A B F=4$.
Challenge 2 Change $\mathrm{AF}=\frac{1}{2} \mathrm{AE}$ to $\mathrm{AF}=\frac{1}{3} \mathrm{AE}$, and find a general solution.
ANSWER: The area of $\triangle A F D=\frac{1}{30}$ the area of $\triangle A B C$.
5-17 In $\triangle \mathrm{ABC}, \mathrm{D}$ is the midpoint of side $\overline{\mathrm{BC}}, \mathrm{E}$ is the midpoint of $\overline{\mathrm{AD}}$, F is the midpoint of $\overline{\mathrm{BE}}$, and G is the midpoint of $\overline{\mathrm{FC}}$. (See Fig. S5-17.) What part of the area of $\triangle \mathrm{ABC}$ is the area of $\triangle \mathrm{EFG}$?

Draw $\overline{E C}$.
Since the altitude of $\triangle B E C$ is $\frac{1}{2}$ the altitude of $\triangle B A C$, and both triangles share the same base, the area of $\triangle B E C=\frac{1}{2}$ area of $\triangle B A C$.
Now, area of $\triangle E F C=\frac{1}{2}$ area of $\triangle B E C$, and area of $\triangle E G F=\frac{1}{2}$ area of $\triangle E F C$ (\#56);
therefore area of $\triangle E G F=\frac{1}{4}$ area of $\triangle B E C$.

Thus, since area of $\triangle B E C=\frac{1}{2}$ area of $\triangle A B C$,
we find that area of $\triangle E G F=\frac{1}{8}$ area of $\triangle A B C$.
Challenge Solve the problem if $\mathrm{BD}=\frac{1}{3} \mathrm{BC}, \mathrm{AE}=\frac{1}{3} \mathrm{AD}, \mathrm{BF}=\frac{1}{3} \mathrm{BE}$, and $\mathrm{GC}=\frac{1}{3} \mathrm{FC}$.
ANSWER: The area of $\triangle E G F=\frac{8}{27}$ the area of $\triangle B A C$.

5-18 In trapezoid ABCD with upper base $\overline{\mathrm{AD}}$, lower base $\overline{\mathrm{BC}}$, and legs $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}, \mathrm{E}$ is the midpoint of $\overline{\mathrm{CD}}$ (Fig. S5-18). A perpendicular, $\overline{\mathrm{EF}}$, is drawn to $\overline{\mathrm{BA}}$ (extend $\overline{\mathrm{BA}}$ if necessary). If $\mathrm{EF}=24$ and $\mathrm{AB}=30$, find the area of the trapezoid. (Note that the diagram is not drawn to scale.)
Draw $\overline{A E}$ and $\overline{B E}$. Through E, draw a line parallel to $\overline{A B}$ meeting $\overline{B C}$ at H and $\overline{A D}$, extended at G.
Since $D E=E C$ and $\angle D E G \cong \angle H E C$ (\#1) and $\angle D G E \cong$ $\angle C H E$ (\#8), $\triangle D E G \cong \triangle C E H$ (A.S.A.).
Since congruent triangles are equal in area, the area of parallelogram $A G H B=$ the area of trapezoid $A B C D$. The area of $\triangle A E B$ is one-half the area of parallelogram $A G H B$, since they share the same altitude $(\overline{E F})$ and base $(\overline{A B})$. Thus, the area of $\triangle A E B=\frac{1}{2}$ area of trapezoid $A B C D$. The area of $\triangle A E B=\frac{1}{2}(30)(24)=360$. Therefore, the area of trapezoid $A B C D=720$.

Challenge Establish a relationship between points F, A, and B such that the area of trapezoid ABCD is equal to the area of $\triangle \mathrm{FBH}$.

ANSWER: A is the midpoint of $\overline{B F}$.

5-19 In $\square \mathrm{ABCD}$, a line from C cuts diagonal $\overline{\mathrm{BD}}$ in E and $\overline{\mathrm{AB}}$ in F , as shown in Fig. S5-19. If F is the midpoint of $\overline{\mathrm{AB}}$, and the area of $\triangle \mathrm{BEC}$ is 100 , find the area of quadrilateral AFED .

Draw $\overline{A C}$ meeting $\overline{D B}$ at G. In $\triangle A B C, \overline{B G}$ and $\overline{C F}$ are medians; therefore, $F E=\frac{1}{2}$ ($E C$) (\#29).
If the area of $\triangle B E C=100$, then the area of $\triangle E F B=50$, since they share the same altitude.
$\triangle A B D$ and $\triangle F B C$ have equal altitudes ($\# 20$), but $A B=2(F B)$
Therefore, the area of $\triangle A B D$ is twice the area of $\triangle F B C$. Since the area of $\triangle F B C=150$, the area of $\triangle A B D=300$. But the area of quadrilateral $A F E D=$ the area of $\triangle A B D$ - the area of $\triangle F B E$; therefore, the area of quadrilateral $A F E D=300-$ $50=250$.

Challenge Find the area of $\triangle \mathrm{GEC}$.
ANSWER: 50
5-20 P is any point on side $\overline{\mathrm{AB}}$ of $\square \mathrm{ABCD} . \overline{\mathrm{CP}}$ is drawn through P meeting $\overline{\mathrm{DA}}$ extended at Q, as illustrated in Fig. S5-20. Prove that the area of $\triangle \mathrm{DPA}$ is equal to the area of $\triangle \mathrm{QPB}$.

Since $\triangle D P C$ and $\square A B C D$ have the same altitude and share the same base, $\overline{D C}$, the area of $\triangle D P C=\frac{1}{2}$ area of parallelogram $A B C D$.
The remaining half of the area of the parallelogram is equal to the sum of the areas of $\triangle D A P$ and $\triangle P B C$.
However, the area of $\triangle D B C$ is also one-half of the area of the parallelogram.
The area of $\triangle C Q B=$ the area of $\triangle C D B$. (They share the same base, $\overline{C B}$, and have equal altitudes since $\overline{D Q} \| \overline{C B}$.)
Thus, the area of $\triangle C Q B$ equals one-half the area of the parallelogram.

Therefore, the area of $\triangle D A P+$ the area of $\triangle P B C=$ the area of $\triangle C Q B$.
Subtracting the area of $\triangle P B C$ from both sides, we find the area of $\triangle D A P=$ the area of $\triangle P Q B$.

5-21 $\overline{\mathrm{RS}}$ is the diameter of a semicircle. Two smaller semicircles, $\overparen{\mathrm{RT}}$ and $\widehat{\mathrm{TS}}$, are drawn on $\overline{\mathrm{RS}}$, and their common internal tangent $\overline{\mathrm{AT}}$ intersects the large semicircle at A, as shown in Fig. S5-21. Find the ratio of the area of a semicircle with radius $\overline{\mathrm{AT}}$ to the area of the shaded region.

Draw $\overline{R A}$ and $\overline{S A}$. In right $\triangle R A S$ (\#36), $\overline{A T} \perp \overline{R S}$ (\#32a).
Therefore, $\frac{R T}{A T}=\frac{A T}{S T}$, or $(A T)^{2}=(R T)(S T)(\# 51 \mathrm{a})$.
The area of the semicircle, radius

$$
\overline{A T}=\frac{\pi}{2}(A T)^{2}=\frac{\pi}{2}(R T)(S T) .
$$

The area of the shaded region

$$
\begin{aligned}
& =\frac{\pi}{2}\left[\left(\frac{1}{2} R S\right)^{2}-\left(\frac{1}{2} R T\right)^{2}-\left(\frac{1}{2} S T\right)^{2}\right] \\
& =\frac{\pi}{8}\left[(R S)^{2}-(R T)^{2}-(S T)^{2}\right] \\
& =\frac{\pi}{8}\left[(R T+S T)^{2}-(R T)^{2}-(S T)^{2}\right] \\
& =\frac{\pi}{4}[(R T)(S T)] .
\end{aligned}
$$

Therefore, the ratio of the area of the semicircle of radius $\overline{A T}$ to the area of the shaded region is

$$
\frac{\frac{\pi}{2}(R T)(S T)}{\frac{\pi}{4}(R T)(S T)}=\frac{2}{1} .
$$

5-22 Prove that from any point inside an equilateral triangle, the sum of the measures of the distances to the sides of the triangle is constant. (See Fig. S5-22a.)

METHOD I: In equilateral $\triangle A B C, \overline{P R} \perp \overline{A C}, \overline{P Q} \perp \overline{B C}, \overline{P S} \perp \overline{A B}$, and $\overline{A D} \perp \overline{B C}$.
Draw a line through P parallel to $\overline{B C}$ meeting $\overline{A D}, \overline{A B}$, and $\overline{A C}$ at G, E, and F, respectively.
$P Q=G D(\# 20)$
Draw $\overline{E T} \perp \overline{A C}$. Since $\triangle A E F$ is equilateral, $A G=E T$ (all the altitudes of an equilateral triangle are congruent).
Draw $\overline{P H} \| \overline{A C}$ meeting $\overline{E T}$ at $N . N T=P R(\# 20)$
Since $\triangle E H P$ is equilateral, altitudes $\overline{P S}$ and $\overline{E N}$ are congruent. Therefore, we have shown that $P S+P R=E T=A G$. Since $P Q=G D, P S+P R+P Q=A G+G D=A D$, a constant for the given triangle.

METHOD I: In equilateral $\triangle A B C, \overline{P R} \perp \overline{A C}, \overline{P Q} \perp \overline{B C}, \overline{P S} \perp$ $\overline{A B}$, and $\overline{A D} \perp \overline{B C}$.
Draw $\overline{P A}, \overline{P B}$, and $\overline{P C}$ (Fig. S5-22b).
The area of $\triangle A B C$

$$
\begin{aligned}
& =\text { area of } \triangle A P B+\text { area of } \triangle B P C+\text { area of } \triangle C P A \\
& =\frac{1}{2}(A B)(P S)+\frac{1}{2}(B C)(P Q)+\frac{1}{2}(A C)(P R) . \quad \text { (Formula \#5a) }
\end{aligned}
$$

Since $A B=B C=A C$,
the area of $\triangle A B C=\frac{1}{2}(B C)[P S+P Q .+P R]$.
However, the area of $\triangle A B C=\frac{1}{2}(B C)(A D)$;
therefore, $P S+P Q+P R=A D$,
a constant for the given triangle.

Challenge In equilateral $\triangle \mathrm{ABC}$, legs $\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$ are extended through B so that an angle is formed that is vertical to $\angle \mathrm{ABC}$. Point P lies within this vertical angle. From P , perpendiculars are drawn to sides $\overline{\mathrm{BC}}, \overline{\mathrm{AC}}$, and $\overline{\mathrm{AB}}$ at points Q, R, and S , respectively. See Fig. S5-22c. Prove that $\mathrm{PR}-(\mathrm{PQ}+\mathrm{PS})$ equals a constant for $\triangle \mathrm{ABC}$.

Draw $\overline{E P F} \| \overline{A C}$ thereby making $\triangle E B F$ equilateral. Then draw $\overline{G B H} \| \overline{P R}$. Since $P G H R$ is a rectangle, $G H=P R$. A special case of the previous problem shows that in $\triangle E B F, P Q+P S=G B$. Since $G H-G B=B H$, then $P R-(P Q+P S)=B H$, a constant for $\triangle A B C$.

6. A Geometric Potpourri

6-1 Heron's Formula is used to find the area of any triangle, given only the measures of the sides of the triangle. Derive this famous formula. The area of any triangle $=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are measures of the sides of the triangle and s is the semiperimeter.

First inscribe a circle in $\triangle A B C$ and draw the radii $\overline{O D}, \overline{O E}$, and $\overline{O F}$ to the points of contact. Then draw $\overline{O B}, \overline{O C}$, and $\overline{O A}$. Let a line perpendicular to $\overline{B O}$ at O meet, at point P, the perpendicular to $\overline{B C}$ at C. Extend $\overline{B C}$ to K so that $C K=A D$ (Fig. S6-1).

Since $\triangle B O P$ and $\triangle B C P$ are right triangles with $\overline{B P}$ as hypotenuse, it may be said that $\angle B O P$ and $\angle B C P$ are inscribed angles in a circle whose diameter is $\overline{B P}$. Thus, quadrilateral $B O C P$ is cyclic (i.e., may be inscribed in a circle). It follows that $\angle B P C$ is supplementary to $\angle B O C$ (\#37).

If we now consider the angles with O as vertex, we note that $\angle D O A \cong \angle A O E, \angle C O E \cong \angle F O C$, and $\angle B O D \cong \angle B O F$. (This may be proved using congruent triangles.) Therefore, $m \angle B O F+m \angle F O C+m \angle D O A=\frac{1}{2}(360)$, or $\angle D O A$ is
supplementary to $\angle B O C$. Thus, $\angle D O A \cong \angle B P C$ because both are supplementary to the same angle. It then follows that right $\triangle D O A \sim$ right $\triangle C P B(\# 48)$ and that

$$
\begin{equation*}
\frac{B C}{A D}=\frac{P C}{D O} \tag{I}
\end{equation*}
$$

Since $\angle O G F \cong \angle P G C$, right $\triangle O G F \sim$ right $\triangle P G C$ (\#48) and

$$
\begin{equation*}
\frac{G C}{F G}=\frac{P C}{O F} . \tag{II}
\end{equation*}
$$

However $O F=D O$. Therefore, from (I) and (II) it follows that

$$
\begin{equation*}
\frac{B C}{A D}=\frac{G C}{F G} . \tag{III}
\end{equation*}
$$

Since $A D=C K$, it follows from (III) that $\frac{B C}{C K}=\frac{G C}{F G}$.
Using a theorem on proportions we get

$$
\frac{B C+C K}{C K}=\frac{G C+F G}{F G} \text {, or } \frac{B K}{C K}=\frac{F C}{F G} \text {. }
$$

Thus,

$$
\begin{equation*}
(B K)(F G)=(C K)(F C) \tag{IV}
\end{equation*}
$$

By multiplying both sides of (IV) by $B K$, we get

$$
\begin{equation*}
(B K)^{2}(F G)=(B K)(C K)(F C) \tag{V}
\end{equation*}
$$

In right $\triangle B O G, \overline{O F}$ is the altitude drawn to the hypotenuse. Thus by (\#51a), $(O F)^{2}=(F G)(B F)$.

We are now ready to consider the area of $\triangle A B C$. We may think of the area of $\triangle A B C$ as the sum of the areas of $\triangle A O B$, $\triangle B O C$, and $\triangle A O C$. Thus, the area of $\triangle A B C=\frac{1}{2}(O D)(A B)+$ $\frac{1}{2}(O E)(A C)+\frac{1}{2}(O F)(B C)$. Since $O D=O E=O F$ (the radii of circle O),
$\frac{1}{2}(O F)(A B+A C+B C)=(O F) \cdot($ semiperimeter of $\triangle A B C)$.
Since $B F=B D, F C=E C$, and $A D=A E, B F+F C+A D=$ half the perimeter of $\triangle A B C$. Since $A D=C K, B F+F C+$ $C K=B K$ which equals the semiperimeter of $\triangle A B C$. Hence, the area of $\triangle A B C=(B K)(O F)$.

$$
\begin{aligned}
\text { (Area of } \triangle A B C)^{2} & =(B K)^{2}(O F)^{2} . & \\
\text { (Area of } \triangle A B C)^{2} & =(B K)^{2}(F G)(B F) . & \text { From (VI) } \\
\text { (Area of } \triangle A B C)^{2} & =(B K)(C K)(F C)(B F) . & \text { From (V) } \\
\text { Area of } \triangle A B C & =\sqrt{(B K)(C K)(B F)(F C \overline{)} .} &
\end{aligned}
$$

Let $s=$ semiperimeter $=B K, a=B C, b=A C$, and $c=A B$. Then $s-a=C K, s-b=B F$, and $s-c=F C$. We can now express Heron's Formula for the area of $\triangle A B C$, as it is usually given.

$$
\text { Area } \triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}
$$

Challenge Find the area of a triangle whose sides measure $6, \sqrt{2}, \sqrt{50}$.

$$
\begin{aligned}
& s=\frac{6+\sqrt{ } 2+5 \sqrt{ } 2}{2}=3+3 \sqrt{2} \\
& K=\sqrt{(3+3 \sqrt{2})(3 \sqrt{ } 2-3)(3+2 \sqrt{2})(3-2 \sqrt{ } 2)} \\
& K=\sqrt{[9(2)-9][9-4(2)]} \\
& K=\sqrt{9}=3
\end{aligned}
$$

6-2 An interesting extension of Heron's Formula to the cyclic quadrilateral is credited to Brahmagupta, an Indian mathematician who lived in the early part of the seventh century. Although Brahmagupta's Formula was once thought to hold for all quadrilaterals, it has been proved to be valid only for cyclic quadrilaterals.

The formula for the area of a cyclic quadrilateral with side measures $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d is

$$
K=\sqrt{(s-a)(s-b)(s-c)(s-d)},
$$

wheres is the semiperimeter. Derive this formula. (Fig. S6-2.)

First consider the case where quadrilateral $A B C D$ is a rectangle with $a=c$ and $b=d$. Assuming Brahmagupta's Formula, we have
area of rectangle $A B C D$

$$
\begin{aligned}
= & \sqrt{(s-a)(s-b)(s-c)(s-d)} \\
= & \sqrt{(a+b-a)(a+b-b)(a+b-a)(a+b-b)} \\
= & \sqrt{a^{2} b^{2}} \\
= & a b, \text { which is the area of the rectangle as found by the } \\
& \text { usual methods. }
\end{aligned}
$$

Now consider any non-rectangular cyclic quadrilateral $A B C D$. Extend $\overline{D A}$ and $\overline{C B}$ to meet at P, forming $\triangle D C P$. Let $P C=x$ and $P D=y$. By Heron's Formula, area of $\triangle D C P$

$$
\begin{equation*}
=\frac{1}{4} \sqrt{(x+y+c)(y-x+c)(x+y-c)(x-y+c)} \tag{I}
\end{equation*}
$$

Since $\angle C D A$ is supplementary to $\angle C B A$ (\#37), and $\angle A B P$ is also supplementary to $\angle C B A, \angle C D A \cong \angle A B P$. Then by \#48,

$$
\begin{equation*}
\triangle B A P \sim \triangle D C P \tag{II}
\end{equation*}
$$

From (II) we get $\frac{\text { area } \triangle B A P}{\text { area } \triangle D C P}=\frac{a^{2}}{c^{2}}$,

$$
\begin{gather*}
\frac{\text { area } \triangle D C P}{\text { area } \triangle D C P}-\frac{\text { area } \triangle B A P}{\text { area } \triangle D C P}=\frac{c^{2}}{c^{2}}-\frac{a^{2}}{c^{2}}, \\
\frac{\text { area } \triangle D C P-\text { area } \triangle B A P}{\text { area } \triangle D C P}=\frac{\text { area } A B C D}{\text { area } \triangle D C P}=\frac{c^{2}-a^{2}}{c^{2}} . \tag{III}
\end{gather*}
$$

From (II) we also get

$$
\begin{equation*}
\frac{x}{c}=\frac{y-d}{a}, \quad \text { and } \quad \frac{y}{c}=\frac{x-b}{a} \tag{IV}
\end{equation*}
$$

By adding (IV) and (V),

$$
\begin{align*}
\frac{x+y}{c} & =\frac{x+y-b-d}{a}, \\
x+y & =\frac{c}{c-a}(b+d) \\
x+y+c & =\frac{c}{c-a}(b+c+d-a) \tag{VI}
\end{align*}
$$

The following relationships are found by using similar methods.

$$
\begin{align*}
& y-x+c=\frac{c}{c+a}(a+c+d-b) \tag{VII}\\
& x+y-c=\frac{c}{c-a}(a+b+d-c) \tag{VIII}\\
& x-y+c=\frac{c}{c+a}(a+b+c-d) \tag{IX}
\end{align*}
$$

Substitute (VI), (VII), (VIII), and (IX) into (I). Then the area of $\triangle D C P=$

$$
\frac{c^{2}}{4\left(c^{2}-a^{2}\right)} \sqrt{(b+c+d-a)(a+c+d-b)} \times
$$

Since (III) may be read

$$
\text { area of } \triangle D C P=\frac{c^{2}}{c^{2}-a^{2}}(\text { area } A B C D)
$$

the area of cyclic quadrilateral $A B C D=$

$$
\sqrt{(s-a)(s-b)(s-c)(s-d)}
$$

Challenge 1 Find the area of a cyclic quadrilateral whose sides measure $9,10,10$, and 21.

ANSWER: 120
Challenge 2 Find the area of a cyclic quadrilateral whose sides measure $15,24,7$, and 20.

ANSWER: 234
6.3 Sides $\overline{\mathrm{BA}}$ and $\overline{\mathrm{CA}}$ of $\triangle \mathrm{ABC}$ are extended through A to form rhombuses BATR and CAKN. (See Fig. S6-3.) $\overline{\mathrm{BN}}$ and $\overline{\mathrm{RC}}$, intersecting at P , meet $\overline{\mathrm{AB}}$ at S and $\overline{\mathrm{AC}}$ at M . Draw $\overline{\mathrm{MQ}}$ parallel to $\overline{\mathrm{AB}}$. (a) Prove AMQS is a rhombus and (b) prove that the area of $\triangle \mathrm{BPC}$ is equal to the area of quadrilateral ASPM.

METHOD I: (a) Let a side of rhombus $A T R B=a$ and let a side of rhombus $A K N C=b$. Since $\overline{A S} \| \overline{R T}, \triangle C A S \sim \triangle C T R(\# 49)$ and $\frac{R T}{A S}=\frac{T C}{A C}$. Since $T C=T A+A C$, we get

$$
\begin{equation*}
\frac{a}{A S}=\frac{a+b}{b} ; \quad A S=\frac{a b}{a+b} . \tag{I}
\end{equation*}
$$

Similarly, since $\overline{A M} \| \overline{K N}, \triangle B A M \sim \triangle B K N$ (\#49) and $\frac{K N}{A M}=$ $\frac{K B}{A B}$. Since $K B=K A+A B$, we get

$$
\begin{equation*}
\frac{b}{A M}=\frac{a+b}{a} ; \quad A M=\frac{a b}{a+b} . \tag{II}
\end{equation*}
$$

From (I) and (II) it follows that $A S=A M$.

Since $\overline{Q M} \| \overline{C N}, \triangle B M Q \sim \triangle B N C$ (\#49) and

$$
\begin{equation*}
\frac{C N}{Q M}=\frac{B N}{B M} \tag{III}
\end{equation*}
$$

Since $\triangle B A M \sim \triangle B K N$ (see above),

$$
\begin{equation*}
\frac{K N}{A M}=\frac{B N}{B M} . \tag{IV}
\end{equation*}
$$

Then by transitivity from (III) and (IV),

$$
\frac{C N}{Q M}=\frac{K N}{A M} .
$$

However, since $C N=K N$, it follows that $Q M=A M$. Now since $A S=A M=Q M$ and $\overline{A S} \| \overline{Q M}, A S Q M$ is a parallelogram with adjacent sides $\overline{A S}$ and $\overline{A M}$ congruent. It is, therefore, a rhombus.
METHOD II: Draw $\overline{A Q}$. Since $\overline{M Q}\|\overline{A B}\| \overline{N C}, \triangle M B Q \sim \triangle N B C$ $(\# 49)$ and $\frac{M Q}{N C}=\frac{M B}{N B}$.
Since $\overline{A M} \| \overline{K N}, \triangle A B M \sim \triangle K B N(\# 49)$ and $\frac{A M}{K N}=\frac{M B}{N B}$.
Therefore by transitivity, $\frac{A M}{K N}=\frac{M Q}{N C}$. But $\overline{K N} \cong \overline{N C}$ (\#21-1), and therefore $K N=N C$. Thus, $A M=M Q$ and $\angle 1 \cong \angle 2$ (\#5). However, since $\overline{M Q} \| \overline{A S}, \angle 1 \cong \angle 3$ (\#8). Thus, $\angle 2 \cong \angle 3$ and $\overline{A Q}$ is a bisector of $\angle B A C$. Hence, by $\# 47$,

$$
\begin{equation*}
\frac{A B}{A C}=\frac{B Q}{Q C} . \tag{I}
\end{equation*}
$$

Since $\triangle R S B \sim \triangle C S A$ (\#48), $\frac{B S}{S A}=\frac{R B}{A C}$. But $\overline{R B} \cong \overline{A B}(\# 21-1)$ and therefore $R B=A B$. By substitution,

$$
\begin{equation*}
\frac{B S}{S A}=\frac{A B}{A C} . \tag{II}
\end{equation*}
$$

From (I) and (II), $\frac{B Q}{Q C}=\frac{B S}{S A}$. It follows that $\overline{S Q} \| \overline{A C}$. Thus, $S Q M A$ is a parallelogram (\#21a). However, since $A M=M Q$ (previously proved), $S Q M A$ is a rhombus.
(b) The area of $\triangle B M Q$ equals the area of $\triangle A M Q$ since they both share the same base $\overline{M Q}$, and their vertices lie on a line
parallel to base $\overline{M Q}$. Similarly, the area of $\triangle C S Q$ equals the area of $\triangle A S Q$, since both triangles share base $\overline{S Q}$, and A and C lie on $\overline{A C}$ which is parallel to $\overline{S Q}$. Therefore, by addition,

$$
\text { area of } \triangle B M Q+\text { area of } \triangle C S Q=\text { area of } A M Q S
$$

By subtracting the area of $S P M Q(\triangle S P Q+\triangle M P Q)$ from both of the above, we get,

$$
\text { area of } \triangle B P C=\text { area of } A S P M
$$

6-4 Two circles with centers A and B intersect at points M and N . Radii $\overline{\mathrm{AP}}$ and $\overline{\mathrm{BQ}}$ are parallel (on opposide sides of $\overleftarrow{\mathrm{AB}}$). If the common external tangents meet $\dot{\mathrm{A}} \overrightarrow{\mathrm{B}}$ at D , and $\overline{\mathrm{PQ}}$ meets $\overline{\mathrm{AB}}$ at C , prove that $\angle \mathrm{CND}$ is a right angle.
Draw $\overline{A E}$ and $\overline{B F}$, where E and F are the points of tangency of the common external tangent of circles A and B, respectively. Then draw $\overline{B N}$ and extend $\overline{A N}$ through N to K. (See Fig. S6-4.)

S6-4

$\triangle A P C \sim \triangle B Q C(\# 48)$ and $\frac{C A}{C B}=\frac{A P}{B Q}$. However, $A P=A N$ and $B Q=B N$.
Therefore, $\frac{C A}{C B}=\frac{A N}{B N}$ and, in $\triangle A N B, \overline{N C}$ bisects $\angle A N B$ (\#47). In $\triangle A D E, \overline{B F} \| \overline{A E}$ (\#9). Therefore, $\triangle D A E \sim \triangle D B F$ (\#49) and $\frac{D A}{D B}=\frac{A E}{B F}$. However $A E=A N$ and $B F=B N$. Therefore $\frac{D A}{D B}=\frac{A N}{B N}$ and, in $\triangle A N B$,
$\overline{N D}$ bisects the exterior angle at $N(\angle B N K)(\# 47)$.
Since $\overline{N C}$ and $\overline{N D}$ are the bisectors of a pair of supplementary adjacent angles, they are perpendicular, and thus $\angle C N D$ is a right angle.

6-5 In a triangle whose sides measure $5^{\prime \prime}, 6^{\prime \prime}$, and $7^{\prime \prime}$, point P is $2^{\prime \prime}$ from the $5^{\prime \prime}$ side and $3^{\prime \prime}$ from the $6^{\prime \prime}$ side. How far is P from the $7^{\prime \prime}$ side?

There are four cases to be considered here, depending upon the position of Point P which can be within any of the four angles formed at Vertex A. (See Figs. S6-5, a-d.) In each case the area of $\triangle A B C=6 \sqrt{6}$ (by Heron's Formula), and,
$A B=5$
$\mathrm{BC}=7$
$P D=3$
$A C=6$
$\mathrm{PF}=2$
$P E=x$.

CASE I: In Fig. S6-5a,

$$
\text { area } \triangle A B C=\text { area } \triangle A P C+\text { area } \triangle A P B+\text { area } \triangle B P C .
$$

$$
\begin{aligned}
(6 \sqrt{6}) & =\frac{1}{2}(3)(6)+\frac{1}{2}(2)(5)+\frac{1}{2}(7)(x) \\
2(6 \sqrt{6}) & =18+10+7 x \\
x & =\frac{12 \sqrt{ } 6-28}{7}
\end{aligned}
$$

case ii: In Fig. S6-5b,

$$
\text { area } \begin{aligned}
\triangle A B C & =\text { area } \triangle A P B+\text { area } \triangle B P C-\text { area } \triangle A P C . \\
6 \sqrt{6} & =\frac{1}{2}(2)(5)+\frac{1}{2}(x)(7)-\frac{1}{2}(3)(6) \\
12 \sqrt{6} & =10+7 x-18 \\
x & =\frac{12 \sqrt{ } 6+8}{7}
\end{aligned}
$$

Case iit: In Fig. S6-5c,

$$
\text { area } \triangle A B C=\text { area } \triangle B P C+\text { area } \triangle A P C-\text { area } \triangle A P B
$$

$$
\begin{aligned}
6 \sqrt{6} & =\frac{1}{2}(x)(7)+\frac{1}{2}(3)(6)-\frac{1}{2}(2)(5) \\
12 \sqrt{6} & =7 x+18-10 \\
x & =\frac{12 \sqrt{6}-8}{7}
\end{aligned}
$$

CASE Iv: In Fig. S6-5d,

$$
\text { area } \begin{aligned}
\triangle A B C & =\text { area } \triangle B P C-\text { area } \triangle A P C-\text { area } \triangle A P B . \\
6 \sqrt{6} & =\frac{1}{2}(x)(7)-\frac{1}{2}(3)(6)-\frac{1}{2}(2)(5) \\
12 \sqrt{6} & =7 x-18-10 \\
x & =\frac{12 \sqrt{6}+28}{7}
\end{aligned}
$$

6-6 Prove that if the measures of the interior bisectors of two angles of a triangle are equal, then the triangle is isosceles.
METHOD I (DIRECT): $\overline{A E}$ and $\overline{B D}$ are angle bisectors, and $A E=$ $B D$. Draw $\angle D B F \cong \angle A E B$ so that $\overline{B F} \cong \overline{B E}$; draw $\overline{D F}$. Also draw $\overline{F G} \perp \overline{A C}$, and $\overline{A H} \perp \overline{F H}$. (See Fig. S6-6a.) By hypothesis, $\overline{A E} \cong \overline{D B}, \overline{F B} \cong \overline{E B}$, and $\angle 8 \cong \angle 7$. Therefore $\triangle A E B \cong$ $\triangle D B F(\# 2), D F=A B$, and $m \angle 1=m \angle 4$.
$m \angle x=m \angle 2+m \angle 3$ (\#12)
$m \angle x=m \angle 1+m \angle 3$ (substitution)
$m \angle x=m \angle 4+m \angle 3$ (substitution)
$m \angle x=m \angle 7+m \angle 6$ (\#12)
$m \angle x=m \angle 7+m \angle 5$ (substitution)
$m \angle x=m \angle 8+m \angle 5$ (substitution)
Therefore, $m \angle 4+m \angle 3=m \angle 8+m \angle 5$ (transitivity).
Thus $m \angle z=m \angle y$.
Right $\triangle F D G \cong$ right $\triangle A B H$ (\#16), $D G=B H$, and $F G=A H$.
Right $\triangle A F G \cong$ right $\triangle F A H$ (\#17), and $A G=F H$.
Therefore, $G F H A$ is a parallelogram (\#21b).
$m \angle 9=m \angle 10$ (from $\triangle A B H$ and $\triangle F D G)$
$m \angle D A B=m \angle D F B$ (subtraction)
$m \angle D F B=m \angle E B A$ (from $\triangle D B F$ and $\triangle A E B$)
Therefore, $m \angle D A B=m \angle E B A$ (transitivity), and $\triangle A B C$ is isosceles.

METHOD II (INDIRECT): Assume $\triangle A B C$ is not isosceles. Let $m \angle A B C>m \angle A C B$. (See Fig. S6-6b.)
$\overline{B F} \cong \overline{C E}$ (hypothesis) $\overline{B C} \cong \overline{B C}$
$m \angle A B C>m \angle A C B$ (assumption) $C F>B E$
Through F, construct $\overline{G F}$ parallel to $\overline{E B}$.
Through E, construct $\overline{G E}$ parallel to $\overline{B F}$.
$B F G E$ is a parallelogram.
$\overline{B F} \cong \overline{E G}, \overline{E G} \cong \overline{C E}, \triangle G E C$ is isosceles.
$m \angle\left(g+g^{\prime}\right)=m \angle\left(c+c^{\prime}\right)$ but $m \angle g=m \angle b$
$m \angle\left(b+g^{\prime}\right)=m \angle\left(c+c^{\prime}\right)$ Therefore, $m \angle g^{\prime}<m \angle c^{\prime}$, since $m \angle b>m \angle c$.
In $\triangle G F C$, we have $C F<G F$. But $G F=B E$. Thus $C F<B E$.
The assumption of the inequality of $m \angle A B C$ and $m \angle A C B$ leads to two contradictory results, $C F>B E$ and $C F<B E$. Therefore $\triangle A B C$ is isosceles.

METHOD III (INDIRECT): In $\triangle A B C$, assume $m \angle B>m \angle C$. $\overline{B E}$ and $\overline{D C}$ are the bisectors of $\angle B$ and $\angle C$ respectively, and $B E=D C$. Draw $\overline{B H} \| \overline{D C}$ and $\overline{C H} \| \overline{D B}$; then draw $\overline{E H}$, as in Fig. S6-6c. $D C H B$ is a parallelogram (\#2la).
Therefore, $\overline{B H} \cong \overline{D C} \cong \overline{B E}$, making $\triangle B H E$ isosceles so that, by \#5, $m \angle B E H=m \angle B H E$.
From our assumption that $m \angle B>m \angle C$,
$m \angle C B E>m \angle B C D$ and $C E>D B$. Since $C H=D B$, $C E>C H$ which, by $\# 42$, leads to $m \angle C H E>m \angle C E H$.

In $\triangle C E H$, by adding (I) and (II), $m \angle B H C>m \angle B E C$.
Since $D C H B$ is a parallelogram, $m \angle B H C=m \angle B D C$.
Thus, by substitution, $m \angle B D C>m \angle B E C$.
In $\triangle D B I$ and $\triangle E C I, m \angle D I B=m \angle E I C$.
Since $m \angle B D C>m \angle B E C, m \angle D B I<m \angle E C I$.
By doubling this inequality we get $m \angle B<m \angle C$, thereby contradicting the assumption that $m \angle B>m \angle C$.

Since a similar argument, starting with the assumption that $m \angle B<m \angle C$, will also lead to a contradiction, we must conclude that $m \angle B=m \angle C$ and that $\triangle A B C$ is isosceles.

METHOD IV (INDIRECT): In $\triangle A B C$, the bisectors of angles $A B C$ and $A C B$ have equal measures (i.e. $B E=D C$). Assume that $m \angle A B C<m \angle A C B$; then $m \angle A B E<m \angle A C D$.
We then draw $\angle F C D$ congruent to $\angle A B E$. (See Fig. S6-6d.) Note that we may take F between B and A without loss of generality.

In $\triangle F B C, F B>F C$ (\#42). Choose a point G so that $\overline{B G} \cong$ $\overline{F C}$. Then draw $\overline{G H} \| \overline{F C}$. Therefore, $\angle B G H \cong \angle B F C$ (\#7) and $\triangle B G H \cong \triangle C F D(\# 3)$. It then follows that $B H=D C$.

Since $B H<B E$, this contradicts the hypothesis that the angle bisectors are equal. A similar argument will show that it is impossible to have $m \angle A C B<m \angle A B C$. It then follows that $m \angle A C B=m \angle A B C$ and that $\triangle A B C$ is isosceles.

6-7 In circle O , draw any chord $\overline{\mathrm{AB}}$, with midpoint M . Through M two other chords, $\overline{\mathrm{FE}}$ and $\overline{\mathrm{CD}}$, are drawn. $\overline{\mathrm{CE}}$ and $\overline{\mathrm{FD}}$ intersect $\overline{\mathrm{AB}}$ at Q and P , respectively. Prove that $\mathrm{MP}=\mathrm{MQ}$. This problem is often referred to as the butterfly problem.

METHOD I: With M the midpoint of $\overline{A B}$ and chords $\overline{F M E}$ and $\overline{C M D}$ drawn, we now draw $\overline{D H} \| \overline{A B}, \overline{M N} \perp \overline{D H}$, and lines $\overline{M H}$, $\overline{Q H}$, and $\overline{E H}$. (See Fig. S6-7a.) Since $\overline{M N} \perp \overline{D H}$ and $\overline{D H} \| \overrightarrow{A B}$, $\overline{M N} \perp \overline{A B}$ (\#10).
$\overline{M N}$, the perpendicular bisector of $\overline{A B}$, must pass through the center of the circle. Therefore $\overline{M N}$ is the perpendicular bisector of $\overline{D H}$, since a line through the center of the circle and perpendicular to a chord, bisects it.

$$
\text { Thus } M D=M H(\# 18), \text { and } \triangle M N D \cong \triangle M N H(\# 17) .
$$

$m \angle D M N=m \angle H M N$, so $m \angle x=m \angle y$ (they are the complements of equal angles). Since $\overline{A B} \| \overline{D H}, m \overparen{A D}=m \overparen{B H}$.
$m \angle x=\frac{1}{2}(m \overparen{A D}+m \overparen{C B})(\# 39)$
$m \angle x=\frac{1}{2}(m \overparen{B H}+m \overparen{C B})$ (substitution)
Therefore, $m \angle y=\frac{1}{2}(m \overparen{B H}+m \overparen{C B})$.
But $m \angle C E H=\frac{1}{2}(m \overparen{C A H})(\# 36)$. Thus, by addition,

$$
m \angle y+m \angle C E H=\frac{1}{2}(m \overparen{B H}+m \overparen{C B}+m \overparen{C A H})
$$

Since $m \overparen{B H}+m \overparen{C B}+m \overparen{C A H}=360, m \angle y+m \angle C E H=180$. It then follows that quadrilateral $M Q E H$ is inscriptible, that is, a circle may be circumscribed about it.
Imagine this circle drawn. $\angle w$ and $\angle z$ are measured by the same arc, $\overparen{M Q}(\# 36)$, and thus $m \angle w=m \angle z$.

Now consider our original circle $m \angle v=m \angle z$, since they are measured by the same arc, $\overparen{F C}(\# 36)$.
Therefore, by transitivity, $m \angle v=m \angle w$, and $\triangle M P D \cong$ $\triangle M Q H$ (A.S.A.). Thus, $M P=M Q$.
method Ii: Extend $\overline{E F}$ through F.
Draw $\overline{K P L} \| \overline{C E}$, as in Fig. S6-7b.
$m \angle P L C=m \angle E C L(\# 8)$,
therefore $\triangle P M L \sim \triangle Q M C$ (\#48), and $\frac{P L}{C Q}=\frac{M P}{M Q}$.
$m \angle K=m \angle E$ (\#8),
therefore $\triangle K M P \sim \triangle E M Q$ (\#48), and $\frac{K P}{Q E}=\frac{M P}{M Q}$.
By multiplication, $\quad \frac{(P L)(K P)}{(C Q)(Q E)}=\frac{(M P)^{2}}{(M Q)^{2}}$.

Since $m \angle D=m \angle E$ (\#36), and $m \angle K=m \angle E$ (\#8), $m \angle D=$ $m \angle K$.
Also $m \angle K P F=m \angle D P L$ (\#1). Therefore, $\triangle K F P \sim \triangle D L P$ (\#48), and $\frac{P L}{D P}=\frac{F P}{K P}$; and so

$$
\begin{equation*}
(P L)(K P)=(D P)(F P) \tag{II}
\end{equation*}
$$

In equation (I), $\frac{(M P)^{2}}{(M Q)^{2}}=\frac{(P L)(K P)}{(C Q)(Q E)}$; we substitute from equation (II) to get $\frac{(M P)^{2}}{(M Q)^{2}}=\frac{(D P)(F P)}{(C Q)(Q E)}$.

Since $(D P)(F P)=(A P)(P B)$ and $(C Q)(Q E)=(B Q)(Q A)(\# 52)$,

$$
\frac{(M P)^{2}}{(M Q)^{2}}=\frac{(A P)(P B)}{(B Q)(Q A)}=\frac{(M A-M P)(M A+M P)}{(M B-M Q)(M B+M Q)}=\frac{(M A)^{2}-(M P)^{2}}{(M B)^{2}-(M Q)^{2}} .
$$

Then $(M P)^{2}(M B)^{2}=(M Q)^{2}(M A)^{2}$.
But $M B=M A$. Therefore $(M P)^{2}=(M Q)^{2}$, or $M P=M Q$.

S6-7b

S6-7c

METHOD III: Draw a line through E parallel to $\overline{A B}$ meeting the circle at G, and draw $\overline{M N} \perp \overline{G E}$. Then draw $\overline{P G}, \overline{M G}$, and $\overline{D G}$, as in Fig. S6-7c.

$$
\begin{gather*}
m \angle G D P(\angle G D F)=m \angle G E F(\# 36) . \tag{I}\\
m \angle P M G=m \angle M G E(\# 8) . \tag{II}
\end{gather*}
$$

Since the perpendicular bisector of $\overline{A B}$ is also the perpendicular bisector of $\overline{G E}(\# 10, \# 30)$,
then $G M=M E(\# 18)$, and $m \angle G E F=m \angle M G E(\# 5)$.
From (I), (II), and (III), $m \angle G D P=m \angle P M G$.
Therefore, points P, M, D, and G are concyclic (\#36a).
Hence, $m \angle P G M=m \angle P D M$ (\#36 in the new circle).
However, $m \angle C E F=m \angle P D M(\angle F D M)$ (\#36).
From (V) and (VI), $m \angle P G M=m \angle Q E M(\angle C E F)$.
From (II), we know that $m \angle P M G=m \angle M G E$.

Thus, $m \angle Q M E=m \angle M E G(\# 8)$, and $m \angle M G E=m \angle M E G$ (\#5).
Therefore, $m \angle P M G=m \angle Q M E$ and $\quad \triangle P M G \cong \triangle Q M E$ (A.S.A.). It follows that $P M=Q M$.

METHOD Iv: A reflection in a line is defined as the replacement of each point by another point (its image), symmetric to the first point with respect to the line of reflection.

S6-7d

Let $\overline{D^{\prime} F^{\prime}}$ be the image of $\overline{D F}$ by reflection in the diameter through M. $\overline{D^{\prime} F^{\prime}}$ meets $\overline{A B}$ at P^{\prime}. (See Fig. S6-7d.)

$$
\begin{equation*}
m \angle F M A=\frac{1}{2}(m \overparen{F A}+m \overparen{B E})(\# 39) \tag{I}
\end{equation*}
$$

$m \angle F M A=m \angle F^{\prime} M B$ (reflection and $\overline{A B} \perp \overline{M O}$) $m \widehat{F^{\prime} B}=m \angle \overparen{F A}$ (reflection)
Therefore, by substitution in (I),

$$
\begin{equation*}
m \angle F^{\prime} M B=\frac{1}{2}\left(m \overparen{F^{\prime} B}+m \overparen{B E}\right)=\frac{1}{2} m \overparen{F^{\prime} E} \tag{II}
\end{equation*}
$$

However, $m \angle F^{\prime} C E=\frac{1}{2} m \overparen{F^{\prime} E}(\# 36)$.
Therefore, from (II) and (III), $m \angle F^{\prime} M B=m \angle F^{\prime} C E$.
Thus quadrilateral $F^{\prime} C M Q$ is cyclic (i.e. may be inscribed in a circle), since if one of two equal angles intercepting the same arc is inscribed in the circle, the other is also inscribed in the circle.

$$
\begin{array}{cc}
m \angle M F^{\prime} Q\left(m \angle M F^{\prime} D^{\prime}\right)=m \angle M C Q(\angle M C E)(\# 36) & \text { (IV) } \\
m \angle M C E=m \angle D F E(\# 36) & \text { (V) } \\
m \angle D F E=m \angle D^{\prime} F^{\prime} M \text { (reflection) } \\
m \angle D^{\prime} F^{\prime} M=m \angle P^{\prime} F^{\prime} M & \text { (VI) } \tag{VII}
\end{array}
$$

By transitivity from (IV) through (VII), $m \angle M F^{\prime} Q=$ $m \angle M F^{\prime} P^{\prime}$. Therefore P^{\prime}, the image of P, coincides with Q; and $M P=M Q$, since $\overline{M O}$ must be the perpendicular bisector of $\overline{P Q}$, as dictated by a reflection.
method v (projective geometry): In Fig. S6-7e, let K be the intersection of $\overleftrightarrow{D F}$ and $\overleftrightarrow{E C}$.
Let I be the intersection of $\overleftrightarrow{F C}$ and $\overleftrightarrow{D E}$.
Let N be the intersection of $\overleftrightarrow{A B}$ and $\overleftrightarrow{K I}$ (not shown).
$\overrightarrow{K I}$ is the polar of M with respect to the conic (circle, in this case). Therefore, M, A, B, N form a harmonic range.
Thus, $\frac{M B}{M A}=\frac{B N}{N A}$; and since $M B=M A, N$ is at infinity.
Hence $\overleftrightarrow{A B} \| \overrightarrow{K I}$. Now, $\overleftrightarrow{K E}, \overleftrightarrow{K M}, \overleftrightarrow{K D}, \overrightarrow{K I}$ is a harmonic pencil.
Therefore Q, M, P, N is a harmonic range, and $\frac{M Q}{M P}=\frac{Q N}{N P}$.
Since N is at infinity, $M Q=M P$.
Note that this method proves that the theorem is true for any conic.

6-8 $\triangle \mathrm{ABC}$ is isosceles, with $\mathrm{CA}=\mathrm{CB} . \mathrm{m} \angle \mathrm{ABD}=60, \mathrm{~m} \angle \mathrm{BAE}=$ 50 , and $\mathrm{m} \angle \mathrm{C}=20$. Find the measure of $\angle \mathrm{EDB}$.
METHOD I: In isosceles $\triangle A B C$, draw $\overline{D G} \| \overline{A B}$, and $\overline{A G}$ meeting $\overline{D B}$ at F. Then draw $\overline{E F}$. (See Fig. S6-8a.)
By hypothesis, $m \angle A B D=60$, and by theorem \#8, $m \angle A G D=$ $m \angle B A G=60$. Thus $m \angle A F B$ is also 60 , and $\triangle A F B$ is equilateral. $A B=F B$ (equilateral triangle), $A B=E B$, and $E B=F B$ (\#5). $\triangle E F B$ is therefore isosceles.

Since $\quad m \angle E B F=20, \quad m \angle B E F=m \angle B F E=80 . \quad$ As $m \angle D F G=60, m \angle G F E=40 . G E=E F$ (equal sides of isosceles triangle), and $D F=D G$ (sides of an equilateral triangle). Thus $D G E F$ is a kite, i.e., two isosceles triangles externally sharing a common base. $\overline{D E}$ bisects $\angle G D F$ (property of a kite), therefore $m \angle E D B=30$.

METHOD II: In isosceles $\triangle A B C, m \angle A C B=20, m \angle C A B=80$, $m \angle A B D=60$, and $m \angle E A B=50$.
Draw $\overline{B F}$ so that $m \angle A B F=20$; then draw $\overline{F E}$, Fig. S6-8b.
In $\triangle A B E, m \angle A E B=50$ (\#13);
therefore, $\triangle A B E$ is isosceles and $A B=E B(\# 5)$.
Similarly, $\triangle F A B$ is isosceles, since $m \angle A F B=m \angle F A B=80$.
Thus, $A B=F B$.
From (I) and (II), $E B=F B$. Since $m \angle F B E=60, \triangle F B E$ is equilateral and $E B=F B=F E$.
Now, in $\triangle D F B, m \angle F D B=40$ (\#13), and $m \angle F B D=$ $m \angle A B D-m \angle A B F=60-20=40$.
Thus, $\triangle D F B$ is isosceles, and $F D=F B$.
It then follows from (III) and (IV) that $F E=F D$,
making $\triangle F D E$ isosceles, and $m \angle F D E=m \angle F E D$ (\#S).
Since $m \angle A F B=80$ and $m \angle E F B=60$, then $m \angle A F E$, the exterior angle of isosceles $\triangle F D E$, equals 140 , by addition. It follows that $m \angle A D E=70$. Therefore, $m \angle E D B=$ $m \angle A D E-m \angle F D B=70-40=30$.

METHOD III: In isosceles $\triangle A B C, m \angle C A B=80, m \angle D B A=60$, $m \angle A C B=20$, and $m \angle E A B=50$.
Extend $\overline{B A}$ to G so that $A G=A C$.
Draw $\overline{D F} ; \overline{A B}$. (See Fig. S6-8c.)

In $\triangle E A B, m \angle A E B=50$; therefore $A B=E B(\# 5)$.
Since $m \angle C A B$, the exterior angle of $\triangle A G C$, is $80, m \angle C G A=$ $m \angle G C A=40$ (\#5). The angles of $\triangle B C G$ and $\triangle A B D$ measure 80,60 , and 40 respectively; therefore they are similar, and

$$
\frac{A D}{A B}=\frac{B G}{B C} .
$$

However, $A D=F B, A B=E B$, and $B C=A C=A G$.
By substitution, $\frac{F B}{E B}=\frac{B G}{A G}$. Applying a theorem on proportions, $\frac{F B-E B}{E B}=\frac{B G-A G}{A G}$; or $\frac{F E}{E B}=\frac{A B}{A G}$.
Since $\overrightarrow{D F} \| \overrightarrow{A B}$, in $\triangle A B C, \frac{D F}{D C}=\frac{A B}{A C}$.
Since $A G=A C, \frac{F E}{E B}=\frac{D F}{D C}$.
In $\triangle C D B, m \angle D C B=m \angle D B C=20$. Therefore $D C=D B$. It follows that $\frac{F E}{E B}=\frac{D F}{D B}$.
Consider $\triangle F D B$. It can now be established, as a result of the above proportion, that $\overline{D E}$ bisects $\angle F D B$.
Yet $m \angle F D B=m \angle A B D=60(\# 8)$.
Therefore, $m \angle E D B=30$.

METHOD IV: With B as center, and $\overline{B D}$ as radius, draw a circle meeting $\overleftrightarrow{B A}$ at F and $\overline{B C}$ at G, as in Fig. S6-8d.
$m \angle F A D=100, m \angle A D B=40$, and $m \angle A E B=50(\# 13)$.
Thus, $\triangle F B D$ is equilateral, since it is an isosceles triangle with a 60° angle.
$m \angle F=60$, and $m \angle F D A=20 . B D=C D$ (isosceles triangle) , $B D=D F$ (equilateral triangle), and so $C D=D F . B A=B E$ (isosceles triangle), $B F=B G$ (radii), and so $F A=G E$ (subtraction). $\triangle D B G$ is isosceles and $m \angle D G B=m \angle B D G=80$. $m \angle D G C=100$. Thus we have $\triangle D C G \cong \triangle F D A$ (S.A.A.), and $F A=D G$, since they are corresponding sides. Therefore $D G=G E$, and $m \angle G D E=m \angle G E D=50$.

But we have ascertained earlier that $m \angle B D G=80$.
Therefore, by subtraction, $m \angle E D B=30$.

METHOD v: Let $A B A_{3} A_{4} \ldots A_{18}$ be a regular 18 -gon with center C. (See Fig. S6-8e.) Draw ${\overline{A_{3} A}}_{15}$. By symmetry $\bar{A}_{3} A_{15}$ and $\overline{A A}_{7}$ intersect on $\overline{C B}$ at E. $m \angle E A B=50=\frac{1}{2} m \overparen{A_{7} B}$. Consider the circumcircle about the 18 -gon.

$$
\begin{aligned}
& m \angle A_{3} A_{15} A_{6}=\frac{1}{2}\left(m \overparen{A_{3} A_{6}}\right)=30(\# 36), \\
& \text { and } m \angle A_{15} C A_{18}=m \overparen{A_{15} A_{18}}=60(\# 35) .
\end{aligned}
$$

Therefore $m \angle A_{15} F C=90(\# 13)$.
However $C A_{15}=C A_{18}$; therefore $\triangle A_{15} C A_{18}$ is equilateral and $C F=F A_{18}$. Thus ${\overline{A_{3} A}}_{15}$ is the perpendicular bisector of $\overline{C A}_{18}$.

Since $C A_{18}=C B$, and $A_{18} A=A B, \overline{C A}$ is the perpendicular bisector of $\overline{A_{18} B}$ (\#18), and $D A_{18}=D B$ (\#18). As $m \angle C=$ $m \angle D B C=20, C D=D B$.

It then follows that $D A_{18}=C D$, and thus D must lie on the perpendicular bisector of $\overline{C A}_{18}$. In other words, ${\bar{A}{ }_{3} A_{15}}^{1}$ passes through D; and A_{15}, D, E, A_{3}, are collinear.

Once more, consider the circumcircle of the 18 -gon.
$m \angle A_{15} A_{3} B=\frac{1}{2}\left(m \overparen{A_{15} B}\right)=50(\# 36)$, while
$m \angle C B A_{3}=80$, and $m \angle D B C=20$.
Thus in $\triangle D B A_{3}, m \angle E D B=30(\# 13)$.
method vi (trigonometric solution i): In isosceles $\triangle A B C$, $m \angle C A B=80, m \angle D B A=60, m \angle A C B=20$ and $m \angle E A B=$ 50. Let $A C=a, E B=b, B D=c$. (See Fig. S6-8f.)

In $\triangle A E C$ the law of sines yields $\frac{C A}{C E}=\frac{\sin \angle C E A}{\sin \angle C A E}$ or $\frac{a}{a-b}=$ $\frac{\sin 130}{\sin 30}=\frac{\sin (180-130)}{\frac{1}{2}}=2 \sin 50=2 \cos 40$.
Since $m \angle A E B=50(\# 13), \triangle A B E$ is isosceles and $A B=A E$. In $\triangle A B D$ the law of sines yields $\frac{D B}{A B}=\frac{\sin \angle D A B}{\sin \angle A D B}$ or $\frac{c}{b}=\frac{\sin 80}{\sin 40}=$ $\frac{\sin 2(40)}{\sin 40}=\frac{2 \sin 40 \cos 40}{\sin 40}=2 \cos 40$.
Therefore, from (I) and (II), $\frac{a}{a-b}=\frac{c}{b}$ (transitivity).
$m \angle D B E=m \angle C=20$. Thus, $\triangle A E C \sim \triangle D E B$, (\#50) and $m \angle B D E=m \angle E A C=30$.

S6-8f

S6-8g

METHOD VII (TRIGONOMETRIC SOLUTION II): In isosceles $\triangle A B C$, $m \angle A B D=60, m \angle B A E=50$, and $m \angle C=20$.
Draw $\overrightarrow{A F} \| \overline{B C}$, take $A G=B E$, and extend $\overline{B G}$ to intersect $\overrightarrow{A F}$ at H. (See Fig. S6-8g.)
Since $m \angle B A E=50$, it follows that $m \angle A B G=50$.
Since $\overrightarrow{A F} \| \overline{B C}, m \angle C A F=m \angle C=20$; thus $m \angle B A F=100$ and $m \angle A H B=30$.
We know also that $m \angle A D B=40$. Since $m \angle A B D=60$, and $m \angle A B C=80, m \angle D B C=20$. Therefore $\angle G A H \cong \angle D B C$.
By applying the law of sines in $\triangle A D B, \frac{B D}{A B}=\frac{\sin \angle B A D}{\sin \angle A D B}$, or $B D=$ $A B\left(\frac{\sin 80}{\sin 40}\right)=\frac{(A B) \sin 2(40)}{\sin 40}=\frac{(A B)(2) \sin 40 \cos 40}{\sin 40}=2(A B) \cos 40$

Now consider $\triangle A B H$. Again, by the law of $\operatorname{sines} \frac{A H}{A B}=\frac{\sin \angle A B H}{\sin \angle A H B}$, or $A H=A B\left(\frac{\sin 50}{\sin 30}\right)=\frac{A B \cos 40}{\frac{1}{2}}=2 A B \cos 40$.
From (I) and (II), $B D=A H$ and $\triangle B D E \cong \triangle A H G$ (S.A.S) It thus follows that $m \angle B D E=m \angle G H A=30$.

6-9 Find the area of an equilateral triangle containing in its interior a point P , whose distances from the vertices of the triangle are 3, 4, and 5.

METHOD I: Let $B P=3, C P=4$, and $A P=5$. Rotate $\triangle A B C$ in its plane about point A through a counterclockwise angle of 60°. Thus, since the triangle is equilateral and $m \angle B A C=60$ (\#6), $\overline{A B}$ falls on $\overline{A C}, A P^{\prime}=5, C^{\prime} P^{\prime}=4$, and $C P^{\prime}=3$ (Fig. S6-9a). Since $\triangle A P B \cong \triangle A P^{\prime} C$ and $m \angle a=m \angle b, m \angle P A P^{\prime}=60$.

Draw $\overline{P P^{\prime}}$, forming isosceles $\triangle P A P^{\prime}$. Since $m \angle P A P^{\prime}=60$, $\triangle P A P^{\prime}$ is equilateral and $P P^{\prime}=5$. Since $P B=P^{\prime} C=3$, and $P C=4, \triangle P C P^{\prime}$ is a right triangle (\#55).

The area of $\triangle A P B+\triangle A P C$ equals the area of $\triangle A P^{\prime} C+$ $\triangle A P C$, or quadrilateral $A P C P^{\prime}$.

The area of quadrilateral $A P C P^{\prime}=$ the area of equilateral $\triangle A P P^{\prime}+$ the area of right $\triangle P C P^{\prime}$.
The area of equilateral $\triangle A P P^{\prime}=\frac{25 \sqrt{ } 3}{4}$ (Formula \#5e), and the area of right $\triangle P C P^{\prime}=\frac{1}{2}(3)(4)=6$ (Formula \#5d).
Thus the area of quadrilateral $A P C P^{\prime}=\frac{25 \sqrt{ } 3}{4}+6$.
We now find the area of $\triangle B P C$. Since $m \angle B C C^{\prime}=2(60)=$ 120 and $m \angle P C P^{\prime}=90, m \angle P C B+m \angle P^{\prime} C C^{\prime}=30$.
Since $m \angle P^{\prime} C C^{\prime}=m \angle P B C$, then $m \angle P B C+m \angle P C B=30$ (by substitution), and $m \angle B P C=150$.

The proof may be completed in two ways. In the first one, we find that the area of $\triangle B P C=\frac{1}{2}(3)(4) \sin 150^{\circ}=3$ (Formula \#5b), and the area of $\triangle A B C=$ area of (quadrilateral $A P C P^{\prime}+$ $\triangle B P C)=\quad \frac{25 \sqrt{ } 3}{4}+6+3=\frac{25 \sqrt{3}}{4}+9$.

Alternatively, we may apply the law of cosines to $\triangle B P C$. Therefore, $(B C)^{2}=3^{2}+4^{2}-2 \cdot 3 \cdot 4 \cos 150^{\circ}=25+12 \sqrt{3}$. Thus, the area of $\triangle A B C=\frac{1}{4}(B C)^{2} \sqrt{3}=\frac{1}{4} \cdot 25 \sqrt{3}+9$.

METHOD II: Rotate $\overline{A P}$ through 60° to position $\overline{A P^{\prime}}$; then draw $\overline{C P^{\prime}}$. This is equivalent to rotating $\triangle A B P$ into position $\triangle A C P^{\prime}$. In a similar manner, rotate $\triangle B C P$ into position $\triangle B A P^{\prime \prime \prime}$, and rotate $\triangle C A P$ into position $\triangle C B P^{\prime \prime}$. (See Fig. S6-9b.)
Consider hexagon $A P^{\prime} C P^{\prime \prime} B P^{\prime \prime \prime}$ as consisting of $\triangle A B C, \triangle A P^{\prime} C$, $\triangle B P^{\prime \prime} C$, and $\triangle A P^{\prime \prime \prime} B$. From the congruence relations,
area $\triangle A B C=$ area $\triangle A P^{\prime} C+$ area $\triangle B P^{\prime \prime} C+$ area $\triangle A P^{\prime \prime \prime} B$. Therefore area $\triangle A B C=\frac{1}{2}$ area of hexagon $A P^{\prime} C P^{\prime \prime} B P^{\prime \prime \prime}$.

Now consider the hexagon as consisting of three quadrilaterals, $P A P^{\prime} C, P C P^{\prime \prime} B$, and $P B P^{\prime \prime \prime} A$, each of which consists of a 3-4-5 right triangle and an equilateral triangle.
Therefore, using formula \#5d and \#5e, the area of the hexagon =

$$
\begin{aligned}
& 3\left(\frac{1}{2} \cdot 3 \cdot 4\right)+\frac{1}{4} \cdot 5^{2} \sqrt{3}+\frac{1}{4} \cdot 4^{2} \sqrt{3}+\frac{1}{4} \cdot 3^{2} \sqrt{3} \\
&=18+\frac{1}{2} \cdot 25 \sqrt{3}
\end{aligned}
$$

Therefore, the area of $\triangle A B C=9+\frac{1}{4} \cdot 25 \sqrt{3}$.

S6-10

6-10 Find the area of a square ABCD containing a point P such that $\mathrm{PA}=3, \mathrm{~PB}=7$, and $\mathrm{PD}=5$.
Rotate $\triangle D A P$ in its plane 90° about A, so that $\overline{A D}$ falls on $\overline{A B}$ (Fig. S6-10).
$\triangle A P D \cong \triangle A P^{\prime} B$ and $A P^{\prime}=3$ and $B P^{\prime}=5 . m \angle P A P^{\prime}=90$.
Thus, $\triangle P A P^{\prime}$ is an isosceles right triangle, and $P P^{\prime}=3 \sqrt{2}$.
The area of $\triangle P P^{\prime} B$ by Heron's Formula (Formula \#5c) is

$$
\left.\sqrt{\left(\frac{3 \sqrt{ } 2}{2}+12\right.}\right)\left(\frac{3 \sqrt{ } 2-2}{2}\right)\left(\frac{3 \sqrt{ } 2+2}{2}\right)\left(\frac{12-3 \sqrt{ } 2}{2}\right)=\frac{21}{2}
$$

Also, the area of $\triangle P P^{\prime} B=\frac{1}{2}(P B)\left(P P^{\prime}\right) \sin \angle B P P^{\prime}$ (Formula \#5b).
Therefore, $\frac{21}{2}=\frac{1}{2}(3 \sqrt{2})(7) \sin \angle B P P^{\prime}, \frac{1}{\sqrt{2}}=\sin \angle B P P^{\prime}$, and $m \angle B P P^{\prime}=45$.

In isosceles right $\triangle A P P^{\prime}, m \angle A P P^{\prime}=45$,
therefore $m \angle A P B=90$. By applying the Pythagorean Theorem to right $\triangle A P B$ we get $(A B)^{2}=58$.
Thus the area of square $A B C D$ is 58 (Formula \#4a).
Challenge 1 Find the measure of $\overline{\mathrm{PC}}$.

$$
\text { ANSWER; } \sqrt{65}
$$

Challenge 2 Express PC in terms of PA, PB, and PD .

$$
\text { ANSWER: }(P C)^{2}=(P D)^{2}+(P B)^{2}-(P A)^{2}
$$

6-11 If, on each side of a given triangle, an equilateral triangle is constructed externally, prove that the line segments formed by joining a vertex of the given triangle with the remote vertex of the equilateral triangle drawn on the side opposite it are congruent.

In $\triangle A D C, A D=A C$, and in $\triangle A F B, A B=A F$ (equilateral triangles). Also, $m \angle D A C=m \angle F A B$ (Fig. S1-11). $m \angle C A B=$ $m \angle C A B$, and therefore, $m \angle C A F=m \angle D A B$ (addition). By S.A.S., then, $\triangle C A F \cong \triangle D A B$, and thus, $D B=C F$.

Similarly, it can be proved that $\triangle C A E \cong \triangle C D B$, thus yielding $A E=D B$.
Therefore $A E=D B=C F$.
Challenge 1 Prove that these lines are concurrent.
Circles K and L meet at point O and A. (Fig. S6-11).
Since $m \overparen{A D C}=240$, and we know that $m \angle A O C=$ $\frac{1}{2}(m \overparen{A D C})(\# 36), m \angle A O C=120$. Similarly, $m \angle A O B=$ $\frac{1}{2}(m \overparen{A F B})=120$.
Therefore $m \angle C O B=120$, since a complete revolution $=360^{\circ}$.
Since $m C E B=240, \angle C O B$ is an inscribed angle and point O must lie on circle M. Therefore, we can see that the three circles are concurrent, intersecting at point O.

Now join point O with points A, B, C, D, E, and F. $m \angle D O A=m \angle A O F=m \angle F O B=60$, and therefore $\overleftrightarrow{D O B}$. Similarly, $\overleftrightarrow{C O F}$ and $\overrightarrow{A O E}$.
Thus it has been proved that $\overline{A E}, \overline{C F}$, and $\overline{D B}$ are concurrent, intersecting at point O (which is also the point of intersection of circles K, L, and M).
Challenge 2 Prove that the circumcenters of the three equilateral triangles determine another equilateral triangle.
Consider equilateral $\triangle D A C$.
Since $A K$ is ${ }_{3}^{2}$ of the altitude (or median) (\#29), we obtain the proportion $\quad A C: A K=\sqrt{3}: 1$.

Similarly, in equilateral $\triangle A F B, \quad A F: A L=\sqrt{3}: 1$. Therefore, $A C: A K=A F: A L$.
$m \angle K A C=m \angle L A F=30, \quad m \angle C A L=m \angle C A L$ (reflexivity), and $m \angle K A L=m \angle C A F$ (addition).
Therefore, $\triangle K A L \sim \triangle C A F(\# 50)$.
Thus, $C F: K L=C A: A K=\sqrt{3}: 1$.
Similarly, we may prove $D B: K M=\sqrt{3}: 1$, and $A E: M L=\sqrt{3}: 1$.

Therefore, $D B: K M=A E: M L=C F: K L$. But since $D B=A E=C F$, as proved in the solution of Problem 6-11, we obtain $K M=M L=K L$. Therefore, $\triangle K M L$ is equilateral.

S6.11

S6-12a

6-12 Prove that if the angles of a triangle are trisected, the intersections of the pairs of trisectors adjacent to the same side determine an equilateral triangle. (This theorem was first derived by F. Morley about 1900.)

METHOD I: We begin with the lower part of $\triangle A B C$, with base $\overline{A B}$ and angles $3 a, 3 b$, and $3 c$, as shown. Let $\overline{A P}, \overline{A R T}, \overline{B Q}$, and $\overline{B R S}$ be angle-trisectors. Point P is determined by making $m \angle A R P=60+b$ and point Q is determined by making $m \angle B R Q=60+a$. (See Fig. S6-12a.) $m \angle A R B=180-$ $b-a$ (\#13)
Therefore $m \angle P R Q=360-(180-b-a)-(60+b)-$ $(60+a)=60$.
$m \angle A P R=180-a-(60+b)(\# 13)$
$m \angle A P R=180-60-a-b=120-(a+b)$
However, since $3 a+3 b+3 c=180$, then $a+b+c=60$, and $a+b=60-c$.
Thus $m \angle A P R=120-(60-c)=60+c$.
Similarly, it can be shown that $m \angle B Q R=60+c$.
Now, drop perpendiculars from R to $\overline{A P}, \overline{B Q}$, and $\overline{A B}$, meeting these sides at points G, H, and J, respectively.
$R G=R J$, since any point on the bisector of an angle is equidistant from the rays of the angle.
Similarly, $R H=R J$. Therefore, $R G=R H$ (transitivity).
$\angle R G P$ and $\angle R H Q$ are right angles and are congruent.
From the previous discussion $m \angle A P R=m \angle R Q B$, since they are both equal to $60+c$.
Thus $\triangle G P R \cong \triangle H Q R$ (S.A.A.), and $R P=R Q$.
This makes $\triangle P R Q$ an equilateral triangle, since it is an isosceles triangle with a 60° vertex angle.
$m \angle A R P=60+b$ (it was so drawn at the start). $\angle S R A$ is an exterior angle of $\triangle A R B$ and its measure is equal to $a+b$. Therefore, by subtraction, we obtain $m \angle 3=60+b-$ $(a+b)=60-a$. Similarly, $m \angle 1=60-b$.

Through point P, draw line l, making $m \angle 4=m \angle 3$, and through point Q, draw line m making $m \angle 2=m \angle 1$. Since $m \angle A P R=60+c$; and $m \angle 4=60-a$, we now obtain, by subtraction, $m \angle 5=60+c-(60-a)=a+c$.

By subtracting the measure of one remote interior angle of a triangle from the measure of the exterior angle of the triangle, we obtain the measure of the other remote interior angle. Thus, the measure of the angle formed by lines k and $l=(a+c)-a=c$. Similarly, the measure of the angle formed by lines m and $n=(b+c)-b=c$, while the angle formed by the lines k and $n=180-3 a-3 b=3 c$.

If we can now show that lines k, l, m, and n are concurrent, then we have been working properly with $\triangle A B C$. (See Fig. S6-12b.) Since $\triangle Q T R$ and $\triangle R P Q$ are each isosceles, it can easily be proved that $\overline{P T}$ bisects $\angle Q T R$. Since P is the point of intersection of two of the angle bisectors of $\triangle k A T m$, we know that the bisector of $\angle k m$ (the angle formed by lines k and m) must travel through P, since the interior angle bisectors of a triangle are concurrent. Consider Fig. S6-12b. Since g is one of the trisectors of $\angle C, m \angle k g=c . g$ must also pass through P, since all the bisectors of $\triangle k A T m$ must pass through P.

It was previously shown that $\angle k l=c$. Therefore, l is parallel to g, and both pass through point P. Thus, l and g are actually the same line. This proves lines k, l, and m to be concurrent.
Similarly, in $\triangle n B S l$, the bisector of $\angle l n$ and m are parallel and pass through point Q.
Thus, n is concurrent with l and m. Since we have proved that lines k, l, m, and n concurrent, it follows that we have properly worked with $\triangle A B C$.

This proof is based upon that given in an article by H. D. Grossman, American Mathematical Monthly, 1943, p. 552.

METHOD II: Let $a=\frac{A}{3}, b=\frac{B}{3}$, and $c=\frac{C}{3}$. In Fig. S6-12c, trisectors of $\angle A$ and $\angle B$ of $\triangle A B C$ meet at R and F.

$$
\begin{align*}
& \text { Construct } m \angle A R P=60+b, \tag{I}\\
& \text { and } \quad m \angle B R Q=60+a, \tag{II}
\end{align*}
$$

where P and Q lie on $\overline{A F}$ and $\overline{B F}$, respectively.

$$
\begin{equation*}
m \angle A P R=180-(60+b)-a=60+c(\# 13) \tag{III}
\end{equation*}
$$

Similarly, $m \angle B Q R=180-(60+a)-b=60+c(\# 13)$.
Draw $\overline{H R} \perp \overline{A F}$ at H, and $\overline{J R} \perp \overline{B F}$ at J. Since R is the point of intersection of the interior angle bisectors of $\triangle A F B, R$ is the center of the inscribed circle, and $H R=J R$. From (III) and (IV), $m \angle A P R=m \angle B Q R$. Therefore, $\triangle P H R \cong \triangle Q J R$ (S.A.A.), and

$$
\begin{equation*}
P R=Q R \tag{V}
\end{equation*}
$$

$$
\begin{equation*}
m \angle A R B=180-(a+b)(\# 13) \tag{VI}
\end{equation*}
$$

From (I), (II), and (VI), $m \angle P R Q=360-m \angle A R P-$ $m \angle B R Q-m \angle A R B$,
or $m \angle P R Q=360-(60+b)-(60+a)-[180-(a+b)]=$ 60. Therefore, $\triangle P Q R$ is equilateral.

We must now show that $\overline{P C}$ and $\overline{Q C}$ are the trisectors of $\angle C$. Choose points D and E of sides $\overline{A C}$ and $\overline{B C}$ respectively, so that $A D=A R$ and $B E=B R$. It then follows that $\triangle D A P \cong \triangle R A P$ and $\triangle E B Q \cong \triangle R B Q$ (S.A.S.).

$$
\begin{equation*}
\text { Thus, } D P=P R=P Q=R Q=Q E \text {, } \tag{VIII}
\end{equation*}
$$

and $m \angle D P Q=360-m \angle D P A-m \angle A P R-m \angle R P Q$,
or $m \angle D P Q=360-(60+c)-(60+c)-60$ [from (III) and (VII)]. Therefore $m \angle D P Q=180-2 c$. (IX)
In a like fashion, we may find $m \angle E Q P=180-2 c$. (X)
Thus, $m \angle D P Q=m \angle E Q P$. It is easily proved that quadrilateral $D P Q E$ is an isosceles trapezoid and is thus inscriptible.

In the circle passing through D, P, Q, and E, from (VIII) we know that $m \overparen{D P}=m \overparen{P Q}=m \overparen{Q E}$. So from any point N on the circle, $m \angle P N Q=m \angle Q N E(\# 36)$.

Since from (IX), $m \angle D P Q=180-2 c, m \angle D N Q=2 c$ (\#37). Also, since, from (X), $m \angle E Q P=180-2 c, m \angle E N P=$ $2 c$ (\#37). Therefore, $m \angle P N Q=c$, as does $m \angle D N P$ and $m \angle E N Q$. Thus, from any point on the circle, line segments issued to points D and E form an angle with measure equal to $3 c$. C lies on the circle, and $\overline{P C}$ and $\overline{Q C}$ are the trisectors of $\angle C$. We have thus proven that the intersections of angle trisectors adjacent to the same side of a triangle determine an equilateral triangle.

6-13 Prove that, in any triangle, the centroid trisects the line segment joining the center of the circumcircle and the orthocenter (i.e. the point of intersection of the altitudes). This theorem was first published by Leonhard Euler in 1765.

Let M be the midpoint of $\overline{B C}$. (See Fig. S6-13.) G, the centroid, lies on $\overline{A M}$ so that $\quad \frac{A G}{G M}=\frac{2}{1}$ (\#29).
The center of the circumcircle, point O, lies on the perpendicular bisector of $\overline{B C}$ (\#44). (II)
Extend $\overline{O G}$ to point H so that $\frac{H G}{G O}=\frac{2}{1}$.
From (I) and (III), $\frac{A G}{G M}=\frac{H G}{G O}$.
Therefore, $\triangle A H G \sim \triangle M O G$ ($\# 50$), and $m \angle H A G=m \angle O M G$.
Thus, $\overline{A H} \| \overline{M O}$, and since $\overline{M O} \perp \overline{B C}$ and $\overleftrightarrow{A H} \perp \overline{B C}, \overline{A H}$ extended to $\overline{B C}$ is an altitude.

The same argument will hold if we use a side other than $\overline{B C}$. Each time the point H obtained will lie on an altitude, thus making it the orthocenter of $\triangle A B C$, because, by definition, the point of concurrence of the three altitudes of a triangle is the orthocenter.

Challenge 1 (Vector Geometry)

The result of this theorem leads to an interesting problem first published by James Joseph Sylvester (1814-1897). The problem is to find the resultant of the three vectors $\overrightarrow{\mathrm{OA}}$, $\overrightarrow{\mathrm{OB}}$, and $\overrightarrow{\mathrm{OC}}$, acting on the center of the circumcircle O of $\triangle \mathrm{ABC}$.
$\overrightarrow{O M}$ is one-half the resultant of vectors $\overrightarrow{O B}$ and $\overrightarrow{O C}$. Since $\triangle A H G \sim \triangle M O G$, then $\frac{A H}{O M}=\frac{A G}{G M}=\frac{2}{1}, \quad$ or $\overrightarrow{A H}=2(\overrightarrow{O M})$. Thus $\overrightarrow{A H}$ represents the whole resultant of vectors $\overrightarrow{O B}$ and $\overrightarrow{O C}$.
Since $\overrightarrow{O H}$ is the resultant of vectors $\overrightarrow{O A}$ and $\overrightarrow{A H}, \overrightarrow{O H}$ is the resultant of vectors $\overrightarrow{O A}, \overrightarrow{O B}$, and $\overrightarrow{O C}$.
COMMENT: It follows that $\overrightarrow{O G}=\frac{1}{3}(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C})$.

6-14 Prove that if a point is chosen on each side of a triangle, then the circles determined by each vertex and the points on the adjacent sides, pass through a common point (Figs. 6-14aand 6-14b). This theorem was first published by A. Miquel in 1838.

CASE i: Consider the problem when M is inside $\triangle A B C$, as shown in Fig. S6-14a. Points D, E, and F are any points on sides $\overline{A C}$, $\overline{B C}$, and $\overline{A B}$, respectively, of $\triangle A B C$. Let circles Q and R, determined by points F, B, E and D, C, E, respectively, meet at M. Draw $\overline{F M}, \overline{M E}$, and $\overline{M D}$. In cyclic quadrilateral $B F M E$, $m \angle F M E=180-m \angle B(\# 37)$. Similarly, in cyclic quadrilateral $C D M E, m \angle D M E=180-m \angle C$.
By addition, $m \angle F M E+m \angle D M E=360-(m \angle B+m \angle C)$.
Therefore, $m \angle F M D=m \angle B+m \angle C$.
However, in $\triangle A B C, m \angle B+m \angle C=180-m \angle A$.
Therefore, $m \angle F M D=180-m \angle A$ and quadrilateral $A F M D$ is cyclic. Thus, point M lies on all three circles.

CASE II: Fig. S6-14b illustrates the problem when M is outside $\triangle A B C$.
Again let circles Q and R meet at M. Since quadrilateral $B F M E$ is cyclic, $m \angle F M E=180-m \angle B$ (\#37).
Similarly, since quadrilateral $C D M E$ is cyclic, $m \angle D M E=$ $180-m \angle D C E$ (\#37).
By subtraction,

$$
\begin{gather*}
m \angle F M D=m \angle F M E-m \angle D M E=m \angle D C E-m \angle B . \tag{I}\\
\text { However, } m \angle D C E=m \angle B A C+m \angle B(\# 12) . \tag{II}
\end{gather*}
$$

By substituting (II) into (I),

$$
m \angle F M D=m \angle B A C=180-m \angle F A D .
$$

Therefore, quadrilateral $A D M F$ is also cyclic and point M lies on all three circles.

S6-15

6-15 Prove that the centers of the circles in Problem 6-14 determine a triangle similar to the original triangle.
Draw common chords $\overline{F M}, \overline{E M}$, and $\overline{D M} . \overline{P Q}$ meets circle Q at N and $\overline{R Q}$ meets circle Q at L. (See Fig. S6-15.) Since the line of centers of two circles is the perpendicular bisector of their common chord, $\overline{P Q}$ is the perpendicular bisector of $\overline{F M}$, and therefore $\overline{P Q}$ also bisects $\overparen{F M}$ (\#30), so that $m \overparen{F N}=m \overparen{N M}$. Similarly, $\overline{Q R}$ bisects $\overparen{E M}$ so that $m \overparen{M L}=m \overparen{L E}$.
Now $m \angle N Q L=(m \overparen{N M}+m \overparen{M L})=\frac{1}{2}(m \overparen{F E})(\# 35)$, and

$$
m \angle F B E=\frac{1}{2}(m \overparen{F E})(\# 36) .
$$

Therefore, $m \angle N Q L=m \angle F B E$.
In a similar fashion it may be proved that $m \angle Q P R=m \angle B A C$.
Thus, $\triangle P Q R \sim \triangle A B C$ (\#48).

7. Ptolemy and the Cyclic Quadrilateral

7-1 Prove that in a cylic quadrilateral the product of the diagonals is equal to the sum of the products of the pairs of opposite sides (Ptolemy's Theorem).

method i: In Fig. S7-1a, quadrilateral $A B C D$ is inscribed in circle O. A line is drawn through A to meet $\overleftrightarrow{C D}$ at P, so that

$$
\begin{equation*}
m \angle B A C=m \angle D A P . \tag{I}
\end{equation*}
$$

Since quadrilateral $A B C D$ is cyclic, $\angle A B C$ is supplementary to $\angle A D C$ (\#37). However, $\angle A D P$ is also supplementary to $\angle A D C$.

$$
\begin{gather*}
\text { Therefore, } m \angle A B C=m \angle A D P \text {. } \tag{II}\\
\text { Thus, } \triangle B A C \sim \triangle D A P(\# 48) \text {, } \tag{III}\\
\text { and } \frac{A B}{A D}=\frac{B C}{D P}, \text { or } D P=\frac{(A D)(B C)}{A B} . \tag{IV}
\end{gather*}
$$

From (I), $m \angle B A D=m \angle C A P$, and from (III), $\frac{A B}{A D}=\frac{A C}{A P}$.
Therefore, $\triangle A B D \sim \triangle A C P(\# 50)$, and $\frac{B D}{C P}=\frac{A B}{A C}$,

$$
\begin{gather*}
\text { or } C P=\frac{(A C)(B D)}{A B} . \tag{V}\\
C P=C D+D P . \tag{VI}
\end{gather*}
$$

Substituting (IV) and (V) into (VI),

$$
\frac{(A C)(B D)}{A B}=C D+\frac{(A D)(B C)}{A B} .
$$

Thus, $(A C)(B D)=(A B)(C D)+(A D)(B C)$.

METHOD II: In quadrilateral $A B C D$ (Fig. S7-1b), draw $\triangle D A P$ on side $\overline{A D}$ similar to $\triangle C A B$.

$$
\begin{gather*}
\text { Thus, } \frac{A B}{A P}=\frac{A C}{A D}=\frac{B C}{P D}, \tag{I}\\
\text { and }(A C)(P D)=(A D)(B C) . \tag{II}
\end{gather*}
$$

Since $m \angle B A C=m \angle P A D$, then $m \angle B A P=m \angle C A D$. Therefore, from (I), $\triangle B A P \sim \triangle C A D$ (\#50), and $\frac{A B}{A C}=\frac{B P}{C D}$,

$$
\begin{equation*}
\text { or }(A C)(B P)=(A B)(C D) \tag{III}
\end{equation*}
$$

Adding (II) and (III), we have

$$
\begin{equation*}
(A C)(B P+P D)=(A D)(B C)+(A B)(C D) \tag{IV}
\end{equation*}
$$

Now $B P+P D>B D(\# 41)$, unless P is on $\overline{B D}$.
However, P will be on $\overline{B D}$ if and only if $m \angle A D P=m \angle A D B$. But we already know that $m \angle A D P=m \angle A C B$ (similar triangles). And if $A B C D$ were cyclic, then $m \angle A D B$ would equal $m \angle A C B$ (\#36a), and $m \angle A D B$ would equal $m \angle A D P$. Therefore, we can state that if and only if $A B C D$ is cyclic, P lies on $\overline{B D}$. This tells us that $\quad B P+P D=B D$.
Substituting (V) into (IV), $(A C)(B D)=(A D)(B C)+(A B)(C D)$. Notice we have proved both Ptolemy's Theorem and its converse. For a statement of the converse alone and its proof, see Challenge 1.

Challenge 1 Prove that if the product of the diagonals of a quadrilateral equals the sum of the products of the pairs of opposite sides, then the quadrilateral is cyclic. This is the converse of Ptolemy's Theorem.

Assume quadrilateral $A B C D$ is not cyclic.
If $\overline{C D P}$, then $m \angle A D P \neq m \angle A B C$.
If C, D, and P are not collinear then it is possible to have $m \angle A D P=m \angle A B C$. However, then $C P<C D+D P$ (\#41) and from steps (IV) and (V), Method I, above.

$$
(A C)(B D)<(A B)(C D)+(A D)(B C)
$$

But this contradicts the given information that $(A C)(B D)=(A B)(C D)+(A D)(B C)$. Therefore, quadrilateral $A B C D$ is cyclic.

Challenge 2 To what familiar result does Ptolemy's Theorem lead when the cyclic quadrilateral is a rectangle?

By Ptolemy's Theorem applied to Fig. S7-1c

$$
(A C)(B D)=(A D)(B C)+(A B)(D C)
$$

However, since $A B C D$ is a rectangle,

$$
A C=B D, A D=B C, \text { and } A B=D C(\# 21 \mathrm{~g}) .
$$

Therefore, $(A C)^{2}=(A D)^{2}+(D C)^{2}$, which is the Pythagorean Theorem, as applied to any of the right triangles of the given rectangle.

Challenge 3 Find the diagonal d of the trapezoid with bases a and b , and equal legs c .

$$
\text { ANSWER: } d=\sqrt{a b+c^{2}}
$$

7-2 E is a point on side $\overline{\mathrm{AD}}$ of rectangle ABCD , so that $\mathrm{DE}=6$, while $\mathrm{DA}=8$, and $\mathrm{DC}=6$. If $\overline{\mathrm{CE}}$ extended meets the circumcircle of the rectangle at F , find the measure of chord $\overline{\mathrm{DF}}$.

Draw $\overline{A F}$ and diagonal $\overline{A C}$. (See Fig. S7-2.) Since $\angle B$ is a right angle, $\overline{A C}$ is a diameter (\#36).
Applying the Pythagorean Theorem to right $\triangle A B C$, we obtain $A C=10$.
Similarly, in isosceles right $\triangle C D E, C E=6 \sqrt{2}$ (\#55a), and in isosceles right $\triangle E F A, E F=F A=\sqrt{2}(\# 55 b)$. Now let us apply Ptolemy's Theorem to quadrilateral $A F D C$.

$$
(F C)(D A)=(D F)(A C)+(A F)(D C)
$$

Substituting, $(6 \sqrt{2}+\sqrt{2})(6+2)=D F(10)+(\sqrt{2})(6)$,

$$
56 \sqrt{2}=10(D F)+6 \sqrt{2}
$$

$$
5 \sqrt{2}=D F
$$

Challenge Find the measure of $\overline{\mathrm{FB}}$.

7-3 On side $\overline{\mathrm{AB}}$ of square ABCD , a right $\triangle \mathrm{ABF}$, with hypotenuse $\overline{\mathrm{AB}}$, is drawn externally to the square. If $\mathrm{AF}=6$ and $\mathrm{BF}=8$, find EF , where E is the point of intersection of the diagonals of the square.
In right $\triangle A F B, A F=6, B F=8$, and $A B=10$ (\#55). (See Fig. S7-3.)
In isosceles right $\triangle A E B, A E=B E=5 \sqrt{2}(\# 55 a)$.
Since $m \angle A F B=m \angle A E B=90$, quadrilateral $A F B E$ is cyclic (\#37).

Therefore, by Ptolemy's Theorem applied to quadrilateral $A F B E,(A F)(B E)+(A E)(B F)=(A B)(E F)$.
By substitution, $(6)(5 \sqrt{2})+(5 \sqrt{2})(8)=(10)(E F)$
and $E F=7 \sqrt{2}$.
Challenge Find EF when F is inside square ABCD .
ANSWER: $\sqrt{2}$

7-4 Point P on side $\overline{\mathrm{AB}}$ of right $\triangle \mathrm{ABC}$ is placed so that $\mathrm{BP}=\mathrm{PA}=2$. Point Q is on hypotenuse $\overline{\mathrm{AC}}$ so that $\overline{\mathrm{PQ}}$ is perpendicular to $\overline{\mathrm{AC}}$. If $\mathrm{CB}=3$, find the measure of $\overline{\mathrm{BQ}}$, using Ptolemy's Theorem.
Draw $\overline{P C}$. (See Fig. S7-4.)
In right $\triangle P B C, P C=\sqrt{13}$, and in right $\triangle A B C, A C=5(\# 55)$. Since $\triangle A Q P \sim \triangle A B C$ (\#48), then $\frac{P Q}{C B}=\frac{P A}{A C}$, and $\frac{P Q}{3}=\frac{2}{5}$, or $P Q=\frac{6}{5}$. Now in right $\triangle P Q C,(P Q)^{2}+(C Q)^{2}=(C P)^{2}$. Therefore $C Q=\frac{17}{5}$.
Since $m \angle C B P \cong m \angle C Q P \cong 90$, quadrilateral $B P Q C$ is cyclic (\#37), and thus we may apply Ptolemy's Theorem to it.

$$
(B Q)(C P)=(P Q)(B C)+(B P)(Q C)
$$

Substituting,

$$
(B Q)(\sqrt{13})=\left(\frac{6}{5}\right)(3)+(2)\left(\frac{17}{5}\right) .
$$

Thus, $B Q=\frac{4}{5} \sqrt{13}$.
Challenge 1 Find the area of quadrilateral CBPQ.
ANSWER: 5.04
Challenge 2 As P is translated from B to A along $\overline{\mathrm{BA}}$, find the range of values of BQ where $\overline{\mathrm{PQ}}$ remains perpendicular to $\overline{\mathrm{CA}}$.
ANSWER: minimum value, 2.4 ; maximum value, 4

7-5 If any circle passing through vertex A of parallelogram ABCD intersects sides $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AD}}$ at points P and R , respectively, and diagonal $\overline{\mathrm{AC}}$ at point Q , prove that $(\mathrm{AQ})(\mathrm{AC})=(\mathrm{AP})(\mathrm{AB})+$ (AR)(AD).
Draw $\overline{R Q}, \overline{Q P}$, and $\overline{R P}$, as in Fig. S7-5.
$m \angle 4=m \angle 2$ (\#36).
Similarly, $m \angle 1=m \angle 3$ (\#36).
Since $m \angle 5=m \angle 3$ (\#8), $m \angle 1=m \angle 5$.
Therefore, $\triangle R Q P \sim \triangle A B C$ (\#48), and since $\triangle A B C \cong \triangle C D A$, $\triangle R Q P \sim \triangle A B C \sim \triangle C D A$.

$$
\begin{equation*}
\text { Then } \frac{A C}{R P}=\frac{A B}{R Q}=\frac{A D}{P Q} \text {. } \tag{I}
\end{equation*}
$$

Now by Ptolemy's Theorem, in quadrilateral $R Q P A$

$$
\begin{equation*}
(A Q)(R P)=(R Q)(A P)+(P Q)(A R) \tag{II}
\end{equation*}
$$

By multiplying each of the three equal ratios in (I) by each member of (II),

$$
(A Q)(R P)\left(\frac{A C}{R P}\right)=(R Q)(A P)\left(\frac{A B}{R Q}\right)+(P Q)(A R)\left(\frac{A D}{P Q}\right)
$$

Thus, $(A Q)(A C)=(A P)(A B)+(A R)(A D)$.

7-6 Diagonals $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ of quadrilateral ABCD meet at E . If $\mathrm{AE}=2, \mathrm{BE}=5, \mathrm{CE}=10, \mathrm{DE}=4$, and $\mathrm{BC}=\frac{15}{2}$, find AB . In Fig. S7-6, since $\frac{B E}{A E}=\frac{C E}{D E}=\frac{5}{2}$,
$\triangle A E D \sim \triangle B E C$ (\#50). Therefore, $\frac{B E}{A E}=\frac{B C}{A D}$, or $\frac{5}{2}=\frac{\frac{15}{2}}{A D}$. Thus, $A D=3$.
Similarly, from (I), $\triangle A E B \sim \triangle D E C$ (\#50).
Therefore, $\frac{A E}{D E}=\frac{A B}{D C}$, or $\frac{1}{2}=\frac{A B}{D C}$. Thus, $D C=2(A B)$.
Also, from (II), $m \angle B A C=m \angle B D C$. Therefore, quadrilateral $A B C D$ is cyclic (\#36a).
Now, applying Ptolemy's Theorem to cyclic quadrilateral $A B C D$,

$$
(A B)(D C)+(A D)(B C)=(A C)(B D)
$$

Substituting, we find that $A B=\frac{1}{2} \sqrt{171}$.

Challenge Find the radius of the circumcircle of ABCD if the measure of the distance from $\overline{\mathrm{DC}}$ to the center O is $2 \frac{1}{2}$.
ANSWER: 7
7.7 If isosceles $\triangle \mathrm{ABC}(\mathrm{AB}=\mathrm{AC})$ is inscribed in a circle, and a point P is on $\overparen{\mathrm{BC}}$, prove that $\frac{\mathrm{PA}}{\mathrm{PB}+\mathrm{PC}}=\frac{\mathrm{AC}}{\mathrm{BC}}$, a constant for the given triangle.

Applying Ptolemy's Theorem in cyclic quadrilateral $A B P C$ (Fig. S7-7), $\quad(P A)(B C)=(P B)(A C)+(P C)(A B)$.
Since $A B=A C,(P A)(B C)=A C(P B+P C)$,
and $\frac{P A}{P B+P C}=\frac{A C}{B C}$.

7-8 If equilateral $\triangle \mathrm{ABC}$ is inscribed in a circle, and a point P is on $\overparen{\mathrm{BC}}$, prove that $\mathrm{PA}=\mathrm{PB}+\mathrm{PC}$.

Since quadrilateral $A B P C$ is cyclic (Fig. S7-8), we may apply
Ptolemy's Theorem. $(P A)(B C)=(P B)(A C)+(P C)(A B)$
However, since $\triangle A B C$ is equilateral, $B C=A C=A B$.
Therefore, from (1), $P A=P B+P C$.
An alternate solution can be obtained by using the results of Problem 7-7.

7-9 If square ABCD is inscribed in a circle, and a point P is on $\overparen{\mathrm{BC}}$, prove that $\frac{\mathrm{PA}+\mathrm{PC}}{\mathrm{PB}+\mathrm{PD}}=\frac{\mathrm{PD}}{\mathrm{PA}}$.

In Fig. S7-9, consider isosceles $\triangle A B D(A B=A D)$. Using the results of Problem 7-7, we have $\frac{P A}{P B+P D}=\frac{A D}{D B}$.
Similarly, in isosceles $\triangle A D C, \frac{P D}{P A+P C}=\frac{D C}{A C}$.
Since $A D=D C$ and $D B=A C, \frac{A D}{D B}=\frac{D C}{A C}$.
From (I), (II) and (III),

$$
\frac{P A}{P B+P D}=\frac{P D}{P A+P C}, \text { or } \frac{P A+P C}{P B+P D}=\frac{P D}{P A} .
$$

7-10 If regular pentagon ABCDE is inscribed in a circle, and point P is on BC , prove that $\mathrm{PA}+\mathrm{PD}=\mathrm{PB}+\mathrm{PC}+\mathrm{PE}$.

In quadrilateral $A B P C,(P A)(B C)=(B A)(P C)+(P B)(A C)$,
by Ptolemy's Theorem. (See Fig. S7-10.)
In quadrilateral $B P C D,(P D)(B C)=(C D)(P B)+(P C)(B D)$. (II) Since $B A=C D$ and $A C=B D$, by adding (I) and (II) we obtain

$$
\begin{equation*}
B C(P A+P D)=B A(P B+P C)+A C(P B+P C) \tag{III}
\end{equation*}
$$

However, since $\triangle B E C$ is isosceles, based upon Problem 7-7,

$$
\begin{equation*}
\frac{C E}{B C}=\frac{P E}{P B+P C}, \text { or } \frac{(P E)(B C)}{(P B+P C)}=C E=A C . \tag{IV}
\end{equation*}
$$

Substituting (IV) into (III),

$$
B C(P A+P D)=B A(P B+P C)+\frac{(P E)(B C)}{(P B+P C)}(P B+P C) .
$$

But $B C=B A$. Therefore $P A+P D=P B+P C+P E$.

7-11 If regular hexagon ABCDEF is inscribed in a circle, and point P is on $\overparen{\mathrm{BC}}$, prove that $\mathrm{PE}+\mathrm{PF}=\mathrm{PA}+\mathrm{PB}+\mathrm{PC}+\mathrm{PD}$.

Lines are drawn between points A, E, and C to make equilateral $\triangle A E C$ (Fig. S7-11). Using the results of Problem 7-8, we have

$$
\begin{equation*}
P E=P A+P C . \tag{I}
\end{equation*}
$$

In the same way, in equilateral $\triangle B F D, P F=P B+P D$.
Adding (I) and (II), $P E+P F=P A+P B+P C+P D$.
7-12 Equilateral $\triangle \mathrm{ADC}$ is drawn externally on side $\overline{\mathrm{AC}}$ of $\triangle \mathrm{ABC}$. Point P is taken on $\overline{\mathrm{BD}}$. Find $\mathrm{m} \angle \mathrm{APC}$ such that $\mathrm{BD}=\mathrm{PA}+$ $\mathrm{PB}+\mathrm{PC}$.

Point P must be the intersection of $\overline{B D}$ with the circumcircle of $\triangle A D C$. Then $m \angle A P C=120$ (\#36). (See Fig. S7-12.)
Since $A P C D$ is a cyclic quadrilateral, then by Ptolemy's Theorem, $(P D)(A C)=(P A)(C D)+(P C)(A D)$.
Since $\triangle A D C$ is equilateral, from (I), $P D=P A+P C$.
However, $B D=P B+P D$.
Therefore by substituting (II) into (III), $B D=P A+P B+P C$.

S7-12

7-13 A line drawn from vertex A of equilateral $\triangle \mathrm{ABC}$, meets $\overline{\mathrm{BC}}$ at D and the circumcircle at \mathbf{P}. Prove that $\frac{1}{\mathbf{P D}}=\frac{1}{\mathbf{P B}}+\frac{1}{\mathbf{P C}}$.

As shown in Fig. S7-13, $m \angle P A C=m \angle P B C$ (\#36). Since $\triangle A B C$ is equilateral, $m \angle B P A=\frac{1}{2}(m \overparen{A B})=60$, and $m \angle C P A=$ $\frac{1}{2}(m \overparen{A C})=60(\# 36)$. Therefore, $m \angle B P A=m \angle C P A$.
Thus, $\triangle A P C \sim \triangle B P D$, and $\frac{P A}{P B}=\frac{P C}{P D}$,

$$
\begin{equation*}
\text { or }(P A)(P D)=(P B)(P C) \tag{I}
\end{equation*}
$$

Now, $P A=P B+P C$ (see Solution 7-8).
Substituting (II) into (I),

$$
\begin{equation*}
(P B)(P C)=P D(P B+P C)=(P D)(P B)+(P D)(P C) \tag{III}
\end{equation*}
$$

Now, dividing each term of (III) by $(P B)(P D)(P C)$, we obtain

$$
\frac{1}{P D}=\frac{1}{P C}+\frac{1}{P B}
$$

Challenge 1 If $\mathrm{BP}=5$ and $\mathrm{PC}=20$, find AD .
ANSWER: 21
Challenge 2 If $m \overparen{\mathrm{BP}}: m \overparen{\mathrm{PC}}=1: 3$, find the radius of the circle in challenge I.
ANSWER: $10 \sqrt{2}$

7-14 Express in terms of the sides of a cylic quadrilateral the ratio of the diagonals.

On the circumcircle of quadrilateral $A B C D$, choose points P and Q so that $P A=D C$, and $Q D=A B$, as in Fig. S7-14.
Applying Ptolemy's Theorem to quadrilateral $A B C P$, $(A C)(P B)=(A B)(P C)+(B C)(P A)$.
Similarly, by applying Ptolemy's Theorem to quadrilateral $B C D Q, \quad(B D)(Q C)=(D C)(Q B)+(B C)(Q D)$.
Since $P A+A B=D C+Q D, m \overparen{P A B}=m \overparen{Q D C}$, and $P B=$ $Q C$.
Similarly, since $m \overparen{P B C}=m \overparen{D B A}, P C=A D$, and since $m \overparen{Q C B}=$ $m \overparen{A C D}, Q B=A D$.
Finally, dividing (I) by (II), and substituting for all terms containing Q and $P, \quad \frac{A C}{B D}=\frac{(A B)(A D)+(B C)(D C)}{(D C)(A D)+(B C)(A B)}$.

S7-14

7-15 A point P is chosen inside parallelogram ABCD such that $\angle \mathrm{APB}$ is supplementary to $\angle \mathrm{CPD}$.
Prove that $(\mathrm{AB})(\mathrm{AD})=(\mathrm{BP})(\mathrm{DP})+(\mathrm{AP})(\mathrm{CP})$. (Fig. S7-15)
On side $\overline{A B}$ of parallelogram $A B C D$, draw $\triangle A P^{\prime} B \cong \triangle D P C$, so that $D P=A P^{\prime}, C P=B P^{\prime}$.
Since $\angle A P B$ is supplementary to $\angle C P D$, and $m \angle B P^{\prime} A=$ $m \angle C P D, \angle A P B$ is supplementary to $\angle B P^{\prime} A$. Therefore, quadrilateral $B P^{\prime} A P$ is cyclic. (\#37).

Now, applying Ptolemy's Theorem to cyclic quadrilateral $B P^{\prime} A P,(A B)\left(P^{\prime} P\right)=(B P)\left(A P^{\prime}\right)+(A P)\left(B P^{\prime}\right)$.
From (I), $(A B)\left(P^{\prime} P\right)=(B P)(D P)+(A P)(C P)$.
Since $m \angle B A P^{\prime}=m \angle C D P$, and $\overline{C D} \| \overline{A B}$, (\#21a), $\overline{P D} \| \overline{P^{\prime} A}$.
Therefore $P D A P^{\prime}$ is a parallelogram (\#22), and $P^{\prime} P=A D(\# 21 \mathrm{~b})$. Thus, from (II), $(A B)(A D)=(B P)(D P)+(A P)(C P)$.

7-16 A triangle inscribed in a circle of radius 5, has two sides measuring 5 and 6 . Find the measure of the third side of the triangle.
method i: In Fig.S7-16a, we notice that there are two possibilities to consider in this problem. Both $\triangle A B C$, and $\triangle A B C^{\prime}$ are inscribed in circle O, with $A B=5$, and $A C=A C^{\prime}=6$. We are to find $B C$ and $B C^{\prime}$.
Draw diameter $\overline{A O D}$, which measures 10 , and draw $\overline{D C}, \overline{D B}$, and $\overline{D C^{\prime}} . m \angle A C^{\prime} D=m \angle A C D=m \angle A B D=90(\# 36)$.

Consider the case where $\angle A$ in $\triangle A B C$ is acute.
In right $\triangle A C D, D C=8$, and in right $\triangle A B D, B D=5 \sqrt{3}(\# 55)$.
By Ptolemy's Theorem applied to quadrilateral $A B C D$,

$$
(A C)(B D)=(A B)(D C)+(A D)(B C)
$$

$$
\text { or }(6)(5 \sqrt{3})=(5)(8)+(10)(B C), \text { and } B C=3 \sqrt{3}-4
$$

Now consider the case where $\angle A$ is obtuse, as in $\triangle A B C^{\prime}$. In right $\triangle A C^{\prime} D, D C^{\prime}=8$ (\#55).
By Ptolemy's Theorem applied to quadrilateral $A B D C^{\prime}$,

$$
\begin{gathered}
\left(A C^{\prime}\right)(B D)+(A B)\left(D C^{\prime}\right)=(A D)\left(B C^{\prime}\right) \\
(6)(5 \sqrt{3})+(5)(8)=(10)\left(B C^{\prime}\right), \text { and } B C^{\prime}=3 \sqrt{3}+4
\end{gathered}
$$

method in: In Figs. S7-16b and S7-16c, draw radii $\overline{O A}$ and $\overline{O B}$.
Also, draw a line from A perpendicular to $\overline{C B}\left(\overline{C^{\prime} B}\right)$ at D.
Since $A B=A O=B O=5, m \angle A O B=60(\# 6)$, so $m \overparen{A B}=60$ (\#35). Therefore, $m \angle A C B\left(\angle A C^{\prime} B\right)=30(\# 36)$.
In right $\triangle A D C$, (right $\left.\triangle A D C^{\prime}\right)$, since $A C\left(A C^{\prime}\right)=6$, $C D\left(C^{\prime} D\right)=3 \sqrt{3}$, and $A D=3(\# 55 \mathrm{c})$.
In right $\triangle A D B, B D=4$ (\#55).
Since $B C=C D-B D$, then $B C=3 \sqrt{3}-4$ (in Fig. S7-16b). In Fig. S7-16c, since $B C^{\prime}=C^{\prime} D+B D$, then $B C^{\prime}=3 \sqrt{3}+4$.

Challenge Generalize the result of this problem for any triangle. ANSWER: $a=\frac{b \sqrt{4} R^{2}-\overline{c^{2}} \pm c \sqrt{ } 4 R^{2}-b^{2}}{2 R}$, where R is the radius of the circumcircle, and the sides b and c are known.

8. Menelaus and Ceva: Collinearity and Concurrency

8-1 Points P, Q, and R are taken on sides $\overline{\mathrm{AC}}, \overline{\mathrm{AB}}$, and $\overline{\mathrm{BC}}$ (extended if necessary) of $\triangle \mathrm{ABC}$. Prove that if these points are collinear, then

$$
\frac{\mathrm{AQ}}{\mathrm{QB}} \cdot \frac{\mathrm{BR}}{\mathrm{RC}} \cdot \frac{\mathrm{CP}}{\mathrm{PA}}=-1 .
$$

This theorem, together with its converse, which is given in the Challenge that follows, constitutes the classic theorem known as Menelaus' Theorem.
method i: In Fig. S8-1a and Fig. S8-1b, points P, Q, and R are collinear. Draw a line through C, parallel to $\overline{A B}$, meeting line segment $\overline{P Q R}$ at D.
$\triangle D C R \underset{(\underset{Q B)(R C)}{\sim}}{\triangle Q B R(\# 49)}$, therefore $\frac{D C}{Q B}=\frac{R C}{B R}$, or
$D C=\frac{(Q B)(R C)}{B R}$.
$\triangle P D C \sim \triangle P Q A$ (\#49 or \#48), therefore $\frac{D C}{A Q}=\frac{C P}{P A}$, or $D C=\frac{(A Q)(C P)}{P A}$.
From (I) and (II), $\frac{(Q B)(R C)}{B R}=\frac{(A Q)(C P)}{P A}$,
and $(Q B)(R C)(P A)=(A Q)(C P)(B R)$, or $\left|\frac{A Q}{Q B} \cdot \frac{B R}{R C} \cdot \frac{C P}{P A}\right|=1$.

S8-1

Taking direction into account in Fig. S8-1a, $\frac{A Q}{Q B}, \frac{B R}{R C}$, and $\frac{C P}{P A}$ are each negative ratios, and in Fig. S8-1b $\frac{B R}{R C}$ is a negative ratio, while $\frac{A Q}{Q B}$ and $\frac{C P}{P A}$ are positive ratios.
Therefore, $\frac{A Q}{Q B} \cdot \frac{B R}{R C} \cdot \frac{C P}{P A}=-1$, since in each case there is an odd number of negative ratios.

S8-1d

METHOD II: In Fig. S8-1c and Fig. S8-1d, $\overline{P Q R}$ is a straight line. Draw $\overline{B M} \perp \overleftrightarrow{P R}, \overline{A N} \perp \overleftrightarrow{P R}$, and $\overline{C L} \perp \overleftrightarrow{P R}$.
Since $\triangle B M Q \sim \triangle A N Q(\# 48), \frac{A Q}{Q B}=\frac{A N}{B M}$.
Also $\triangle L C P \sim \triangle N A P$ (\#48), and $\frac{C P}{P A}=\frac{L C}{A N}$.
$\triangle M R B \sim \triangle L R C$ (\#49), and $\frac{B R}{R C}=\frac{B M}{L C}$.
By multiplying (I), (II), and (III), we get, numerically,

$$
\frac{A Q}{Q B} \cdot \frac{C P}{P A} \cdot \frac{B R}{R C}=\frac{A N}{B M} \cdot \frac{L C}{A N} \cdot \frac{B M}{L C}=1 .
$$

In Fig. S8-1c, $\frac{A Q}{Q B}$ is negative, $\frac{C P}{P A}$ is negative, and $\frac{B R}{R C}$ is negative.
Therefore, $\frac{A Q}{Q B} \cdot \frac{C P}{P A} \cdot \frac{B R}{R C}=-1$.
In Fig. S8-1d, $\frac{A Q}{Q B}$ is positive, $\frac{C P}{P A}$ is positive, and $\frac{B R}{R C}$ is negative.
Therefore, $\frac{A Q}{Q B} \cdot \frac{C P}{P A} \cdot \frac{B R}{R C}=-1$.
trigonometric form of menelaus’ theorem: In Figs. S8-1a and S8-1b, $\triangle A B C$ is cut by a transversal at points Q, P, and R. $\frac{A Q}{B Q}=\frac{\text { area } \triangle Q C A}{\text { area } \triangle Q C B}$, since they share the same altitude.
By Formula \#5b, $\frac{\text { area } \triangle Q C A}{\text { area } \triangle Q C B}=\frac{(Q C)(A C) \sin \angle Q C A}{(Q C)(B C) \sin \angle Q C B}$.

$$
\text { Therefore, } \begin{align*}
\frac{A Q}{B Q} & =\frac{A C \sin \angle Q C A}{B C \sin \angle Q C B} \tag{I}\\
\text { Similarly, } \frac{B R}{C R} & =\frac{A B \sin \angle B A R}{A C \sin \angle C A R} \tag{II}\\
\text { and } \frac{P C}{P A} & =\frac{B C \sin \angle P B C}{A B \sin \angle P B A} \tag{III}
\end{align*}
$$

Multiplying (I), (II), and (III),

$$
\frac{A Q}{B Q} \cdot \frac{B R}{C R} \cdot \frac{P C}{P A}=\frac{(A C)(A B)(B C)(\sin \angle Q C A)(\sin \angle B A R)(\sin \angle P B C)}{(B C)(A C)(A B)(\sin \angle Q C B)(\sin \angle C A R)(\sin \angle P B A)}
$$

However, $\frac{A Q}{B Q} \cdot \frac{B R}{C R} \cdot \frac{P C}{P A}=-1$ (Menelaus' Theorem).
Thus, $\frac{(\sin \angle Q C A)(\sin \angle B A R)(\sin \angle P B C)}{(\sin \angle Q C B)(\sin \angle C A R)(\sin \angle P B A)}=-1$.
Challenge In $\triangle \mathrm{ABC}$ points P, Q, and R are situated respectively on sides $\overline{\mathrm{AC}}, \overline{\mathrm{AB}}$, and $\overline{\mathrm{BC}}$ (extended when necessary). Prove that if

$$
\frac{\mathrm{AQ}}{\mathrm{QB}} \cdot \frac{\mathrm{BR}}{\mathrm{RC}} \cdot \frac{\mathrm{CP}}{\mathrm{PA}}=-1
$$

then P, Q, and R are collinear. This is part of Menelaus' Theorem.

In Fig. S8-1a and Fig. S8-1b, let the line through R and Q meet $\overline{A C}$ at P^{\prime}.
Then, by the theorem just proved in Problem 8-1,

$$
\frac{A Q}{Q B} \cdot \frac{B R}{R C} \cdot \frac{C P^{\prime}}{P^{\prime} A}=-1
$$

However, from our hypothesis,

$$
\frac{A Q}{Q B} \cdot \frac{B R}{R C} \cdot \frac{C P}{P A}=-1
$$

Therefore, $\frac{C P^{\prime}}{P^{\prime} A}=\frac{C P}{P A}$, and P and P^{\prime} must coincide.

8-2 Prove that three lines drawn from the vertices A, B, and C of $\triangle \mathrm{ABC}$ meeting the opposite sides in points L, M, and N , respectively, are concurrent if and only if

$$
\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=1
$$

This is known as Ceva's Theorem.
method i: In Fig. S8-2a and Fig. S8-2b, $\overline{A L}, \overline{B M}$, and $\overline{C N}$ meet in point P.
$\frac{B L}{L C}=\frac{\text { area } \triangle A B L}{\text { area } \triangle A C L}$, (share same altitude)
Similarly, $\frac{B L}{L C}=\frac{\text { area } \triangle P B L}{\text { area } \triangle P C L}$.
Therefore from (1) and (II), $\frac{\text { area } \triangle A B L}{\text { area } \triangle A C L}=\frac{\text { area } \triangle P B L}{\text { area } \triangle P C L}$.
Thus, $\frac{B L}{L C}=\frac{\text { area } \triangle A B L-\text { area } \triangle P B L}{\text { area } \triangle A C L-\text { area } \triangle P C L}=\frac{\text { area } \triangle A B P}{\text { area } \triangle A C P}$.
Similarly, $\frac{C M}{M A}=\frac{\text { area } \triangle B M C}{\text { area } \triangle B M A}=\frac{\text { area } \triangle P M C}{\text { area } \triangle P M A}$.
Therefore, $\frac{C M}{M A}=\frac{\text { area } \triangle B M C-\text { area } \triangle P M C}{\text { area } \triangle B M A-\text { area } \triangle P M A}=\frac{\text { area } \triangle B C P}{\text { area } \triangle \bar{A} \bar{B} \bar{P}}$.
Also, $\frac{A N}{N B}=\frac{\text { area } \triangle A C N}{\text { area } \triangle B C N}=\frac{\text { area } \triangle A P N}{\text { area } \triangle B P N}$.
Therefore, $\frac{A N}{N B}=\frac{\text { area } \triangle A C N}{\text { area } \triangle B C N \text { - area } \triangle A P N}=\frac{\text { area } \triangle A C P}{\text { area } \triangle B C P}$.
By multiplying (III), (IV), and (V) we get

$$
\begin{equation*}
\frac{B L}{L C} \cdot \frac{C M}{M \bar{A}} \cdot \frac{A N}{N B}=1 \tag{VI}
\end{equation*}
$$

Since in Fig. S8-2a, all the ratios are positive, (VI) is positive. In Fig. S8-2b, $\frac{B L}{L C}$ and $\frac{A N}{N B}$ are negative, while $\frac{C M}{M A}$ is positive. Therefore, again, (VI) is positive.

Since Ceva's Theorem is an equivalence, it is necessary to prove the converse of the implication we have just proved. Let $\overline{B M}$ and $\overline{A L}$ meet at P. Join $\overline{P C}$ and extend it to meet $\overline{A B}$ at N^{\prime}. Since $\overline{A L}, \overline{B M}$, and $\overline{C N^{\prime}}$ are concurrent by the part of Ceva's Theorem we have already proved,

$$
\frac{B L}{L C} \cdot \frac{C M}{M} \cdot \frac{A N^{\prime}}{N^{\prime} B}=1
$$

However, our hypothesis is $\frac{B L}{L C} \cdot \frac{C M}{M A} \cdot \frac{A N}{N B}=1$.
Therefore, $\frac{A N^{\prime}}{N^{\prime} B}=\frac{A N}{N B}$, so that N and N^{\prime} must coincide.

метноd ii: In Fig. S8-2c and Fig. S8-2d, draw a line through A, parallel to $\overline{B C}$ meeting $\overleftrightarrow{C P}$ at S and $\overleftrightarrow{B P}$ at R.
$\triangle A M R \sim \triangle C M B$ (\#48), therefore $\frac{A M}{M C}=\frac{A R}{C B}$.
$\triangle B N C \sim \triangle A N S$ (\#48), therefore $\frac{B N}{N A}=\frac{C B}{S A}$.
$\triangle C L P \sim \triangle S A P(\# 48), \quad$ therefore $\frac{C L}{S A}=\frac{L P}{A P}$.
$\triangle B L P \sim \triangle R A P(\# 48), \quad$ therefore $\frac{B L}{R A}=\frac{L P}{A P}$.
From (III) and (IV), $\frac{C L}{S A}=\frac{B L}{R A}$, or $\frac{C L}{B L}=\frac{S A}{R A}$.
By multiplying (I), (II), and (V),

$$
\frac{A M}{M C} \cdot \frac{B N}{N A} \cdot \frac{C L}{B L}=\frac{A R}{C B} \cdot \frac{C B}{S A} \cdot \frac{S A}{R A}=1, \quad \text { or } \frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=1 .
$$

For a discussion about the sign of the resulting product, see Method I. The converse is proved as in Method I.

S8-2C

method iII: In Fig. S8-2e and Fig. S8-2f, draw a line through A and a line through C parallel to $\overrightarrow{B P}$ meeting $\overleftrightarrow{C P}$ and $\overleftrightarrow{A P}$ at S and R, respectively.

$$
\begin{equation*}
\triangle A S N \sim \triangle B P N\left(\# 48 \text { or \#49), and } \frac{A N}{N B}=\frac{A S}{B P}\right. \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\triangle B P L \sim \triangle C R L \text { (\#48 or 49), and } \frac{B L}{L C}=\frac{B P}{C R} . \tag{II}
\end{equation*}
$$

$\triangle P A M \sim \triangle R A C, \frac{C A}{M A}=\frac{R C}{P M}(\# 49)$, and $C A=\frac{(R C)(M A)}{P M}$.
$\triangle P C M \sim \triangle S C A, \frac{C M}{C A}=\frac{P M}{A S}(\# 49)$, and $C A=\frac{(A S)(C M)}{P M}$.
From (III) and (IV), $\frac{(R C)(M A)}{P M}=\frac{(A S)(C M)}{(P M)}$, or $\frac{C M}{M A}=\frac{R C}{A S}$.
By multiplying (I), (II), and (V),

$$
\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=\frac{A S}{B P} \cdot \frac{B P}{C R} \cdot \frac{R C}{A S}=1 .
$$

This proves that if the lines are concurrent, the ratio holds. The converse is proved as in Method 1 .

S8-2f

method iv: In Figs. S8-2a and S8-2b, $\overline{B P M}$ is a transversal of $\triangle A C L$.
Applying Menelaus' Theorem, $\frac{A P}{P L} \cdot \frac{L B}{B C} \cdot \frac{C M}{M A}=-1$.
Similarly in $\triangle A L B, \overline{C P N}$ may be considered a transversal.
Thus, $\frac{A N}{N B} \cdot \frac{B C}{C L} \cdot \frac{L P}{P A}=-1$.
By multiplication, $\frac{A N}{N B} \cdot \frac{B L}{C L} \cdot \frac{C M}{M A}=1$.
The converse is proved as in Method I.
trigonometric form of ceva's theorem: As shown in Fig. S8-2a and Fig. S8-2b, $\triangle A B C$ has concurrent lines $\overline{A L}, \overline{B M}$, and $\overline{C N}$. $\frac{B L}{L C}=\frac{\text { area } \triangle B A L}{\text { area } \triangle L A C}$ (Problem 8-2, Method I)
$\frac{\frac{1}{2}(A L)(A B) \sin \angle B A L}{\frac{1}{2}(A L)(A C) \sin \angle L A C}=\frac{A B \sin \angle B A L}{A C \sin \angle L A C}$ (Formula \#5b)
Similarly, $\frac{C M}{M A}=\frac{C B \sin \angle C B M}{A B \sin \angle A B M}$ and $\frac{A N}{N B}=\frac{A C \sin \angle A C N}{B C \sin \angle B C N}$.
By multiplying, $\frac{B L}{L C} \cdot \frac{C M}{M A} \cdot \frac{A N}{N B}=$
$\frac{(A B)(B C)(A C)(\sin \angle B A L)(\sin \angle C B M)(\sin \angle A C N)}{(A C)(A B)(B C)(\sin \angle L A C)(\sin \angle A B M)(\sin \angle B C N)}$.
However, since by Ceva's Theorem $\frac{B L}{L C} \cdot \frac{C M}{M A} \cdot \frac{A N}{N B}=1$,
$\frac{(\sin \angle B A L)(\sin \angle C B M)(\sin \angle A C N)}{(\sin \angle L A C)(\sin \angle A B M)(\sin \angle B C N)}=1$.
The converse is also true, that if
$\frac{(\sin \angle B A L)(\sin \angle C B M)(\sin \angle A C N)}{(\sin \angle L A C)(\sin \angle A B M)(\sin \angle B C N)}=1$, then lines $\overline{A L}, \overline{B M}$, and $\overline{C N}$ are concurrent.

8-3 Prove that the medians of any triangle are concurrent.
In $\triangle A B C, \overline{A L}, \overline{B M}$, and $\overline{C N}$ are medians, as in Fig. S8-3.
Therefore, $A N=N B, B L=L C$, and $C M=M A$.
So $(A N)(B L)(M C)=(N B)(L C)(M A)$,

$$
\text { or } \frac{(A N)(B L)(C M)}{(N B)(L C)(M A)}=1
$$

Thus, by Ceva's Theorem, $\overline{A L}, \overline{B M}$, and $\overline{C N}$ are concurrent.

8-4 Prove that the altitudes of any triangle are concurrent.
In $\triangle A B C, \overline{A L}, \overline{B M}$, and $\overline{C N}$ are altitudes. (See Fig. S8-4a and Fig. S8-4b.)

$$
\begin{align*}
& \triangle A N C \sim \triangle A M B(\# 48), \text { and } \frac{A N}{M A}=\frac{A C}{A B} \tag{I}\\
& \triangle B L A \sim \triangle B N C(\# 48), \text { and } \frac{B L}{N B}=\frac{A B}{B C} \tag{II}\\
& \triangle C M B \sim \triangle C L A(\# 48), \text { and } \frac{C M}{L C}=\frac{B C}{A C} \tag{III}
\end{align*}
$$

By multiplying (I), (II), and (III),

$$
\frac{A N}{M A} \cdot \frac{B L}{N B} \cdot \frac{C M}{L C}=\frac{A C}{A B} \cdot \frac{A B}{B C} \cdot \frac{B C}{A C}=1 .
$$

Thus, by Ceva's Theorem, altitudes $\overline{A L}, \overline{B M}$, and $\overline{C N}$ are concurrent.

8-5 Prove that the interior angle bisectors of a triangle are concurrent.

In $\triangle A B C, \overline{A L}, \overline{B M}$, and $\overline{C N}$ are interior angle bisectors, as in Fig. S8-5.
Therefore, $\frac{A N}{N B}=\frac{A C}{B C}$ (\#47), $\frac{B L}{L C}=\frac{A B}{A C}(\# 47)$, and $\frac{C M}{M A}=\frac{B C}{A B}(\# 47)$.
Thus, by multiplying,

$$
\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=\frac{A C}{B C} \cdot \frac{A B}{A C} \cdot \frac{B C}{A B}=1
$$

Then, by Ceva's Theorem, $\overline{A L}, \overline{B M}$, and $\overline{C N}$ are concurrent.

S8-5

8-6 Prove that the interior angle bisectors of two angles of a nonisosceles triangle and the exterior angle bisector of the third angle meet the opposite sides in three collinear points.
In $\triangle A B C, \overline{B M}$ and $\overline{C N}$ are the interior angle bisectors, while
$\overline{A L}$ bisects the exterior angle at A. (sce Fig. S8-6.)
$\frac{A M}{M C}=\frac{A B}{B C}(\# 47), \frac{B N}{N A}=\frac{B C}{A C}(\# 47)$, and $\frac{C L}{B L}=\frac{A C}{A B}(\# 47)$.
Therefore, by multiplication,

$$
\frac{A M}{M C} \cdot \frac{B N}{N A} \cdot \frac{C L}{B L}=\frac{A B}{B C} \cdot \frac{B C}{A C} \cdot \frac{A C}{A B}=1
$$

However, $\frac{C L}{B L}=\frac{-C L}{L B}$ therefore $\frac{A M}{M C} \cdot \frac{B N}{N A} \cdot \frac{C L}{L B}=-1$.
Thus, by Menelaus' Theorem, N, M, and L must be collinear.

8-7 Prove that the exterior angle bisectors of any non-isosceles triangle meet the opposite sides in three collinear points.

In $\triangle A B C$, the bisectors of the exterior angles at A, B, and C meet the opposite sides (extended) at points N, L, and M respectively (Fig. S8-7).
$\frac{C L}{A L}=\frac{B C}{A B}$ (\#47), $\frac{A M}{B M}=\frac{A C}{B C}$ (\#47), and $\frac{B N}{C N}=\frac{A B}{A C}$ (\#47).
Therefore, $\frac{C L}{A L} \cdot \frac{A M}{B M} \cdot \frac{B N}{C N}=\frac{B C}{A B} \cdot \frac{A C}{B C} \cdot \frac{A B}{A C}=-1$, since all three ratios are negative.
Thus, by Menelaus' Theorem, L, M, and N are collinear.

8-8 In right $\triangle \mathrm{ABC}, \mathrm{P}$ and Q are on $\overline{\mathrm{BC}}$ and $\overline{\mathrm{AC}}$, respectively, such that $\mathrm{CP}=\mathrm{CQ}=2$. Through the point of intersection, R , of $\overline{\mathrm{AP}}$ and $\overline{\mathrm{BQ}}$, a line is drawn also passing through C and meeting $\overline{\mathrm{AB}}$ at $\mathrm{S} . \overline{\mathrm{PQ}}$ extended meets $\overleftrightarrow{\mathrm{AB}}$ at T . If hypotenuse $\mathrm{AB}=10$ and $\mathrm{AC}=8$, find TS. (See Fig. S8-8.)
In right $\triangle A B C$, hypotenuse $A B=10$, and $A C=8$, so $B C=6$ (\#55).
In $\triangle A B C$, since $\overline{A P}, \overline{B Q}$, and $\overline{C S}$ are concurrent,

$$
\frac{A Q}{Q C} \cdot \frac{C P}{P B} \cdot \frac{B S}{S A}=1, \text { by Ceva's Theorem. }
$$

Substituting, ${ }_{2}^{6} \cdot \frac{2}{4} \cdot \frac{B S}{10-B S}=1$, and $B S=4$.
Now consider $\triangle A B C$ with transversal $\overline{Q P T}$.

$$
\frac{A Q}{Q C} \cdot{ }_{P B}^{C P} \cdot \frac{B T}{T A}=-1 \text { (Menelaus' Theorem). }
$$

Since we are not dealing with directed line segments, this may be restated as $(A Q)(C P)(B T)=(Q C)(P B)(A T)$.
Substituting, (6)(2)(BT) $=(2)(4)(B T+10)$.
Then $B T=20$, and $T S=24$.
Challenge 1 By how much is TS decreased if P is taken at the midpoint of $\overline{\mathrm{BC}}$?

$$
\text { ANSWER: } 24-7 \frac{1}{2}=16_{2}^{1}
$$

Challenge 2 What is the minimum value of TS?

$$
\text { ANSWER: } T S=0
$$

S8-8

8-9 A circle through vertices B and C of $\triangle \mathrm{ABC}$ meets $\overline{\mathrm{AB}}$ at P and $\overline{\mathrm{AC}}$ at R . If $\overleftrightarrow{\mathrm{PR}}$ meets $\overleftrightarrow{\mathrm{BC}}$ at Q , prove that $\frac{\mathrm{QC}}{\mathrm{QB}}=\frac{(\mathrm{RC})(\mathrm{AC})}{(\mathrm{PB})(\mathrm{AB})}$.
Consider $\triangle A B C$ with transversal $\overline{Q P R}$. (See Fig. S8-9.)

$$
\begin{equation*}
\frac{R C}{A R} \cdot \frac{A P}{P B} \cdot \frac{Q B}{C Q}=-1 \text { (Menelaus' Theorem) } \tag{I}
\end{equation*}
$$

Then, considering absolute values, $\frac{Q C}{Q B}=\frac{R C}{A R} \cdot \frac{A P}{P B}$.
However, $(A P)(A B)=(A R)(A C)(\# 54)$, or $\frac{A P}{A R}=\frac{A C}{A B}$.
By substituting (II) in (1), we get $\frac{Q C}{Q B}=\frac{(R C)(A C)}{(P B)(A B)}$.
8-10 In quadrilateral $\mathrm{ABCD}, \overleftarrow{\mathrm{AB}}$ and $\overleftrightarrow{\mathrm{CD}}$ meet at P ; while $\overleftrightarrow{\mathrm{AD}}$ and $\overleftrightarrow{\mathrm{BC}}$ meet at Q . Diagonals $\grave{\mathrm{A}} \overrightarrow{\mathrm{C}}$ and $\overleftrightarrow{\mathrm{BD}}$ meet $\overleftrightarrow{\mathrm{PQ}}$ at X and Y , respectively. Prove that $\frac{\mathrm{PX}}{\mathrm{XQ}}=-\frac{\mathrm{PY}}{\mathrm{YQ}} \cdot$ (Sce Fig. S8-10.)
Consider $\triangle P Q C$ with $\overline{P B}, \overline{Q D}$, and $\overline{C X}$ concurrent. By Ceva's Theorem,

$$
\begin{equation*}
\frac{P X}{X Q} \cdot \frac{Q B}{B C} \cdot \frac{C D}{D P}=1 . \tag{I}
\end{equation*}
$$

Now consider $\triangle P Q C$ with $\overline{D B Y}$ as a transversal. By Menelaus'
Theorem, $\quad \frac{P Y}{Y Q} \cdot \frac{Q B}{B C} \cdot \frac{C D}{D \bar{P}}=-1$.
Therefore, from (I) and (II), $\frac{P X}{X Q}=-\frac{P Y}{Y Q}$.

8-11 Prove that a line drawn through the centroid, G , of $\triangle \mathrm{ABC}$, cuts sides $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ at points M and N , respectively, so that $(\mathrm{AM})(\mathrm{NC})+(\mathrm{AN})(\mathrm{MB})=(\mathrm{AM})(\mathrm{AN})$.

In Fig. S8-11, line $\overleftrightarrow{M G N}$ cuts $\overleftrightarrow{B C}$ at $P . G$ is the centroid of $\triangle A B C$. Consider $\overline{N G P}$ as a transversal of $\triangle A K C$.

$$
\begin{equation*}
\frac{N C}{A N} \cdot \frac{A G}{G K} \cdot \frac{P K}{C P}=-1, \text { by Menelaus' Theorem. } \tag{I}
\end{equation*}
$$

Since $\frac{A G}{G K}=\frac{2}{1}$ (\#29), $\frac{N C}{A N} \cdot \frac{2 P K}{C P}=1$, or $\frac{N C}{A N}=\frac{P C}{2 P K}$.
Now taking $\overline{G M P}$ as a transversal of $\triangle A K B$,

$$
\begin{equation*}
\frac{M B}{A M} \cdot \frac{A G}{G K} \cdot \frac{P K}{B P}=-1 \text { (Menelaus' Theorem). } \tag{II}
\end{equation*}
$$

Since $\frac{A G}{G K}=\frac{2}{1}$ (\#29), $\frac{M B}{A M} \cdot \frac{2 P K}{P B}=1$ or $\frac{M B}{A M}=\frac{P B}{2 P K}$.
$B y$ adding (I) and (II), $\frac{N C}{A N}+\frac{M B}{A M}=\frac{P C+P B}{2 P K}$.
Since $P C=P B+2 B K$, then $P C+P B=2(P B+B K)=2 P K$.
Thus, $\frac{(A M)(N C)+(A N)(M B)}{(A M)(A N)}=1$,
and $\quad(A M)(N C)+(A N)(M B)=(A M)(A N)$.
8-12 In $\triangle \mathrm{ABC}$, points L, M, and N lie on $\overline{\mathrm{BC}}, \overline{\mathrm{AC}}$, and $\overline{\mathrm{AB}}$, respectively, and $\overline{\mathrm{AL}}, \overline{\mathrm{BM}}$, and $\overline{\mathrm{CN}}$ are concurrent. (See Fig. S8-12.)
(a) Find the numerical value of $\frac{\mathrm{PL}}{\mathrm{AL}}+\frac{\mathrm{PM}}{\mathrm{BM}}+\frac{\mathrm{PN}}{\mathrm{CN}}$.
(b) Find the numerical value of $\frac{\mathrm{AP}}{\mathrm{AL}}+\frac{\mathrm{BP}}{\mathrm{BM}}+\frac{\mathrm{CP}}{\mathrm{CN}}$.
(a) Consider $\triangle P B C$ and $\triangle A B C$. Draw altitudes $\overline{P E}$ and $\overline{A D}$ of $\triangle P B C$ and $\triangle A B C$, respectively. Since $\overline{P E} \| \overline{A D}$ (\#9),
$\triangle P E L \sim \triangle A D L$ (\#49), and $\frac{P E}{A D}=\frac{P L}{A L}$.

Therefore the ratio of the altitudes of $\triangle P B C$ and $\triangle A B C$ is $\frac{P L}{A L}$.
The ratio of the areas of two triangles which share the same base is equal to the ratio of their altitudes.

Similarly,

$$
\begin{equation*}
\frac{P L}{A L}=\frac{\text { area } \triangle P B C}{\operatorname{area} \triangle A B C} . \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\frac{P M}{B M}=\frac{\text { area } \triangle C P A}{\text { area } \triangle A B C}, \tag{II}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \frac{P N}{C N}=\frac{\text { area } \triangle A P B}{\text { area } \triangle A B C} . \tag{III}
\end{equation*}
$$

By adding (1), (II), and (III), $\frac{P L}{A L}+\frac{P M}{B M}+\frac{P N}{C N}$

$$
\begin{equation*}
=\frac{\text { area } \triangle P B C}{\text { area } \triangle A B C}+\frac{\text { area } \triangle C P A}{\text { area } \triangle A B C}+\frac{\text { area } \triangle A P B}{\text { area } \triangle A B C}=1 . \tag{IV}
\end{equation*}
$$

(b)

$$
\begin{align*}
& \frac{A P}{A L}=\frac{A L-P L}{A L}=1-\frac{P L}{A L} \tag{V}\\
& \frac{B P}{B M}=\frac{B M-B P}{B M}=1-\frac{B P}{B M} \tag{VI}\\
& \frac{C P}{C N}=\frac{C N-P N}{C N}=1-\frac{P N}{C N} \tag{VII}
\end{align*}
$$

By adding (V), (VI), and (VII),

$$
\begin{equation*}
\frac{A P}{A L}+\frac{B P}{B M}+\frac{C P}{C N}=3-\left[\frac{P L}{A L}+\frac{B P}{B M}+\frac{P N}{C N}\right] . \tag{VIII}
\end{equation*}
$$

However, from (IV), $\frac{P L}{A L}+\frac{B P}{B M}+\frac{P N}{C N}=1$.
Substituting into (VIII), $\frac{A P}{A L}+\frac{B P}{B M}+\frac{C P}{C N}=2$.
S8-12

8-13 Congruent line segments $\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$ are taken on sides $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$, respectively, of $\triangle \mathrm{ABC}$. The median $\overline{\mathrm{AM}}$ intersects $\overline{\mathrm{EF}}$ at point Q .
Prove that $\frac{\mathrm{QE}}{\mathrm{QF}}=\frac{\mathrm{AC}}{\mathrm{AB}}$.

For $A B=A C$, the proof is trivial. Consider $A B \neq A C$.
Extend $\overline{F E}$ to meet $\overline{B C}$ (extended) at $P . \overline{F E}$ meets median $\overline{A M}$ at Q, as in Fig. S8-13.
Consider $\overline{A M}$ as a transversal of $\triangle P F C$.

$$
\begin{equation*}
\frac{P Q}{Q F} \cdot \frac{F A}{A C} \cdot \frac{C M}{M P}=-1, \text { by Menelaus' Theorem. } \tag{I}
\end{equation*}
$$

Taking $\overline{A M}$ as a transversal of $\triangle P E B$, we have

$$
\begin{equation*}
\frac{Q E}{P Q} \cdot \frac{A B}{E A} \cdot \frac{M P}{B M}=-1 . \tag{II}
\end{equation*}
$$

By multiplying (I) and (II), we obtain $\frac{Q E}{Q F} \cdot \frac{F A}{A C} \cdot \frac{A B}{E A} \cdot \frac{C M}{B M}=1$.
However, since $F A=E A$ and $B M=C M, \frac{Q E}{Q F}=\frac{A C}{A B}$.
 ratio $\frac{\mathrm{AP}}{\mathrm{PL}}$ in terms of segments made by the concurrent lines on the sides of $\triangle A B C$.
In the proof of Ceva's Theorem (Problem 8-2, Method I), it was established that

$$
\begin{align*}
\frac{B L}{L C} & =\frac{\text { area } \triangle A B P}{\text { area } \triangle A C P}, \tag{III}\\
\frac{C M}{M A} & =\frac{\text { area } \triangle B C P}{\text { area } \triangle A B P}, \tag{IV}\\
\text { and } \frac{A N}{N B} & =\frac{\text { area } \triangle A C P}{\text { area } \triangle B C P}, \tag{V}\\
\frac{A P}{P L} & =\frac{\text { area } \triangle A B P}{\text { area } \triangle L B P}, \tag{VI}\\
\text { and } \frac{A P}{P L} & =\frac{\text { area } \triangle A C P}{\text { area } \triangle L C P} . \tag{VII}
\end{align*}
$$

Therefore from (VI) and (VII),

$$
\begin{gathered}
\frac{A P}{P L}=\frac{\text { area } \triangle A B P}{\text { area } \triangle L B P}=\frac{\text { area } \triangle A C P}{\text { area } \triangle L C P} \\
=\frac{\text { area } \triangle A B P+\text { area } \triangle A C P}{\text { area } \triangle B C P}=\frac{\text { area } \triangle A B P}{\text { area } \triangle B C P}+\frac{\text { area } \triangle A C P}{\text { area } \triangle B C P} .
\end{gathered}
$$

From (IV) and (V), $\frac{A P}{P L}=\frac{M A}{C M}+\frac{A N}{N B}$, for Fig. S8-14a; and $\frac{A P}{P L}=\frac{M A}{C M}-\frac{A N}{N B}$, for Fig. S8-14b.

S8-14a

Thus, we have established the ratio into which the point of concurrency divides any cevian (i.e. the line segment from any vertex to the opposite side).

8-15 Side $\overline{\mathrm{AB}}$ of square ABCD is extended to P so that $\mathrm{BP}=2(\mathrm{AB})$. With M the midpoint of $\overline{\mathrm{DC}}, \overline{\mathrm{BM}}$ is drawn meeting $\overline{\mathrm{AC}}$ at $\mathrm{Q} . \overline{\mathrm{PQ}}$ meets $\overline{\mathrm{BC}}$ at R . Using Merelaus' Theorem, find the ratio $\frac{\mathrm{CR}}{\mathrm{RB}}$.

Applying Menelaus' Theorem to $\triangle A B C$ (Fig. S8-15) with transversal $\overline{P R Q}, \quad \frac{C R}{R B} \cdot \frac{A Q}{Q C} \cdot \frac{B P}{P A}=-1$.
Since $m \angle B A C=m \angle M C A$ (\#8), and $m \angle M Q C=m \angle A Q B$
(\#1), $\triangle M Q C \sim \triangle B Q A$ (\#48), and $\frac{A Q}{Q C}=\frac{A B}{M C}$.

$$
\begin{equation*}
\text { But } 2(M C)=D C=A B, \text { or } \frac{A B}{M C}=\frac{2}{1} . \tag{II}
\end{equation*}
$$

$$
\begin{equation*}
\text { From (II) and (III), } \frac{A Q}{Q C}=\frac{2}{1} \text {. } \tag{III}
\end{equation*}
$$

$$
\begin{equation*}
\text { Since } B P=2(A B), \frac{B P}{A P}=\frac{2}{3} \text { or } \frac{P B}{P A}=\frac{-2}{3} . \tag{IV}
\end{equation*}
$$

Substituting (IV) and (V) into (I), $\frac{C R}{R B} \cdot \frac{2}{1} \cdot \frac{-2}{3}=-1$, or $\frac{C R}{R B}=\frac{3}{4}$.
Challenge 1 Find $\frac{\mathrm{CR}}{\mathrm{RB}}$ when $\mathrm{BP}=\mathrm{AB}$.
ANSWER: 1
Challenge 2 Find $\frac{C R}{R B}$ when $\mathrm{BP}=\mathrm{k}(\mathrm{AB})$.

$$
\text { ANSWER: } \frac{k+1}{2 k}
$$

8-16 Sides $\overleftrightarrow{\mathrm{AB}}, \overleftrightarrow{\mathrm{BC}}, \overleftrightarrow{\mathrm{CD}}$, and $\overleftrightarrow{\mathrm{DA}}$ of quadrilateral ABCD are cut by a straight line at points $\mathrm{K}, \mathrm{L}, \mathrm{M}$, and N respectively. Prove that $\frac{\mathrm{BL}}{\mathrm{LC}} \cdot \frac{\mathrm{AK}}{\mathrm{KB}} \cdot \frac{\mathrm{DN}}{\mathrm{NA}} \cdot \frac{\mathrm{CM}}{\mathrm{MD}}=1$.
Draw diagonal $\overline{A C}$ meeting $\overline{K L N M}$ at P. (See Fig. S8-16.)
Consider $\overline{K L P}$ as a transversal of $\triangle A B C$.

$$
\begin{equation*}
\frac{B L}{L C} \cdot \frac{A K}{K B} \cdot \frac{C P}{P A}=-1 \text { (Menelaus' Theorem) } \tag{I}
\end{equation*}
$$

Now consider $\overline{M N P}$ as a transversal of $\triangle A D C$. $\frac{D N}{N A} \cdot \frac{C M}{M D} \cdot \frac{P A}{C P}=-1$ Then, $\frac{D N}{N A} \cdot \frac{C M}{M D}=-\frac{C P}{P A}$.
Substituting (II) into (I), we get $\frac{B L}{L C} \cdot \frac{A K}{K B} \cdot \frac{D N}{N A} \cdot \frac{C M}{M D}=1$.

S8-16

S8-17

8-17 Tangents to the circumcircle of $\triangle \mathrm{ABC}$, at points A, B, and C , meet sides $\overleftrightarrow{\mathrm{BC}}, \overleftrightarrow{\mathrm{AC}}$, and $\overleftrightarrow{\mathrm{AB}}$ at points P, Q, and R respectively. Prove that points P, Q, and R are collinear.
In Fig. S8-17, since both $\angle B A C$ and $\angle Q B C$ are equal in measure to one-half $m \overparen{B C}(\# 36, \# 38), m \angle B A C=m \angle Q B C$. Therefore, $\triangle A B Q \sim \triangle B C Q(\# 48)$, and $\frac{A Q}{B Q}=\frac{B A}{B C}$, or $\frac{(A Q)^{2}}{(B Q)^{2}}=\frac{(B A)^{2}}{(B C)^{2}}$.

$$
\begin{equation*}
\text { However, }(B Q)^{2}=(A Q)(C Q)(\# 53) \tag{I}
\end{equation*}
$$

By substituting (II) into (I), we get $\frac{A Q}{C Q}=\frac{(B A)^{2}}{(B C)^{2}}$.
Similarly, since $\angle B C R$ and $\angle B A C$ are equal in measure to one-half $m \overparen{B C}(\# 36, \# 38), m \angle B C R=m \angle B A C$. Therefore, $\triangle C R B \sim \triangle A R C(\# 48)$, and $\frac{C R}{A R}=\frac{B C}{A C}$, or $\frac{(C R)^{2}}{(A R)^{2}}=\frac{(B C)^{2}}{(A C)^{2}}$. (IV) However, $(C R)^{2}=(A R)(R B)(\# 53)$.
By substituting (V) into (IV), $\frac{R B}{A R}=\frac{(B C)^{2}}{(A C)^{2}}$.
Also, since $\angle C A P$ and $\angle A B C$ are equal in measure to one-half $m \overparen{A C}(\# 36, \# 38), m \angle C A P=m \angle A B C$. Therefore,
$\triangle C A P \sim \triangle A B P$ and $\frac{A P}{B P}=\frac{A C}{B A}$, or $\frac{(A P)^{2}}{(B P)^{2}}=\frac{(A C)^{2}}{(B A)^{2}}$.
However, $(A P)^{2}=(B P)(P C)(\# 53)$.
By substituting (VIII) into (VII), $\quad \frac{P C}{B P}=\frac{(A C)^{2}}{(B A)^{2}}$.
Now multiplying (III), (VI), and (IX),

$$
\left.\left|\frac{A Q}{C Q}\right| \cdot\left|\frac{R B}{A R}\right| \cdot\left|\frac{P C}{B P}\right|=\frac{(B A)^{2}}{(B C)^{2}} \cdot \frac{(B C)^{2}}{(A C)^{2}} \cdot \frac{(A C)^{2}}{(B A)^{2}}=1-1 \right\rvert\, .
$$

Therefore, $\frac{A Q}{C Q} \cdot \frac{R B}{A R} \cdot \frac{P C}{B P}=-1$, since all the ratios on the left side are negative. Thus, by Menelaus' Theorem, P, Q, and R are collinear.

8-18 A circle is tangent to side $\overline{\mathrm{BC}}$ of $\triangle \mathrm{ABC}$ at M , its midpoint, and cuts $\overleftrightarrow{\mathrm{AB}}$ and $\grave{\mathrm{AC}}$ at points $\mathrm{R}, \mathrm{R}^{\prime}$, and $\mathrm{S}, \mathrm{S}^{\prime}$, respectively. If $\overrightarrow{\mathrm{RS}}$ and $\overline{\mathrm{R}^{\prime} \mathrm{S}^{\prime}}$ are each extended to meet $\overleftrightarrow{\mathrm{BC}}$ at points P and P^{\prime} respectively, prove that $\left(\mathrm{BP}^{2}\right)\left(\mathrm{BP}^{\prime}\right)=(\mathrm{CP})\left(\mathrm{CP}^{\prime}\right)$.
Consider $\overline{R S P}$ as a transversal of $\triangle A B C$ (Fig. S8-18).

$$
\begin{gather*}
\frac{B P}{C P} \cdot \frac{A R}{B R} \cdot \frac{C S}{A S}=-1, \text { (Menelaus' Theorem) } \\
\text { or } \frac{B P}{C P}=-\frac{B R}{A R} \cdot \frac{A S}{C S} \tag{I}
\end{gather*}
$$

Now consider $\overline{R^{\prime} S^{\prime} P^{\prime}}$ as a transversal of $\triangle A B C$.

$$
\begin{equation*}
\frac{C P^{\prime}}{B P^{\prime}} \cdot \frac{B R^{\prime}}{A R^{\prime}} \cdot \frac{A S^{\prime}}{C S^{\prime}}=-1, \text { or } \frac{C P^{\prime}}{B P^{\prime}}=\frac{-A R^{\prime}}{B R^{\prime}} \cdot \frac{C S^{\prime}}{A S^{\prime}} . \tag{II}
\end{equation*}
$$

However, $\left(A S^{\prime}\right)(A S)=\left(A R^{\prime}\right)(A R)(\# 52)$, or $\frac{A R^{\prime}}{A S^{\prime}}=\frac{A S}{A R}$.
Also, $(B M)^{2}=(B R)\left(B R^{\prime}\right)$ and $(M C)^{2}=(C S)\left(C S^{\prime}\right)(\# 53)$.
But $B M=M C$; therefore $(B R)\left(B R^{\prime}\right)=(C S)\left(C S^{\prime}\right)$

$$
\begin{equation*}
\text { or } \frac{C S^{\prime}}{B R^{\prime}}=\frac{B R}{C S} \tag{IV}
\end{equation*}
$$

By substituting (III) and (IV) into (II), we get from (I),

$$
\frac{C P^{\prime}}{B P^{\prime}}=-\frac{B R}{C S} \cdot \frac{A S}{A R}=\frac{B P}{C P} .
$$

Therefore, $(B P)\left(B P^{\prime}\right)=(C P)\left(C P^{\prime}\right)$.

8-19 In $\triangle \mathrm{ABC}, \mathrm{P}, \mathrm{Q}$, and R are the midpoints of the sides $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$, and $\overrightarrow{\mathrm{AC}}$. Lines $\overleftrightarrow{\mathrm{AN}}, \overleftrightarrow{\mathrm{BL}}$, and $\grave{\mathrm{C}} \overrightarrow{\mathrm{M}}$ are concurrent, meeting the opposite sides in N, L, and M , respectively. If $\overleftrightarrow{\mathrm{PL}}$ meets $\overleftrightarrow{\mathrm{BC}}$ at $\mathrm{J}, \overleftrightarrow{\mathrm{MQ}}$ meets $\overleftrightarrow{\mathrm{AC}}$ at I , and $\overleftrightarrow{\mathrm{RN}}$ meets AB at H , prove that H, I, and J are collinear.

Since $\overline{R N H}$ is a transversal of $\triangle A B C$, as shown in Fig. S8-19, $\frac{A H}{H B} \cdot \frac{C R}{R A} \cdot \frac{B N}{N C}=-1$, by Menelaus' Theorem.
However, $R A=C R$.
Therefore, $\frac{A H}{H B}=-\frac{N C}{B N}$.
Consider $\overline{P L J}$ as a transversal of $\triangle A B C$.
$\frac{C L}{L A} \cdot \frac{A P}{P B} \cdot \frac{B J}{J C}=-1$ (Menelaus' Theorem)
However $A P=P B$, therefore $\frac{B J}{J C}=-\frac{L A}{C L}$.
Now consider $\overline{M Q I}$ as a transversal of $\triangle A B C$
$\frac{C I}{I A} \cdot \frac{B Q}{Q C} \cdot \frac{A M}{M B}=-1$ (by Menelaus' Theorem)
Since $B Q=Q C, \frac{C I}{I A}=-\frac{M B}{A M}$.
By multiplying (I), (II), and (III), we get

$$
\frac{A H}{H B} \cdot \frac{B J}{J C} \cdot \frac{C I}{I A}=-\frac{N C}{B N} \cdot \frac{L A}{C L} \cdot \frac{M B}{A M}
$$

However, since $\overline{A N}, \overline{B L}$, and $\overline{C M}$ are concurrent,

$$
\frac{N C}{B N} \cdot \frac{L A}{C L} \cdot \frac{M B}{A M}=1 \text { (Ceva's Theorem). }
$$

Therefore, $\frac{A H}{H B} \cdot \frac{B J}{J C} \cdot \frac{C I}{I A}=-1$, and by Menelaus' Theorem, H , I, and J are collinear.

8-20 $\triangle \mathrm{ABC}$ cuts a circle at points $\mathrm{E}, \mathrm{E}^{\prime}, \mathrm{D}, \mathrm{D}^{\prime}, \mathrm{F}, \mathrm{F}^{\prime}$, as in Fig. S8-20. Prove that if $\overline{\mathrm{AD}}, \overline{\mathrm{BF}}$, and $\overline{\mathrm{CE}}$ are concurrent, then $\overline{\mathrm{AD}^{\prime}}, \overline{\mathrm{BF}^{\prime}}$, and $\overline{\mathrm{CE}^{\prime}}$ are also concurrent.

Since $\overline{A D}, \overline{B F}$, and $\overline{C E}$ are concurrent, then

$$
\begin{gather*}
\frac{A E}{E B} \cdot \frac{B D}{D C} \cdot \frac{C F}{F A}=1 \text { (Ceva's Theorem). } \tag{I}\\
(A E)\left(A E^{\prime}\right)=(A F)\left(A F^{\prime}\right)(\# 54), \text { or } \frac{A E}{A F}=\frac{A F^{\prime}}{A E^{\prime}} . \tag{II}\\
\left(B E^{\prime}\right)(B E)=(B D)\left(B D^{\prime}\right)(\# 54), \text { or } \frac{B D}{B E}=\frac{B E^{\prime}}{B D^{\prime}} . \tag{III}\\
\left(C D^{\prime}\right)(C D)=\left(C F^{\prime}\right)(C F)(\# 54), \text { or } \frac{C F}{C D}=\frac{C D^{\prime}}{C F^{\prime}} . \tag{IV}
\end{gather*}
$$

By multiplying (II), (III), and (IV), we get

$$
\frac{A E}{A F} \cdot \frac{B D}{B E} \cdot \frac{C F}{C D}=\frac{A F^{\prime}}{A E^{\prime}} \cdot \frac{B E^{\prime}}{B D^{\prime}} \cdot \frac{C D^{\prime}}{C F^{\prime}}
$$

But from (I) we know that $\frac{A E}{A F} \cdot \frac{B D}{B E} \cdot \frac{C F}{C D}=1$.
Therefore, $\frac{A F^{\prime}}{A E^{\prime}} \cdot \frac{B E^{\prime}}{B D^{\prime}} \cdot \frac{C D^{\prime}}{C F^{\prime}}=1$, and by Ceva's Theorem, $\overline{A D^{\prime}}$, $\overline{B F^{\prime}}$, and $\overline{C E^{\prime}}$ are concurrent.

8-21 Prove that the three pairs of common external tangents to three circles, taken two at a time, meet in three collinear points.

In Fig. S8-21, common external tangents to circles A and B meet at R, and intersect the circles at points D, E, F, and G.
Common external tangents to circles A and C meet at Q, and intersect the circles at points H, I, J, and K.
Common external tangents to circles B and C meet at P, and intersect the circles at points L, M, N, and S.

Draw $\overline{A D}, \overline{A H}, \overline{B E}, \overline{B L}, \overline{C K}$, and $\overline{C M} . \overline{A D} \perp \overline{D R}, \overline{B E} \perp \overline{D R}$ (\#32a), so $\overline{A D} \| \overline{B E}(\# 9), \triangle R A D \sim \triangle R B E$ (\#49),

$$
\begin{equation*}
\text { and } \frac{A R}{R B}=\frac{A D}{B E} . \tag{I}
\end{equation*}
$$

Similarly, $\overline{B L} \perp \overline{P L}, \overline{C M} \perp \overline{P L}$ and $\overline{B L} \| \overline{C M}$, so that
$\triangle P B L \sim \triangle P C M$ (\#49), and $\frac{B P}{P C}=\frac{B L}{C M}$.
Also $\overline{A H} \perp \overline{Q H}$, and $\overline{C K} \perp \overline{Q H}$, and $\overline{A H} \| \overline{C K}$, so that
$\triangle Q A H \sim \triangle Q C K$, (\#49), and $\frac{Q C}{A Q}=\frac{C K}{A H}$.
By multiplying (I), (II), and (III), we get

$$
\begin{equation*}
\frac{A R}{R B} \cdot \frac{B P}{P C} \cdot \frac{Q C}{A Q}=\frac{A D}{B E} \cdot \frac{B L}{C M} \cdot \frac{C K}{A H} . \tag{IV}
\end{equation*}
$$

Since $A H=A D, C K=C M$, and $B L=B E$,
$\frac{A R}{R B} \cdot \frac{B P}{P C} \cdot \frac{Q C}{A Q}=-1$. (Note that they are all negative ratios.)
Thus, by Menelaus' Theorem, P, Q, and R are collinear.

8-22 $\overline{\mathrm{AM}}$ is a median of $\triangle \mathrm{ABC}$, and point G on $\overline{\mathrm{AM}}$ is the centroid. $\overline{\mathrm{AM}}$ is extended through M to point P so that $\mathrm{GM}=\mathrm{MP}$. Through P , a line parallel to $\overline{\mathrm{AC}}$ cuts $\overline{\mathrm{AB}}$ at Q , and $\overline{\mathrm{BC}}$ at P_{1}; through P , a line parallel to $\overline{\mathrm{AB}}$ cuts $\overline{\mathrm{CB}}$ at N and $\overline{\mathrm{AC}}$ at P_{2}; and a line through P and parallel to $\overline{\mathrm{CB}}$ cuts $\overleftarrow{\mathrm{AB}}$ at P_{3}. Prove that points $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} are collinear.

In Fig. S8-22, since $\overline{P P_{1} Q} \| \overline{A C}, \triangle C M A \sim \triangle P_{1} M P$ (\#48), and

$$
\begin{equation*}
\frac{C M}{M P_{1}}=\frac{A M}{M P}=\frac{3}{1}(\# 29) . \tag{I}
\end{equation*}
$$

Similarly, $\triangle A M B \sim \triangle P M N$, and

$$
\begin{equation*}
\frac{M B}{M N}=\frac{A M}{M P}=\frac{3}{1} . \tag{II}
\end{equation*}
$$

From (I) and (II), $\frac{C M}{M P_{1}}=\frac{M B}{M N}$.
However, since $C M=M B$, from (III), $M P_{1}=M N$,

$$
\begin{equation*}
\text { and } C N=P_{1} B \tag{IV}
\end{equation*}
$$

Thus, $P N G P_{1}$ is a parallelogram (\#2lf).
Since $\overline{N G} \| \overline{A C}$, in $\triangle C M A, \frac{C N}{N M}=\frac{A G}{G M}=\frac{2}{1}$ (\#46).
Therefore, $\frac{C N}{N B}=\frac{2}{1}$.
In $\triangle A B C$, where $\overline{P_{2} N} \| \overline{A B}, \quad \frac{C P_{2}}{P_{2} A}=\frac{C N}{N B}=\frac{1}{2}$ (\#46).
Similarly, $\frac{B P_{1}}{P_{1} C}=\frac{C N}{N B}=\frac{1}{2}$.
Also in $\triangle A P P_{3}$, since $\overline{M B} \| P P_{3}, \frac{A P_{3}}{P_{3} B}=\frac{A P}{M P}=\frac{4}{1}$ (\#46). (VII) Multiplying (V), (VI), and (VII), we get

$$
\frac{C P_{2}}{P_{2} A} \cdot \frac{B P_{1}}{P_{1} C} \cdot \frac{A P_{3}}{P_{3} B}=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)(4)=-1,
$$

taking direction into account. Thus, by Menelaus' Theorem, points P_{1}, P_{2}, and P_{3} are collinear.

8-23 If $\triangle \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ and $\triangle \mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$ are situated so that the lines joining the corresponding vertices, ${\overleftrightarrow{\mathrm{A}_{1}} \vec{A}_{2}}_{2},{\overleftrightarrow{\mathrm{~B}_{1}} \vec{B}_{2}}^{2}$, and ${\overleftrightarrow{\mathrm{C}_{1}}{ }_{2}}_{2}$, are concurrent, then the pairs of corresponding sides intersect in three collinear points. (Desargues' Theorem)
In Fig. S8-23, lines ${\overleftrightarrow{A_{1}} A_{2}}_{2},{\overleftrightarrow{B_{1}} B_{2}}^{2}, \overleftrightarrow{C}_{1} C_{2}$ all meet at P, by the hypothesis.
Lines ${\overleftrightarrow{B_{2} C}}_{2}$ and ${\overleftrightarrow{B_{1} C}}_{1}$ meet at A^{\prime}; lines ${\overleftrightarrow{A_{2} C}}_{2}$ and ${\overleftrightarrow{A_{1} C}}_{1}$ meet at B^{\prime}; and lines $\overleftarrow{B}_{2} \vec{A}_{2}$ and $\overleftarrow{B}_{1} \vec{A}_{1}$ meet at C^{\prime}.
Consider $\overline{A^{\prime} C_{1} B_{1}}$ to be a transversal of $\triangle P B_{2} C_{2}$. Therefore,

$$
\begin{equation*}
\frac{P B_{1}}{B_{1} B_{2}} \cdot \frac{B_{2} A^{\prime}}{A^{\prime} C_{2}} \cdot \frac{C_{2} C_{1}}{C_{1} P}=-1 \text { (Menelaus' Theorem). } \tag{I}
\end{equation*}
$$

Similarly, considering $\overline{C^{\prime} B_{1} A_{1}}$ as a transversal of $\triangle P B_{2} A_{2}$,

$$
\begin{equation*}
\frac{P A_{1}}{A_{1} A_{2}} \cdot \frac{A_{2} C^{\prime}}{C^{\prime} B_{2}} \cdot \frac{B_{2} B_{1}}{B_{1} P}=-1 . \text { (Menelaus' Theorem) } \tag{II}
\end{equation*}
$$

And taking $\overline{B^{\prime} A_{1} C_{1}}$ as a transversal of $\triangle P A_{2} C_{2}$,

$$
\begin{equation*}
\frac{P C_{1}}{C_{1} C_{2}} \cdot \frac{C_{2} B^{\prime}}{B^{\prime} A_{2}} \cdot \frac{A_{2} A_{1}}{A_{1} P}=-1 . \text { (Menelaus' Theorem) } \tag{III}
\end{equation*}
$$

By multiplying (I), (II), and (III), we get

$$
\frac{B_{2} A^{\prime}}{A^{\prime} C_{2}} \cdot \frac{A_{2} C^{\prime}}{C^{\prime} B_{2}} \cdot \frac{C_{2} B^{\prime}}{B^{\prime} A_{2}}=-1
$$

Thus, by Menelaus' Theorem, applied to $\triangle A_{2} B_{2} C_{2}$, we have points A^{\prime}, B^{\prime}, and C^{\prime} collinear.

8-24 A circle inscribed in $\triangle \mathrm{ABC}$ is tangent to sides $\overline{\mathrm{BC}}, \overline{\mathrm{CA}}$, and $\overline{\mathrm{AB}}$ at points L, M, and N , respectively. If $\overline{\mathrm{MN}}$ extended meets $\overleftrightarrow{\mathrm{BC}}$ at P ,
(a) prove that $\frac{\mathrm{BL}}{\mathrm{LC}}=-\frac{\mathrm{BP}}{\mathrm{PC}}$,
(b) prove that if $\overleftrightarrow{\mathrm{NL}}$ meets $\overleftrightarrow{\mathrm{AC}}$ at Q and $\overleftrightarrow{\mathrm{ML}}$ meets $\overleftrightarrow{\mathrm{AB}}$ at R , then P, Q, and R are collinear.
(a) By Menelaus' Theorem applied to $\triangle A B C$ with transversal $\overline{P N M}, \frac{A N}{N B} \cdot \frac{B P}{P C} \cdot \frac{M C}{A M}=-1$ (Fig. S8-24).

However, $A N=A M, N B=B L$, and $M C=L C$ (\#34).
By substitution, $\frac{A N}{B L} \cdot \frac{B P}{P C} \cdot \frac{L C}{A N}=-1$, so $\frac{B L}{L C}=-\frac{B P}{P C}$.
(b) Similarly, $\frac{A N}{N B}=-\frac{A R}{R B}$, and $\frac{M C}{A M}=-\frac{Q C}{A Q}$.

By multiplication of (II), (III) and (IV), we get

$$
\frac{B L}{L C} \cdot \frac{A N}{N B} \cdot \frac{M C}{A M}=\frac{-B P}{P C} \cdot \frac{-A R}{R B} \cdot \frac{-Q C}{A Q}
$$

However from (1), $\frac{B L}{L C} \cdot \frac{A N}{N B} \cdot \frac{M C}{A M}=1$.
Therefore, $\frac{B P}{P C} \cdot \frac{A R}{R B} \cdot \frac{Q C}{A Q}=-1$, and points P, Q, and R are collinear, by Menelaus' Theorem.

Another method of proof following equation (II) reasons in this fashion. From (I), $\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{M C}{A M}=1$. Therefore, by Ceva's Theorem, $\overleftrightarrow{A L}, \overleftrightarrow{B M}$, and $\overleftrightarrow{C N}$ are concurrent. Since these are the lines joining the corresponding vertices of $\triangle A B C$ and $\triangle L M N$, by Desargues' Theorem (Problem 8-23), the intersections of the corresponding sides are collinear; therefore P, Q, and R are collinear.

8-25 In $\triangle \mathrm{ABC}$, where $\overline{\mathrm{CD}}$ is the altitude to $\overline{\mathrm{AB}}$ and P is any point on $\overline{\mathrm{DC}}, \overline{\mathrm{AP}}$ meets $\overline{\mathrm{CB}}$ at Q , and $\overline{\mathrm{BP}}$ meets $\overline{\mathrm{CA}}$ at R . Prove that $\mathrm{m} \angle \mathrm{RDC}=\mathrm{m} \angle \mathrm{QDC}$, using Ceva's Theorem.

Extend $\overline{D R}$ and $\overline{D Q}$ through R and Q, respectively, to meet a line through C, parallel to $\overrightarrow{A B}$, at points G and H, respectively (Fig. S8-25).
$\mathbf{S 8 - 2 5}$

$\triangle C G R \sim \triangle A D R$ (\#48), and $\frac{C R}{R A}=\frac{G C}{A D}$.
Similarly, $\triangle B D Q \sim \triangle C H Q$, and $\frac{B Q}{Q C}=\frac{D B}{C H}$.
However, in $\triangle A B C \quad \frac{C R}{R A} \cdot \frac{A D}{D B} \cdot \frac{B Q}{Q C}=1$ (Ceva's Theorem). (III)

By substituting (I) and (II) into (III), we get $\frac{G C}{A D} \cdot \frac{A D}{D B} \cdot \frac{D B}{C H}=1$, or $\frac{G C}{C H}=1$. Thus, $G C=C H$.
Since $\overline{C D}$ is the perpendicular bisector of $\overline{G H}$ (\#10),

$$
\begin{gathered}
\triangle G C D \cong \triangle H C D, \text { and } m \angle G D C=m \angle H D C, \\
\text { or } m \angle R D C=m \angle Q D C .
\end{gathered}
$$

8-26 In $\triangle \mathrm{ABC}$, points F, E, and D are the feet of the altitudes drawn from the vertices A, B, and C , respectively. The sides of the pedal $\triangle \mathrm{FED}, \overline{\mathrm{EF}}, \overline{\mathrm{DF}}$, and $\overline{\mathrm{DE}}$, when extended, meet the sides of $\triangle \mathrm{ABC}, \stackrel{\mathrm{AB}}{\mathrm{B}}, \stackrel{\mathrm{AC}}{ }$, and $\overleftrightarrow{\mathrm{BC}}$ at points M, N, and L , respectively. Prove that M, N, and L are collinear. (See Fig. S8-26.)
method i: In Problem 8-25, it was proved that the altitude of a triangle bisects the corresponding angle of the pedal triangle. Therefore, $\overline{B E}$ bisects $\angle D E F$, and $m \angle D E B=m \angle B E F$.
$\angle D E B$ is complementary to $\angle N E D$.
Therefore since $\overleftrightarrow{M E F}$ is a straight line,

$$
\angle N E M \text { is complementary to } \angle B E F \text {. }
$$

Therefore from (I), (II), and (III), $m \angle N E D=m \angle N E M$, or $\overline{N E}$ is an exterior angle bisector of $\triangle F E D$. It then follows that

$$
\begin{equation*}
\frac{N F}{N D}=\frac{E F}{D E}(\# 47) . \tag{IV}
\end{equation*}
$$

Similarly, $\overline{F L}$ is an exterior angle bisector of $\triangle F E D$ and

$$
\begin{equation*}
\frac{L D}{L E}=\frac{D F}{E F} . \tag{V}
\end{equation*}
$$

Also, $\overline{D M}$ is an exterior angle bisector of $\triangle F E D$ and so

$$
\begin{equation*}
\frac{M E}{M F}=\frac{D E}{D F}(\# 47) \tag{VI}
\end{equation*}
$$

By multiplying (IV), (V), and (VI), we get

$$
\frac{N F}{N D} \cdot \frac{L D}{L E} \cdot \frac{M E}{M F}=\frac{E F}{D E} \cdot \frac{D F}{E F} \cdot \frac{D E}{D F}=-1
$$

taking direction into account.
Thus, by Menelaus' Theorem, M, N, and L are collinear.

Method if: Let D, E, F and C, B, A be corresponding vertices of $\triangle D E F$ and $\triangle C B A$, respectively. Since $\overline{A F}, \overline{C D}$, and $\overline{B E}$ are concurrent (Problem 8-4), the intersections of the corresponding sides $\overline{D E}$ and $\overline{B C}, \overline{F E}$ and $\overline{B A}$, and $\overline{F D}$ and $\overline{C A}$, are collinear by Desargues' Theorem (Problem 8-23).

8-27 In $\triangle \mathrm{ABC}, \mathrm{L}, \mathrm{M}$, and N are the feet of the altitudes from vertices A, B, and C . Prove that the perpendiculars from A, B, and C to $\overline{\mathrm{MN}}, \overline{\mathrm{LN}}$, and $\overline{\mathrm{LM}}$, respectively, are concurrent.
As shown in Fig. S8-27, $\overline{A L}, \overline{B M}$, and $\overline{C N}$ are altitudes of $\triangle A B C$. $\overline{A P} \perp \overline{N M}, \overline{B Q} \perp \overline{N L}$, and $\overline{C R} \perp \overline{M L}$.
In right $\triangle N A P, \sin \angle N A P=\frac{N P}{N A}=\cos \angle A N P$.
Since $m \angle B N C=m \angle B M C=90$, quadrilateral $B N M C$ is cyclic (\#36a).
Therefore, $\angle M C B$ is supplementary to $\angle B N M$.
But $\angle A N P$ is also supplementary to $\angle B N M$. Thus, $m \angle M C B=$ $m \angle A N P$, and $\cos \angle M C B=\cos \angle A N P$.
From (I) and (II), by transitivity,

$$
\begin{equation*}
\sin \angle N A P=\cos \angle M C B \tag{III}
\end{equation*}
$$

Now, in right $\triangle A M P, \sin \angle M A P=\frac{M P}{M A}=\cos \angle A M P$.
Since quadrilateral $B N M C$ is cyclic, $\angle N B C$ is supplementary to $\angle N M C$, while $\angle A M P$ is supplementary to $\angle N M C$. Therefore, $m \angle N B C=m \angle A M P$ and $\cos \angle N B C=\cos \angle A M P$.
From (IV) and (V), it follows that $\sin \angle M A P=\cos \angle N B C$. (VI)
From (III) and (VI), $\frac{\sin \angle N A P}{\sin \angle M A P}=\frac{\cos \angle M C B}{\cos \angle N B C}$.
In a similar fashion we are able to get the following proportions:

$$
\begin{array}{r}
\quad \frac{\sin \angle C B Q}{\sin \angle A B Q}=\frac{\cos \angle B A C}{\cos \angle A C B}, \\
\text { and } \frac{\sin \angle A C R}{\sin \angle B C R}=\frac{\cos \angle A B C}{\cos \angle B A C} . \tag{IX}
\end{array}
$$

By multiplying (VII), (VIII), and (IX), we get

$$
\begin{aligned}
& \frac{\sin \angle N A P}{\sin \angle M A P} \cdot \frac{\sin \angle C B Q}{\sin \angle A B Q} \cdot \frac{\sin \angle A C R}{\sin \angle B C R}= \\
& \quad \frac{\cos \angle A C B}{\cos \angle A B C} \cdot \frac{\cos \angle B A C}{\cos \angle A C B} \cdot \frac{\cos \angle A B C}{\cos \angle B A C}=1 .
\end{aligned}
$$

Thus, by Ceva's Theorem (trigonometric form) $\overline{A P}, \overline{B Q}$, and $\overline{C R}$ are concurrent.

8-28 Prove that the perpendicular bisectors of the interior angle bisectors of any triangle meet the sides opposite the angles being bisected in three collinear points.
Let $\overline{A A^{\prime}}, \overline{B B^{\prime}}$, and $\overline{C C^{\prime}}$ be the bisectors of angles A, B, and C, respectively, terminating at the opposite side. The perpendicular bisector of $\overline{A A^{\prime}}$ meets $\overleftrightarrow{A C}, \overleftarrow{A B}$, and $\overleftrightarrow{C B}$ at points M, M^{\prime}, and P_{1}, respectively; the perpendicular bisector of $\overrightarrow{B B^{\prime}}$ meets $\overleftrightarrow{C B}, \stackrel{\leftrightarrow}{A B}$, and $\overleftrightarrow{A C}$ at points L, L^{\prime}, and P_{2}, respectively; and the perpendicular bisector of $\overline{C C^{\prime}}$ meets $\overleftrightarrow{A C}, \overleftarrow{C B}$, and $\overleftrightarrow{A B}$ at points N, N^{\prime}, and P_{3}, respectively. (Sce Fig. S8-28.)

Draw $\overline{B^{\prime} L}$. Since $B^{\prime} L=L B$ (\#18), $m \angle L B^{\prime} B=m \angle L B B^{\prime}$ (\#5). However, $m \angle A B B^{\prime}=m \angle L B B^{\prime}$; therefore $m \angle L B^{\prime} B=$ $m \angle A B B^{\prime}$, and $\overline{B^{\prime} L} \| \overline{A B}$ (\#8).
Then $\frac{C B^{\prime}}{A B^{\prime}}=\frac{a}{c}=\frac{C L}{L B}(\# 46)$.
However, $m \angle B^{\prime} P_{2} L^{\prime}=m \angle B P_{2} L^{\prime}$, and $\frac{C P_{2}}{B P_{2}}=\frac{C L}{L B}$ (\#47).
Therefore, $\frac{C B^{\prime}}{A B^{\prime}}=\frac{a}{c}=\frac{C P_{2}}{B P_{2}}$.
Similarly, since $\overline{B^{\prime} L^{\prime}} \| \overline{C B}, \quad \frac{C B^{\prime}}{A B^{\prime}}=\frac{a}{c}=\frac{L^{\prime} B}{A L^{\prime}}=\frac{B P_{2}}{A P_{2}}$.
Thus, multiplying (III) and (IV), we get

$$
\begin{equation*}
\frac{C P_{2}}{A P_{2}}=\frac{a^{2}}{c^{2}} \tag{V}
\end{equation*}
$$

Since $\overline{A^{\prime} M^{\prime}} \| \overline{A C}, \frac{C A^{\prime}}{B A^{\prime}}=\frac{b}{c}=\frac{A M^{\prime}}{M^{\prime} B}=\frac{A P_{1}}{B P_{1}}$.
And since $\overline{A^{\prime} M} \| \overline{A B}, \frac{C A^{\prime}}{B A^{\prime}}=\frac{b}{c}=\frac{C M}{M A}=\frac{C P_{1}}{A P_{1}}$.
Now, multiplying (VI) and (VII), we get

$$
\begin{equation*}
\frac{C P_{1}}{B P_{1}}=\frac{c^{2}}{b^{2}} \tag{VIII}
\end{equation*}
$$

In a similar fashion we obtain $\frac{A P_{3}}{B P_{3}}=\frac{b^{2}}{a^{2}}$.
By multiplying (V), (VIII), and (IX), we get

$$
\frac{C P_{2}}{A P_{2}} \cdot \frac{B P_{1}}{C P_{1}} \cdot \frac{A P_{3}}{B P_{3}}=\frac{a^{2}}{c^{2}} \cdot \frac{c^{2}}{b^{2}} \cdot \frac{b^{2}}{a^{2}}=-1,
$$

taking direction into account. Therefore, by Menelaus' Theorem, P_{1}, P_{2}, and P_{3} are concurrent.

8-29 Figure 8-29a shows a hexagon ABCDEF whose pairs of opposite sides are: $[\overline{\mathrm{AB}}, \overline{\mathrm{DE}}],[\overline{\mathrm{CB}}, \overline{\mathrm{EF}}]$, and $[\overline{\mathrm{CD}}, \overline{\mathrm{AF}}]$. If we place points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, and F in any order on a circle, the above pairs of opposite sides intersect at points L, M, and N. Prove that L, M, and N are collinear.
Pairs of opposite sides (sec Fig. S8-29a) $\overline{A B}$ and $\overline{D E}$ meet at L, $\overline{C B}$ and $\overline{E F}$ meet at M, and $\overline{C D}$ and $\overline{A F}$ meet at N. (See Fig. S8-29b.) Also $\overline{A B}$ meets $\overline{C N}$ at $X, \overline{E F}$ meets $\overline{C N}$ at Y, and $\overline{E F}$ meets $\overline{A B}$ at Z. Consider $\overline{B C}$ to be a transversal of $\triangle X Y Z$. Then

$$
\begin{equation*}
\frac{Z B}{B X} \cdot \frac{X C}{C Y} \cdot \frac{Y M}{M Z}=-1, \text { by Menelaus' Theorem. } \tag{I}
\end{equation*}
$$

Now taking $\overline{A F}$ to be a transversal of $\triangle X Y Z$,

$$
\begin{equation*}
\frac{Z A}{A X} \cdot \frac{Y F}{F Z} \cdot \frac{X N}{N Y}=-1 \tag{II}
\end{equation*}
$$

Also since $\overline{D E}$ is a transversal of $\triangle X Y Z$,

$$
\begin{equation*}
\frac{X D}{D Y} \cdot \frac{Y E}{E Z} \cdot \frac{Z L}{L X}=-1 \tag{III}
\end{equation*}
$$

By multiplying (I), (II), and (III), we get

$$
\begin{equation*}
\frac{Y M}{M Z} \cdot \frac{X N}{N Y} \cdot \frac{Z L}{L X} \cdot \frac{(Z B)(Z A)}{(E Z)(F Z)} \cdot \frac{(X D)(X C)}{(A X)(B X)} \cdot \frac{(Y E)(Y F)}{(D Y)(C Y)}=-1 . \tag{IV}
\end{equation*}
$$

$$
\text { However, } \begin{align*}
\frac{(Z B)(Z A)}{(E Z)(F Z)} & =1 \tag{V}\\
\frac{(X D)(X C)}{(A X)(B X)} & =1 \tag{VI}\\
\text { and } \frac{(Y E)(Y F)}{(D Y)(C Y)} & =1(\# 52) \tag{VII}
\end{align*}
$$

By substituting (V), (VI), and (VII) into (IV), we get

$$
\frac{Y M}{M Z} \cdot \frac{X N}{N Y} \cdot \frac{Z L}{L X}=-1 .
$$

Thus, by Menelaus' Theorem, points M, N, and L must be collinear.

S8-30

8-30 Points A, B, and C are on one line and points $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and C^{\prime} are on another line (in any order). If $\overline{\mathrm{AB}^{\prime}}$ and $\overline{\mathrm{A}^{\prime} \mathrm{B}}$ meet at $\mathrm{C}^{\prime \prime}$, while $\overline{\mathrm{AC}^{\prime}}$ and $\overline{\mathrm{A}^{\prime} \mathrm{C}}$ meet at $\mathrm{B}^{\prime \prime}$, and $\overline{\mathrm{BC}^{\prime}}$ and $\overline{\mathrm{B}^{\prime} \mathrm{C}}$ meet at $\mathrm{A}^{\prime \prime}$, prove that points $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}$, and $\mathrm{C}^{\prime \prime}$ are collinear.
(This theorem was first published by Pappus of Alexandria about 300 A.D.)
In Fig. S8-30, $\overline{B^{\prime} C}$ meets $\overline{A^{\prime} B}$ at $Y, \overline{A C^{\prime}}$ meets $\overline{A^{\prime} B}$ at X, and $\overline{B^{\prime} C}$ meets $\overline{A C^{\prime}}$ at Z.
Consider $\overline{C^{\prime \prime} A B^{\prime}}$ as a transversal of $\triangle X Y Z$.

$$
\begin{equation*}
\frac{Z B^{\prime}}{Y B^{\prime}} \cdot \frac{X A}{Z A} \cdot \frac{Y C^{\prime \prime}}{X C^{\prime \prime}}=-1 \text { (Menelaus' Theorem) } \tag{I}
\end{equation*}
$$

Now taking $\overline{A^{\prime} B^{\prime \prime} C}$ as a transversal of $\triangle X Y Z$,

$$
\begin{equation*}
\frac{Y A^{\prime}}{X A^{\prime}} \cdot \frac{X B^{\prime \prime}}{Z B^{\prime \prime}} \cdot \frac{Z C}{Y C}=-1 \tag{II}
\end{equation*}
$$

$\overline{B A^{\prime \prime} C^{\prime}}$ is also a transversal of $\triangle X Y Z$, so that

$$
\begin{equation*}
\frac{Y B}{X B} \cdot \frac{Z A^{\prime \prime}}{Y A^{\prime \prime}} \cdot \frac{X C^{\prime}}{Z C^{\prime}}=-1 \tag{III}
\end{equation*}
$$

Multiplying (I), (II), and (III) gives us equation (IV),

$$
\frac{Y C^{\prime \prime}}{X C^{\prime \prime}} \cdot \frac{X B^{\prime \prime}}{Z B^{\prime \prime}} \cdot \frac{Z A^{\prime \prime}}{Y A^{\prime \prime}} \cdot \frac{Z B^{\prime}}{Y B^{\prime}} \cdot \frac{Y A^{\prime}}{X A^{\prime}} \cdot \frac{X C^{\prime}}{Z C^{\prime}} \cdot \frac{X A}{Z A} \cdot \frac{Z C}{Y C} \cdot \frac{Y B}{X B}=-1 .
$$

Since points A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear, we obtain the following two relationships by Menelaus' Theorem when we consider each line a transversal of $\triangle X Y Z$.

$$
\begin{align*}
\frac{Z B^{\prime}}{Y B^{\prime}} \cdot \frac{Y A^{\prime}}{X A^{\prime}} \cdot \frac{X C^{\prime}}{Z C^{\prime}} & =-1 \tag{V}\\
\frac{X A}{Z A} \cdot \frac{Z C}{Y C} \cdot \frac{Y B}{X B} & =-1 \tag{VI}
\end{align*}
$$

Substituting (V) and (VI) into (IV), we get

$$
\frac{Y C^{\prime \prime}}{X C^{\prime \prime}} \cdot \frac{X B^{\prime \prime}}{Z B^{\prime \prime}} \cdot \frac{Z A^{\prime \prime}}{Y A^{\prime \prime}}=-1
$$

Thus, points $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ are collinear, by Menelaus' Theorem.

9. The Simson Line

9-1 Prove that the feet of the perpendiculars drawn from any point on the circumcircle of a given triangle to the sides of the triangle are collinear (Simson's Theorem).

METHOD I: From any point P, on the circumcircle of $\triangle A B C$ perpendiculars $\overline{P X}, \overline{P Y}$, and $\overline{P Z}$ are drawn to sides $\overline{B C}, \overline{A C}$, and $\overline{A B}$, respectively (Fig. S9-1a). Since $\angle P Y A$ is supplementary to $\angle P Z A$, quadrilateral $P Z A Y$ is cyclic (\#37). Draw $\overline{P A}, \overline{P B}$, and $\overline{P C}$.

$$
\begin{equation*}
\text { Therefore, } m \angle P Y Z=m \angle P A Z \text { (\#36). } \tag{I}
\end{equation*}
$$

Similarly, since $\angle P Y C$ is supplementary to $\angle P X C$, quadrilateral $P X C Y$ is cyclic, and $m \angle P Y X=m \angle P C B$.

However, quadrilateral $P A C B$ is also cyclic, since it is inscribed in the given circumcircle, and therefore

$$
\begin{equation*}
m \angle P A Z(m \angle P A B)=m \angle P C B(\# 36) . \tag{III}
\end{equation*}
$$

From (I), (II), and (III), $m \angle P Y Z=m \angle P Y X$, and thus points X, Y, and Z are collinear. The line through X, Y, and Z is called the Simson Line of $\triangle A B C$ with respect to point P.

METHOD II: From any point P on the circumcircle of $\triangle A B C$ (inside $\angle A C B$), perpendiculars $\overline{P X}, \overline{P Y}$, and $\overline{P Z}$ are drawn to sides $\overline{B C}, \overline{A C}$, and $\overline{A B}$, respectively. (See Fig. S9-1b.) Draw circles with $\overline{P A}$ and $\overline{P B}$ as diameters. Since $m \angle P Y A=$ $m \angle P X B=m \angle P Z A=90$, points Y and Z lie on the circle with $\overline{P A}$ as diameter (\#37). Also points X and Z lie on the circle with $\overline{P B}$ as diameter (\#36a).
Since $m \angle P X C=m \angle P Y C=90$, in quadrilateral $X P Y C, \angle C$ is supplementary to $\angle X P Y$ (\#15).
However $\angle C$ is also supplementary to $\angle A P B$ (\#37).
Therefore, $m \angle X P Y=m \angle A P B$.
By subtracting each member of (I) from $m \angle B P Y$,
we get $m \angle B P X=m \angle A P Y$.
Now $m \angle B P X=m \angle B Z X(\# 36)$,
and $m \angle A P Y=m \angle A Z Y$ (\#36).
Substituting (III) into (II), $m \angle B Z X=m \angle A Z Y$.
Since $\overleftarrow{A Z B}$ is a straight line, points X, Y, and Z must be collinear, making $\angle B Z X$ and $\angle A Z Y$ vertical angles.
METHOD iII: From any point, P, on the circumcircle of $\triangle A B C$, $\overline{P X}, \overline{P Y}$, and $\overline{P Z}$ are drawn to the sides $\overline{B C}, \overline{A C}$, and $\overline{A B}$, respectively. $\overline{P Z}$ extended meets the circle at K. Draw $\overleftrightarrow{C K}$, as shown in Fig. S9-1c.
Since $m \angle P Z B \cong m \angle P X B \cong 90$, quadrilateral $P Z X B$ is cyclic (\#36a), and so $\angle P B C$ is supplementary to $\angle P Z X$ (\#37).

However $\angle K Z X$ is supplementary to $\angle P Z X$;
therefore, $m \angle P B C=m \angle K Z X$.
But $m \angle P B C=m \angle P K C$ (\#36).

Thus from (I) and (II) $m \angle K Z X=m \angle P K C$, and $\overline{X Z} \| \overline{K C}$ (\#8). Since quadrilateral $P A C K$ is cyclic, $\angle P K C$ is supplementary to $\angle P A C$ (\#37). However, $\angle P A Y$ is also supplementary to $\angle P A C$. Therefore, $m \angle P K C=m \angle P A Y$. Since $m \angle P Y A \cong m \angle P Z A \cong 90$, quadrilateral $P Y A Z$ is cyclic (\#37), and $m \angle P Z Y=m \angle P A Y$.
From (III) and (IV), $m \angle P K C=m \angle P Z Y$ and $\overleftrightarrow{Z Y} \| \overleftrightarrow{K C}$ (\#7).
Since both $\overleftrightarrow{X Z}$ and $\overleftrightarrow{Z Y}$ are parallel to $\overleftrightarrow{K C}, X, Y$, and Z must be collinear, by Euclid's parallel postulate.

Challenge 1 State and prove the converse of Simson's Theorem.
If the feet of the perpendiculars from a point to the sides of a given triangle are collinear, then the point must lie on the circumcircle of the triangle.
Collinear points X, Y, and Z, are the feet of perpendiculars $\overline{P X}, \overline{P Y}$, and $\overline{P Z}$ to sides $\overline{B C}, \overline{A C}$, and $\overline{A B}$, respectively, of $\triangle A B C$ (Fig. S9-1d). Draw $\overline{P A}, \overline{P B}$, and $\overline{P C}$.

Since $m \angle P Z B \cong m \angle P X B \cong 90$, quadrilateral $P Z X B$ is cyclic (\#36a), and $\angle P B X$ is supplementary to $\angle P Z X$ (\#37). However, $\angle P Z X$ is supplementary to $\angle P Z Y$, since X, Z, and Y are collinear.
Therefore, $m \angle P B X=m \angle P Z Y$.
Since $\angle P Z A$ is supplementary to $\angle P Y A$, quadrilateral PZAY is also cyclic (\#37), and $m \angle P A Y=m \angle P Z Y$ (\#36).
From (I) and (II), $m \angle P B X=m \angle P A Y$ or $m \angle P B C=$ $m \angle P A Y$.
Therefore $\angle P B C$ is supplementary to $\angle P A C$ and quadrilateral $P A C B$ is cyclic (\#37); in other words point P lies on the circumcircle of $\triangle A B C$.

Another proof of the converse of Simson's Theorem can be obtained by simply reversing the steps shown in the proof of the theorem itself, Method II.

Challenge 2 Which points on the circumcircle of a given triangle lie on their own Simson Lines with respect to the given triangle?

ANSWER: The three vertices of the triangle are the only points which lie on their own Simson Lines.

9-2 Altitude $\overline{\mathrm{AD}}$ of $\triangle \mathrm{ABC}$ meets the circumcircle at P . Prove that the Simson Line of P with respect to $\triangle \mathrm{ABC}$ is parallel to the line tangent to the circle at A .

Since $\overline{P X}$, and $\overline{P Z}$ are perpendicular respectively to sides $\overleftrightarrow{A C}$, and $\overleftrightarrow{A B}$ of $\triangle A B C$, points X, D, and Z determine the Simson Line of P with respect to $\triangle A B C$.
Draw $\overline{P B}$ (Fig. S9-2).
Consider quadrilateral $P D B Z$, where $m \angle P D B \cong m \angle P Z B \cong$ 90 , thus making $P D B Z$ a cyclic quadrilateral (\#37).

In PDBZ, $m \angle D Z B=m \angle D P B$ (\#36).
However, in the circumcircle of $\triangle A B C, m \angle G A B=\frac{1}{2}(m \overparen{A B})$ (\#38), and $m \angle D P B(\angle A P B)=\frac{1}{2}(m \overparen{A B})(\# 36)$.
Therefore, $m \angle G A B=m \angle D P B$.
From (I) and (II), by transitivity, $m \angle D Z B=m \angle G A B$, and thus Simson Line $\overleftrightarrow{X D Z} \|$ tangent $\overleftrightarrow{G A}(\# 8)$.

9-3 From point P on the circumcircle of $\triangle \mathrm{ABC}$, perpendiculars $\overline{\mathrm{PX}}$,
 Prove that $(\mathrm{PA})(\mathrm{PZ})=(\mathrm{PB})(\mathrm{PX})$. (See Fig. S9-3.)

Since $m \angle P Y B \cong m \angle P Z B \cong 90$, quadrilateral $P Y Z B$ is cyclic (\#36a), and $m \angle P B Y=m \angle P Z Y$ (\#36).
Since $m \angle P X A \cong m \angle P Y A \cong 90$, quadrilateral $P X A Y$ is cyclic (\#37), and $m \angle P X Y=m \angle P A Y$.

Since X, Y, and Z are collinear (the Simson Line), $\triangle P A B \sim \triangle P X Z(\# 48)$, and $\frac{P A}{P X}=\frac{P B}{P Z}$, or $(P A)(P Z)=(P B)(P X)$.

9-4 Sides $\overleftrightarrow{\mathrm{AB}}, \overleftrightarrow{\mathrm{BC}}$, and $\overleftrightarrow{\mathrm{CA}}$ of $\triangle \mathrm{ABC}$ are cut by a transversal at points Q, R, and S , respectively. The circumcircles of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{SCR}$ intersect at P . Prove that quadrilateral APSQ is cyclic.
Draw perpendiculars $\overline{P X}, \overline{P Y}, \overline{P Z}$, and $\overline{P W}$ to $\overleftrightarrow{A B}, \overleftrightarrow{A C}, \overleftrightarrow{Q R}$, and $\overleftrightarrow{B C}$, respectively, as in Fig. S9-4.
Since point P is on the circumcircle of $\triangle A B C$, points X, Y, and W are collinear (Simson's Theorem).
Similarly, since point P is on the circumcircle of $\triangle S C R$, points Y, Z, and W are collinear.
It then follows that points X, Y, and Z are collinear.
Thus, P must lie on the circumcircle of $\triangle A Q S$ (converse of Simson's Theorem), or quadrilateral $A P S Q$ is cyclic.

9-5 In Fig. S9-5, $\triangle \mathrm{ABC}$, with right angle at A , is inscribed in circle O . The Simson Line of point P , with respect to $\triangle \mathrm{ABC}$ meets $\widehat{\mathrm{PA}}$ at M . Prove that $\overline{\mathrm{MO}}$ is perpendicular to $\overline{\mathrm{PA}}$.

In Fig. S9-5, $\overline{P Z}, \overline{P Y}$, and $\overline{P X}$ are perpendicular to lines $\overleftrightarrow{A B}, \overleftrightarrow{A C}$, and $\overrightarrow{B C}$, respectively. $\overleftrightarrow{X Y Z}$ is the Simson Line of $\triangle A B C$ and point P, and meets $\overline{P A}$ at M. Since $\angle B A C$ is a right angle, $A Z P Y$ is a rectangle (it has three right angles). Therefore, M is the midpoint of $\overline{P A}$ (\#21f). It then follows that $\overline{M O}$ is perpendicular to $\overline{P A}(\# 31)$.

S9.5

9-6 From a point P on the circumference of circle O , three chords are drawn meeting the circle in points A, B, and C . Prove that the three points of intersection of the three circles with $\overline{\mathrm{PA}}, \overline{\mathrm{PB}}$, and $\overline{\mathrm{PC}}$ as diameters, are collinear.
In Fig. S9-6, the circle on $\overline{P A}$ meets the circle on $\overline{P B}$ at X, and the circle on $\overline{P C}$ at Y, while the circle on $\overline{P B}$ meets the circle on $\overline{P C}$ at Z.
Draw $\overline{A B}, \overline{B C}$, and $\overline{A C}$, also $\overline{P X}, \overline{P Y}$, and $\overline{P Z}$. In the circle on $\overline{P A}, \angle P X A$ is a right angle (\#36). Similarly, $\angle P Y C$ and $\angle P Z C$ are right angles. Since $\overline{P X}, \overline{P Y}$, and $\overline{P Z}$ are drawn from a point on the circumcircle of $\triangle A B C$ perpendicular to the sides of $\triangle A B C, X, Y$, and Z determine a Simson Line and are therefore collinear.

9-7 P is any point on the circumcircle of cyclic quadrilateral ABCD . If $\overline{\mathrm{PK}}, \overline{\mathrm{PL}}, \overline{\mathrm{PM}}$, and $\overline{\mathrm{PN}}$ are the perpendiculars from P to sides $\stackrel{\rightharpoonup}{\mathrm{AB}}, \stackrel{\rightharpoonup}{\mathrm{BC}}, \stackrel{\rightharpoonup}{\mathrm{CD}}$, and $\stackrel{\rightharpoonup}{\mathrm{DA}}$, respectively, prove that $(\mathrm{PK})(\mathrm{PM})=$ (PL)(PN).
Draw $\overline{D B}, \overline{A P}$, and $\overline{C P}$, as shown in Fig. S9-7. Draw $\overline{P S} \perp \overline{B D}$.
Since $m \angle A N P \cong m \angle A K P \cong 90$, quadrilateral $A K P N$ is cyclic (\#37), and $m \angle N A P=m \angle N K P(\# 36)$.
$\overleftrightarrow{N S K}$ is the Simson Line of $\triangle A B D$ with respect to point P. Also $m \angle N A P(\angle D A P)=m \angle P C M(\angle P C D)(\# 36)$.
Since $m \angle P L C \cong m \angle P M C \cong 90$, quadrilateral $P L C M$ is cyclic (\#37), $m \angle P C M=m \angle P L M$ (\#36), and $\overparen{L M S}$ is the Simson Line of $\triangle D B C$ with respect to point P. From (I), (II), and (III), $m \angle P L M=m \angle N K P$.
Since $\angle L C M$ is supplementary to $\angle B C D$, and $\angle B A D$ is supplementary to $\angle B C D$ (\#37), $m \angle L C M=m \angle B A D$.
However, $\angle L P M$ is supplementary to $\angle L C M$, therefore, from (V), $\angle L P M$ is supplementary to $\angle B A D$.

Since quadrilateral $A K P N$ is cyclic,
$\angle N P K$ is supplementary to $\angle B A D$.
From (VI) and (VII), $m \angle L P M=m \angle N P K$.
Thus, $\triangle L P M \sim \triangle K P N(\# 48)$, and $\frac{P L}{P K}=\frac{P M}{P N}$, or $(P K)(P M)=$ $(P L)(P N)$.

9-8 Line segments $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{EC}}$, and $\overline{\mathrm{ED}}$ form triangles $\mathrm{ABC}, \mathrm{FBD}$, EFA, and EDC. Prove that the four circumcircles of these triangles meet at a common point.
Consider the circumcircles of $\triangle A B C$ and $\triangle F B D$, which meet at B and P.
From point P draw perpendiculars $\overline{P X}, \overline{P Y}, \overline{P Z}$, and $\overline{P W}$ to $\overline{B C}, \overline{A B}, \overline{E D}$, and $\overline{E C}$, respectively (Fig. S9-8). Since P is on the circumcircle of $\triangle F B D, X, Y$, and Z are collinear (Simson Line). Similarly, since P is on the circumcircle of $\triangle A B C, X, Y$, and W are collinear. Therefore X, Y, Z, and W are collinear.

Since Y, Z, and W are collinear, P must lie on the circumcircle of $\triangle E F A$ (converse of Simson's Theorem). By the same reasoning, since X, Z, and W are collinear, P lies on the circumcircle of $\triangle E D C$. Thus all four circles pass through point P.

9-9 The line joining the orthocenter of a given triangle with a point on the circumcircle of the triangle is bisected by the Simson Line, (with respect to that point).

METHOD I: As in Fig. S9-9a, point P is on the circumcircle of $\triangle A B C . \overline{P X}, \bar{P} \bar{Y}$, and $\overline{P Z}$ are perpendicular to $\overleftrightarrow{B C}, \overleftrightarrow{A C}$, and $\overleftrightarrow{A B}$, respectively. Points X, Y, and Z are therefore collinear and define the Simson Line. Let J be the orthocenter of $\triangle A B C . \overline{P G}$ meets the Simson Line at Q and $\overline{B C}$ at $H . \overline{P J}$ meets the Simson Line at M. Draw $\overline{H J}$.

Since $m \angle P Z B \cong m \angle P X B \cong 90$, quadrilateral $P Z X B$ is cyclic (\#36a),
and $m \angle P X Q(\angle P X Z)=m \angle P B Z(\# 36)$.
In the circumcircle, $m \angle P B Z=m \angle P G A$ (\#36).
Since $\overline{P X} \| \overline{A G}(\# 9), m \angle P G A=m \angle Q P X(\# 8)$.
From (I), (II), and (III),

$$
\begin{equation*}
m \angle P X Q=m \angle Q P X \tag{IV}
\end{equation*}
$$

Therefore, $P Q=X Q$ (\#5). Since $\angle Q X H$ is complementary to $\angle P X Q$, and $\angle Q H X$ is complementary to $\angle Q P X$ (\#14), $m \angle Q X H=m \angle Q H X$, and $X Q=H Q$ (\#5). Thus Q is the midpoint of hypotenuse $\overline{P H}$ of right $\triangle P X H$.

Consider a circle passing through points B, J, and $C . \overline{B C}$, the common chord of the new circle and the original circle, is the perpendicular bisector of line segment $\overline{J G}$. To prove this last statement, it is necessary to set up an auxiliary proof (called a Lemma), before we continue with the main proof.

lemma: Draw altitudes $\overline{B E}$, and $\overline{C F}$; also draw $\overline{B G}, \overline{C J}$, and $\overline{C G}$. (See Fig. S9-9b.)
$\overline{J D} \perp \overline{B C}$, therefore $m \angle J D B=m \angle G D B=90$
$\angle J B C(\angle E B C)$ is complementary to $\angle C$ (\#14).
$m \angle G B C=m \angle G A C$ ($\angle D A C$) (\#36). Therefore, since $\angle G A C$ ($\angle D A C$) is complementary to $\angle C$ (\#14), $\angle G B C$ is complementary to $\angle C$.
Thus, from (VI), and (VII), $m \angle J B C=m \angle G B C$. Hence, $\triangle B J D \cong \triangle B G D$; therefore $J D=G D$, and $\overline{B C}$ is the perpendicular bisector of $\overline{J G}$.
Continuing with the main proof, we can now say that $H J=H G$ (\#18), and $m \angle H J G=m \angle H G J$ (\#5).
$\angle J H D$ is complementary to $\angle H J D$.
But $m \angle H J D=m \angle H G D$ (IX), and $m \angle H G D=m \angle Q P X$ (III), and $m \angle Q P X=m \angle P X Q$ (IV).
Therefore, $\angle J H D$ is complementary to $\angle Q X P$.
However, $\angle Q X H$ is complementary to $\angle Q X P$; therefore

$$
m \angle J H D=m \angle Q X H
$$

Thus $\overline{J H}$ is parallel to the Simson Line $\bar{X} \overrightarrow{Y Z}$ (\#7).
Therefore, in $\triangle P J H$, since Q is the midpoint of $\overline{P H}$, and $\overline{Q M}$ is parallel to $\overline{J H}, M$ is the midpoint of $\overline{P J}$, (\#46).
Thus the Simson Line bisects $\overline{P J}$ at M.

METHOD II: In Fig. S9-9c, point P is on the circumcircle of $\triangle A B C$. $\overline{P X}, \overrightarrow{P Y}$, and $\overline{P Z}$ are perpendicular to sides $\overleftrightarrow{B C}, \overleftrightarrow{A C}$, and $\overleftrightarrow{A B}$, respectively. Therefore points X, Y, and Z are collinear and define the Simson Line. $\overline{P Y}$ extended meets the circle at K. Let J be the orthocenter of $\triangle A B C$. The altitude from B meets $\overline{A C}$ at E and the circle at $N . \overline{P J}$ meets the Simson line at M. Draw a line parallel to $\overline{K B}$, and through the orthocenter, J, meeting $\overline{P Y K}$ at L.
Since $\overline{P K} \| \overline{N B}(\# 9), K B J L$ is a parallelogram, and $L J=K B$ (\#21b). Also $\overparen{P N} \cong \overparen{K B}$ (\#33), and $P N=K B$. Therefore $L J=$ $P N$ and trapezoid $P N J L$ is isosceles.

Consider a circle passing through points A, J, and C. The common chord $\overline{A C}$ is then the perpendicular bisector of $\overline{J N}$. (See Method I Lemma.) Thus E is the midpoint of $\overline{J N}$. Since $\overline{A C}$ is perpendicular to both bases of isosceles trapezoid PNJL, it may easily be shown that Y is the midpoint of $\overline{P L}$.

Since quadrilateral $A Y P Z$ is cyclic (\#37), $m \angle K B A=$ $m \angle K P A=m \angle Y P A=m \angle Y Z A$ (\#36), and $\overline{K B}$ is parallel to Simson Line $\overleftarrow{X Y Z}$ (\#8). Now, in $\triangle P L J, M$, the point of intersection of $\overline{P J}$ with the Simson Line, is the midpoint of $\overline{P J}(\# 25)$.

9-10 The measure of the angle determined by the Simson Lines of two given points on the circumcircle of a given triangle is equal to one-half the measure of the arc determined by the two points.

In Fig. S9-10, $\overleftrightarrow{X Y Z}$ is the Simson Line for point P, and $\overleftrightarrow{U V W}$ is the Simson Line for point Q. Extend $\overline{P X}$ and $\overline{Q W}$ to meet the circle at M and N, respectively. Then draw $\overline{A M}$ and $\overline{A N}$.

Since $m \angle P Z B \cong m \angle P X B \cong 90$, quadrilateral $P Z X B$ is cyclic (\#36a), and $m \angle Z X P=m \angle Z B P$ (\#36).
Also $m \angle A B P=m \angle A M P$ (\#36), or $m \angle Z B P=m \angle A M P$. (II)
From (I) and (II), $m \angle Z X P=m \angle A M P$, and $\overleftarrow{X Y Z} \| \overrightarrow{A M}$. (III) In a similar fashion it may be shown that $\overleftrightarrow{U V W} \| \overrightarrow{A N}$.
Hence, if T is the point of intersection of the two Simson Lines, then $m \angle X T W=m \angle M A N$, since their corresponding sides are parallel. Now, $m \angle M A N=\frac{1}{2}(m \overparen{M N})$, but since $\overline{P M} \| \overline{Q N}$ (\#9), $m \overparen{M N}=m \overparen{P Q}(\# 33)$, and therefore $m \angle M A N=\frac{1}{2}(m \overparen{P Q})$. Thus, $m \angle X T W=\frac{1}{2}(m \overparen{P Q})$.

9-11 If two triangles are inscribed in the same circle, a single point on the circumcircle determines a Simson Line for each triangle. Prove that the angle formed by these two Simson Lines is constant, regardless of the position of the point.
Triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are inscribed in the same circle. (See Fig. S9-11.) From point P, perpendiculars are drawn to $\overline{A B}$ and $\overline{A^{\prime} B^{\prime}}$, meeting the circle at M and M^{\prime}, respectively. From Solution 9-10 (III), we know that the Simson Lines of point P with respect to $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are parallel to $\overline{M C}$ and $\overline{M^{\prime} C^{\prime}}$, respectively. We may now consider the angle formed by $\overline{M C}$ and $\overline{M^{\prime} C^{\prime}}$, since it is congruent to the angle formed by the two Simson Lines. The angle α formed by $\overline{M C}$ and $\overline{M^{\prime} C^{\prime}}=$ $\frac{1}{2}\left(m \overparen{M M^{\prime}}-m \overparen{C C^{\prime}}\right)(\# 40)$. In Fig. S9-11, $\triangle P F D \sim \triangle E J D$ (\#48), and $m \angle M^{\prime} P M=m \angle B^{\prime} E B$. Now, $m \angle M^{\prime} P M=\frac{1}{2}\left(m \overparen{M M^{\prime}}\right)$ (\#36), while $m \angle B^{\prime} E B=\frac{1}{2}\left(m \overparen{B B^{\prime}}+m \overparen{A A^{\prime}}\right)$ (\#39). Therefore, $m \overparen{M M^{\prime}}=m \overparen{B B^{\prime}}+m \overparen{A A^{\prime}}$. Thus, $m \angle \alpha=\frac{1}{2}\left(m \overparen{B B^{\prime}}+m \overparen{A A^{\prime}}-\right.$ $m \overparen{C C}{ }^{\prime}$). Since $\overparen{C C^{\prime}}, \overparen{B B}^{\prime}$, and $\overparen{A A}^{\prime}$ are independent of the position of point P, the theorem is proved.

9-12 In the circumcircle of $\triangle \mathrm{ABC}$, chord $\overline{\mathrm{PQ}}$ is drawn parallel to side $\widehat{\mathrm{BC}}$. Prove that the Simson Lines of $\triangle \mathrm{ABC}$, with respect to points P and Q , are concurrent with the altitude $\overline{\mathrm{AD}}$ of $\triangle \mathrm{ABC}$.

As illustrated in Fig. S9-12, $\overleftrightarrow{M_{1} M_{2} M_{3}}$ is the Simson Line of point P, and $\overleftrightarrow{N_{1} N_{2} N_{3}}$ is the Simson Line of point Q.
Extend $\overline{P M}_{2}$ and $\overline{Q N}_{2}$ to meet the circle at points M and N, respectively. In Solution 9-10 (III), it was proved that $\overline{A M} \|$ Simson Line $\overleftarrow{M_{1} M_{2} M_{3}}$ and $\overrightarrow{A N} \|$ Simson Line $\overleftrightarrow{N_{1} N_{2} N_{3}}$.

Draw altitude $\overline{A D}$, cutting $\overleftrightarrow{M_{1} M_{2} M_{3}}$ and $\stackrel{N_{1} N_{2} N_{3}}{ }$, at points T and S.
Since $\overline{M M}_{2}\|\overline{A D}\| \overline{N N}_{2}$ (\#9), quadrilaterals $A T M_{2} M$, and $A S N_{2} N$ are parallelograms, (\#2la). Therefore, $M M_{2}=A T$

$$
\begin{equation*}
\text { and } N N_{2}=A S(\# 21 \mathrm{~b}) . \tag{I}
\end{equation*}
$$

However, since $\overline{P M} \| \overline{Q N}, m \overparen{M N}=m \overparen{P Q}$, and $M N=P Q$. As $\overline{M P} \perp \overline{P Q}(\# 10)$, then quadrilaterals $M N Q P$ and $M_{2} N_{2} Q P$ are rectangles,

$$
\begin{equation*}
\text { and } M M_{2}=N N_{2} \tag{II}
\end{equation*}
$$

From (I) and (II), $A T=A S$.
Therefore, altitude $\overline{A D}$ crosses Simson Lines $\overleftrightarrow{M_{1} M_{2} M_{3}}$ and $\overleftarrow{N}_{1} N_{2} \vec{N}_{3}$ at the same point. Thus, the Simson Lines are concurrent with the altitude $\overline{A D}$.

10. The Theorem of Stewart

10-1 A classic theorem, known as Stewart's Theorem, is very useful as a means of finding the measure of any line segment from the vertex of a triangle to the opposite side. Using the letter designations in Fig. S10-1, the theorem states the following relationship:

$$
a^{2} n+b^{2} m=c\left(d^{2}+m n\right)
$$

Prove the validity of the theorem.
S10-1

In $\triangle A B C$, let $B C=a, A C=b, A B=c, C D=d$. Point D divides $\overline{A B}$ into two segments; $B D=m$ and $D A=n$. Draw altitude $C E=h$ and let $E D=p$.

In order to proceed with the proof of Stewart's Theorem we first derive two necessary formulas. The first one is applicable to $\triangle C B D$. We apply the Pythagorean Theorem to $\triangle C E B$ to obtain

$$
\begin{equation*}
(C B)^{2}=(C E)^{2}+(B E)^{2} . \tag{I}
\end{equation*}
$$

Since $B E=m-p, a^{2}=h^{2}+(m-p)^{2}$.
However, by applying the Pythagorean Theorem to $\triangle C E D$, we have $(C D)^{2}=(C E)^{2}+(E D)^{2}$, or $h^{2}=d^{2}-p^{2}$.
Replacing h^{2} in equation (I), we obtain

$$
\begin{gather*}
a^{2}=d^{2}-p^{2}+(m-p)^{2} \\
a^{2}=d^{2}-p^{2}+m^{2}-2 m p+p^{2} \\
\text { Thus, } a^{2}=d^{2}+m^{2}-2 m p \tag{II}
\end{gather*}
$$

A similar argument is applicable to $\triangle C D A$.
Applying the Pythagorean Theorem to $\triangle C E A$, we find that

$$
\begin{equation*}
(C A)^{2}=(C E)^{2}+(E A)^{2} . \tag{III}
\end{equation*}
$$

Since $E A=(n+p), b^{2}=h^{2}+(n+p)^{2}$.
However, $h^{2}=d^{2}-p^{2}$, substitute for h^{2} in (III) as follows:

$$
\begin{aligned}
& b^{2}=d^{2}-p^{2}+(n+p)^{2} \\
& b^{2}=d^{2}-p^{2}+n^{2}+2 n p+p^{2} .
\end{aligned}
$$

$$
\begin{equation*}
\text { Thus, } b^{2}=d^{2}+n^{2}+2 n p \tag{IV}
\end{equation*}
$$

Equations (II) and (IV) give us the formulas we need.
Now multiply equation (II) by n to get

$$
\begin{equation*}
a^{2} n=d^{2} n+m^{2} n-2 m n p, \tag{V}
\end{equation*}
$$

and multiply equation (IV) by m to get

$$
\begin{equation*}
b^{2} m=d^{2} m+n^{2} m+2 m n p \tag{VI}
\end{equation*}
$$

Adding (V) and (VI), we have

$$
a^{2} n+b^{2} m=d^{2} n+d^{2} m+m^{2} n+n^{2} m+2 m n p-2 m n p
$$

Therefore, $a^{2} n+b^{2} m=d^{2}(n+m)+m n(m+n)$.
Since $m+n=c$, we have $a^{2} n+b^{2} m=d^{2} c+m n c$, or $a^{2} n+b^{2} m=c\left(d^{2}+m n\right)$.

10-2 In an isosceles triangle with two sides of measure 17, a line measuring 16 is drawn from the vertex to the base. If one segment of the base, as cut by this line, exceeds the other by 8, find the measures of the two segments.

In Fig. S10-2, $A B=A C=17$, and $A D=16$. Let $B D=x$ so that $D C=x+8$.
By Stewart's Theorem,

$$
(A B)^{2}(D C)+(A C)^{2}(B D)=B C\left[(A D)^{2}+(B D)(D C)\right] .
$$

Therefore,

$$
(17)^{2}(x+8)+(17)^{2}(x)=(2 x+8)\left[(16)^{2}+x(x+8)\right]
$$

and $x=3$. Therefore, $B D=3$ and $D C=11$.

10-3 In $\triangle \mathrm{ABC}$, point E is on $\overline{\mathrm{AB}}$, so that $\mathrm{AE}=\frac{1}{2} \mathrm{~EB}$. Find CE if $\mathrm{AC}=4, \mathrm{CB}=5$, and $\mathrm{AB}=6$.
METHOD I: By applying Stewart's Theorem to $\triangle A B C$ (Fig. S10-3), we get

$$
(A C)^{2}(E B)+(C B)^{2}(A E)=A B\left[(C E)^{2}+(A E)(E B)\right]
$$

Therefore, $(4)^{2}(4)+(5)^{2}(2)=6\left[(C E)^{2}+(2)(4)\right]$, $114=6(C E)^{2}+48$, and $C E=\sqrt{ } 1 \overline{1}$.
METHOD II: Since $\triangle A C E$ and $\triangle A C B$ share the same altitude, and $A E=\frac{1}{3} A B$, the area of $\triangle A C E=\frac{1}{3}$ the area of $\triangle A C B$.
By Heron's Formula,

$$
\begin{equation*}
\frac{1}{3} \text { the area } \triangle A C B=\frac{1}{3} \sqrt{\frac{15}{2}\left(\frac{7}{2}\right)\left(\frac{5}{2}\right)\binom{3}{2}}=\frac{5}{4} \sqrt{7} . \tag{I}
\end{equation*}
$$

Let $C E=x$. Then the area of $\triangle A C E$

$$
\begin{align*}
& =\sqrt{\left(\frac{6+x}{2}\right)\left(\frac{6-x}{2}\right)\left(\frac{x+2}{2}\right)\left(\frac{x-2}{2}\right)} \\
& =\frac{1}{4} \sqrt{-\left(x^{2}-36\right)\left(x^{2}-4\right)} . \tag{II}
\end{align*}
$$

Let $y=x^{2}$. From (I) and (II),

$$
{ }_{4}^{5} \sqrt{7}={ }_{4}^{1} \sqrt{-\left(\overline{y^{2}}-40 y+144\right)}
$$

Therefore, $y^{2}-40 y+319=0$, and $y=11$ or, $y=29$ (reject). Therefore, $C E=\sqrt{ } 11$.
comment: Compare the efficiency of Method II with that of Method I.

Challenge Find the measure of the segment from E to the midpoint of $\overline{\mathrm{CB}}$.
ANSWER: $\frac{1}{2} \sqrt{ } 29$
10-4 Prove that the sum of the squares of the distances from the vertex of the right angle, in a right triangle, to the trisection points along the hypotenuse is equal to ${ }_{9}^{5}$ the square of the measure of the hypotenuse.

Applying Stewart's Theorem to Fig. S10-4, using p as the internal line segment,

$$
\begin{equation*}
2 a^{2} n+b^{2} n=c\left(p^{2}+2 n^{2}\right) \tag{I}
\end{equation*}
$$

using q as the internal line segment,

$$
\begin{equation*}
a^{2} n+2 b^{2} n=c\left(q^{2}+2 n^{2}\right) \tag{II}
\end{equation*}
$$

By adding (I) and (II), we get

$$
3 a^{2} n+3 b^{2} n=c\left(4 n^{2}+p^{2}+q^{2}\right)
$$

Since $a^{2}+b^{2}=c^{2}, 3 n\left(c^{2}\right)=c\left(4 n^{2}+p^{2}+q^{2}\right)$.
Since $3 n=c, c^{2}=(2 n)^{2}+p^{2}+q^{2}$.
But $2 n=\frac{2}{3} c$; therefore, $p^{2}+q^{2}=c^{2}-\left(\frac{2}{3} c\right)^{2}=\frac{5}{9} c^{2}$.

10-5 Prove that the sum of the squares of the measures of the sides of a parallelogram equals the sum of the squares of the measures of the diagonals.
In Fig.S10-5, consider $\triangle A B E$.
Draw altitude $\overline{B F}$.

$$
\begin{align*}
& (A B)^{2}=(B E)^{2}+(A E)^{2}-2(A E)(F E), \tag{I}\\
& (B C)^{2}=(B E)^{2}+(E C)^{2}+2(E C)(F E) \tag{II}
\end{align*}
$$

and and (IV).]
Since the diagonals of $A B C D$ bisect each other, $A E=E C$.
Therefore, by adding equations (I) and (II), we get

$$
\begin{equation*}
(A B)^{2}+(B C)^{2}=2(B E)^{2}+2(A E)^{2} \tag{III}
\end{equation*}
$$

Similarly, in $\triangle C A D$,

$$
\begin{equation*}
(C D)^{2}+(D A)^{2}=2(D E)^{2}+2(C E)^{2} . \tag{IV}
\end{equation*}
$$

By adding lines (III) and (IV), we get

$$
\begin{aligned}
(A B)^{2}+(B C)^{2}+ & (C D)^{2}+(D A)^{2} \\
& =2(B E)^{2}+2(A E)^{2}+2(D E)^{2}+2(C E)^{2}
\end{aligned}
$$

Since $A E=E C$ and $B E=E D$,

$$
\begin{aligned}
& (A B)^{2}+(B C)^{2}+(C D)^{2}+(D A)^{2}=4(B E)^{2}+4(A E)^{2} \\
& (A B)^{2}+(B C)^{2}+(C D)^{2}+(D A)^{2}=(2 B E)^{2}+(2 A E)^{2} \\
& (A B)^{2}+(B C)^{2}+(C D)^{2}+(D A)^{2}=(B D)^{2}+(A C)^{2}
\end{aligned}
$$

Challenge A given parallelogram has sides measuring 7 and 9, and a shorter diagonal measuring 8. Find the measure of the longer diagonal.

ANSWER: 14

10-6 Using Stewart's Theorem, prove that in any triangle the square of the measure of the internal bisector of any angle is equal to the product of the measures of the sides forming the bisected angle decreased by the product of the measures of the segments of the side to which this bisector is drawn.

By Stewart's Theorem we obtain the following relationship:

$$
c^{2} n+b^{2} m=a\left(t_{a}{ }^{2}+m n\right), \text { or } t_{a}^{2}+m n=\frac{c^{2} n+b^{2} m}{a},
$$

as illustrated by Fig. S10-6.
But, $\frac{c}{b}=\frac{m}{n}$ (\#47), therefore $c n=b m$.
Substituting in the above equation,

$$
t_{a}^{2}+m n=\frac{c b m+c b n}{m+n}=\frac{c b(m+n)}{m+n}=c b .
$$

Hence, $t_{a}{ }^{2}=c b-m n$.
Challenge 1 Can you also prove the theorem in Problem 10-6 without using Stewart's Theorem?
As in Fig.S10-6, extend $\overline{A D}$, the bisector of $\angle B A C$, to meet the circumcircle of $\triangle A B C$ at E. Then draw $\overline{B E}$. Since $m \angle B A D=m \angle C A D$, and $m \angle E=m \angle C$ (\#36),
$\triangle A B E \sim \triangle A D C$, and $\frac{A C}{A D}=\frac{A E}{A B}$, or
$(A C)(A B)=(A D)(A E)=(A D)(A D+D E)$
$=(A D)^{2}+(A D)(D E)$.
However, $(A D)(D E)=(B D)(D C)(\# 52)$.

Substituting (II) into (I), we obtain

$$
(A D)^{2}=(A C)(A B)-(B D)(D C)
$$

or, using the letter designations in Fig. S10-6, $t_{a}{ }^{2}=c b-m n$.

10-7 The two shorter sides of a triangle measure 9 and 18 . If the internal angle bisector drawn to the longest side measures 8, find the measure of the longest side of the triangle.
Let $A B=9, A C=18$, and angle bisector $A D=8$. (See Fig. S10-7.) Since $\frac{B D}{D C}=\frac{A B}{A C}=\frac{1}{2}$ (\#47), we can let $B D=m=x$, so that $D C=n=2 x$. From the solution to Problem 10-6, we know that $t_{a}{ }^{2}=b c-m n$, or $(A D)^{2}=(A C)(A B)-(B D)(D C)$.
Therefore, $(8)^{2}=(18)(9)-2 x^{2}$, and $x=7$.
Thus, $B C=3 x=21$.
Challenge Find the measure of a side of a triangle if the other two sides and the bisector of the included angle have measures 12, 15, and 10 , respectively.

ANSWER: 18

S10-8

10-8 In a right triangle, the bisector of the right angle divides the hypotenuse into segments that measure 3 and 4 . Find the measure of the angle bisector of the larger acute angle of the right triangle.
In right $\triangle A B C$, with right angle at C, and angle bisector $\overline{C D}$, $A D=3$ while $D B=4$. (See Fig. S10-8.)
Since $\frac{A C}{C B}=\frac{A D}{D B}=\frac{3}{4}(\# 47), A C=3 x$, and $C B=4 x$.
By the Pythagorean Theorem, applied to $\triangle A B C$,

$$
(3 x)^{2}+(4 x)^{2}=7^{2}, \text { and } x=\frac{7}{5}
$$

Thus, $A C=\frac{21}{5}$ and $C B=\frac{28}{5}$. Also, $\frac{A C}{A B}=\frac{C E}{E B}$ (\#47).

Substituting, we get $\frac{\frac{21}{7}}{7}=\frac{C E}{\frac{28}{5}-C E} \cdot$ Thus $C E=\frac{21}{10}$ and $E B=\frac{7}{2}$.
The proof may be concluded using either one of the following methods.
METHOD I: From Solution 10-6, $(A E)^{2}=(A C)(A B)-(C E)(E B)$. Substituting, we have $(A E)^{2}=\left(\frac{21}{5}\right)(7)-\left(\frac{21}{10}\right)\left(\frac{7}{2}\right)$, and $A E=\frac{21 \sqrt{ } 5}{10}$.
METHOD II: By the Pythagorean Theorem, applied to $\triangle A C E$, $(A E)^{2}=(A C)^{2}+(C E)^{2} ;$ therefore, $A E=\frac{21 \sqrt{5}}{10}$.

10-9 In a 30-60-90 right triangle, if the measure of the hypotenuse is 4 , find the distance from the vertex of the right angle to the point of intersection of the angle bisectors.
In $\triangle A B C$ (Fig. S10-9), if $A B=4$, then $A C=2(\# 55 \mathrm{c})$.
In $\triangle A C E$, since $m \angle C A E=30, C E=\frac{2}{\sqrt{3}}$,
and $A E=\frac{4}{\sqrt{3}} \cdot \operatorname{In} \triangle A C E, \frac{A C}{C E}=\frac{A G}{G E}(\# 47)$.
If we let $A G=y$, then from equation (II), we find $G E=\frac{y}{\sqrt{3}}$.
Since $A G+G E=A E, y+\frac{y}{\sqrt{3}}=\frac{4}{\sqrt{3}}$, and $y=\frac{4}{1+\sqrt{3}}=$
$2 \sqrt{3}-2$. Thus, $A G=2 \sqrt{3}-2$,
and $G E=2-\frac{2 \sqrt{3}}{3}$.
From Solution 10-6 we know that

$$
(C G)^{2}=(A C)(C E)-(A G)(G E)
$$

Substituting (I), (III), and (IV) into (V), we get $(C G)^{2}=8-4 \sqrt{3}$.
Therefore, $C G=\sqrt{8-4 \sqrt{3}}=\sqrt{6}-\sqrt{2}$.

HINTS

1-1 Express angles $A F B, A E B$, and $A D B$ in terms of $\angle C A F, \angle C B F$, $\angle A B E$, and $\angle B A D$. Then apply Theorem \#13.

1-2 Consider $\angle A D B$ as an exterior angle of $\triangle C D B$.
1-3 Examine the isosceles triangles.
1-4 method i: Use Theorem \#27 to show $\triangle F C A$ is isosceles. METHOD II: Circumscribe a circle about $\triangle A B C$, extend $\overline{C E}$ to meet the circle at G. Then draw $\overline{G F}$.

1-5 To show $\overline{B P}$ is parallel $\overline{A E}$, use Theorem \#7, after using Theorems \#14 and \#5. To show $\overline{B P}$ is perpendicular $\overline{A E}$, use Theorems \#14 and $\# 5$ to prove that the bisector of $\angle A$ is also the bisector of the vertex angle of an isosceles triangle.

1-6 Extend $\overline{A M}$ through M to P so that $A M=M P$. Draw $\overline{B T} ; T$ is the midpoint of $\overline{A D}$. Then show that $\triangle T B P$ is isosceles. Use Theorems \#21, \#27, \#12, and \#8.

1-7 method i: Draw a line through M parallel to $\overline{B C}$. Then use Theorems \#27 and \#8.
METHOD II: Extend $\overline{K M}$ to meet $\overline{C B}$ extended at G; then prove $\triangle K M C \cong \triangle G M C$.

1-8 Extend $\overline{C P}$ and $\overline{C Q}$ to meet $\overline{A B}$ at S and R, respectively. Prove that P and Q are the midpoints of $\overline{C S}$ and $\overline{C R}$, respectively; then use Theorem \#26.

1-9 From E, the point of intersection of the diagonals of square $A B C D$, draw a line parallel to $\overline{B P Q}$. Use Theorems \#25, \#10, and \#23.

1-10 method i: Draw $\overline{A F} \perp \overline{D E}$, and draw $\overline{D G}$, where G is on $\overline{A F}$ and $m \angle F D G=60$. Then show that $\overline{A F}$ is the perpendicular bisector of $\overline{D E}$. Apply Theorem \#18.
METHOD II: Draw $\triangle A F D$ on side $\overline{A D}$ so that $m \angle F A D=$ $m \angle F D A=15$; then draw $\overline{F E}$. Now prove $m \angle E A B=60$.
METHOD III: Draw equilateral $\triangle D F C$ externally on side $\overline{D C}$; then draw $\overline{E F}$. Show that $m \angle B A E=60$.
METHOD IV: Extend $\overline{D E}$ and $\overline{C E}$ to meet $\overline{B C}$ and $\overline{A D}$ at K and H, respectively. Draw $\overline{A F}$ and $\overline{C G}$ perpendicular to $\overline{D K}$. Now prove $\overline{A F}$ is the perpendicular bisector of $\overline{D E}$.

1-11 Join E and F, and prove that $D G F E$ is an isosceles trapezoid.
1-12 Draw $\overline{C D}, \overline{C E}$, and the altitude from C to $\overline{A B}$; then prove triangles congruent.

1-13 Draw a line from one vertex (the side containing the given point) perpendicular to a diagonal of the rectangle; then draw a line from the given point perpendicular to the first line.

1-14 Prove various pairs of triangles congruent.
1-15 Use Theorems \#26 and \#10.
1-16 Draw a line through C and the midpoint of $\overline{A D}$; then prove that it is the perpendicular bisector of $\overline{T D}$.

1-17 Prove that the four given midpoints determine a parallelogram. Use Theorem \#26.

1-18 Draw median $\overline{C G D}$. From D and E (the midpoint of $\overline{C G}$) draw perpendiculars to $\overline{X Y Z}$. Show $\overline{Q D}$ is the median of trapezoid $A X Z B$. Then prove $Q D=E P=\frac{1}{2} C Y$.

1-19 Extend $\overline{B P}$ through P to E so that $B E=A Q$. Then draw $\overline{A E}$ and $\overline{B Q}$. Prove that $\overline{E M Q}$ is a diagonal of parallelogram $A E B Q$. Use Theorem \#27.

1-20 Prove $\triangle A F E \cong \triangle B F C \cong \triangle D C E$.

1-21 (a) Prove four triangles congruent, thereby obtaining four equal sides; then prove one right angle.
(b) Prove that one diagonal of the square and one diagonal of the parallelogram share the same midpoint.

2-1 Consider $\triangle A D C$, then $\triangle A B C$. Apply Theorem \#46.
2-2 метноd i: Prove $\triangle B F C \sim \triangle P E B$; then manipulate the resulting proportions.
method in: Draw a line from B perpendicular to $\overline{P D}$ at G. Then prove $\triangle G P B \cong \triangle E P B$.

2-3 Prove two pairs of triangles similar and equate ratios. Alternatively, extend the line joining the midpoints of the diagonals to meet one of the legs; then use Theorems \#25 and \#26.

2-4 Draw a line through D parallel to $\overline{B C}$ meeting $\overline{A E}$ at G. Obtain proportions from $\triangle A D G \sim \triangle A B E$ and $\triangle D G F \sim \triangle C E F$.

2-5 Draw a line through E parallel to $\overline{A D}$. Use this line with Theorems \#25 and \#26.

2-6 Prove $\triangle H E A \sim \triangle B E C$, and $\triangle B F A \sim \triangle G F C$; then equate ratios.

2-7 Extend $\overline{A P M}$ to G so that $P M=M G$; also draw $\overline{B G}$ and $\overline{G C}$. Then use Theorem \#46.

2-8 Show H is the midpoint of $\overline{A B}$. Then use Theorem \#47 in $\triangle A B C$.
2-9 Prove $\triangle A F C \sim \triangle H G B$. Use proportions from these triangles, and also from $\triangle A B E \sim \triangle B H G$; apply Theorem \#46.

2-10 Use proportions resulting from the following pairs of similar triangles:

$$
\triangle A H E \sim \triangle A D M, \triangle A E F \sim \triangle A M C, \text { and } \triangle B E G \sim \triangle B D C .
$$

2-11 Prove $\triangle K A P \sim \triangle P A B$. Also consider $\angle P K A$ as an exterior angle of $\triangle K P B$ and $\triangle K P L$.

2-12 From points R and Q, draw perpendiculars to $\overline{A B}$. Prove various pairs of triangles similar.

2-13 Prove $\triangle A C Z \sim \triangle A Y B$, and $\triangle B C Z \sim \triangle B X A$; then add the resulting proportions.

2-14 Draw lines through B and C, parallel to $\overline{A D}$, the angle bisector. Then apply the result of Problem 2-13.

2-15 Use the result of Problem 2-13.
2-16 Prove $\triangle F D G \sim \triangle A B G$, and $\triangle B G E \sim \triangle D G A$.

3-1 Apply the Pythagorean Theorem \#55 in the following triangles: $\triangle A D C, \triangle E D C, \triangle A D B$, and $\triangle E D B$.

3-2 Use Theorem \#29; then apply the Pythagorean Theorem to $\triangle D G B, \triangle E G A$, and $\triangle B G A$. (G is the centroid.)

3-3 Draw a line from C perpendicular to $\overline{H L}$. Then apply the Pythagorean Theorem to $\triangle A B C$ and $\triangle H G C$. Use Theorem \#51.

3-4 Through the point in which the given line segment intersects the hypotenuse, draw a line parallel to either of the legs of the right triangle. Then apply Theorem \#55.

3-5 method i: Draw $\overline{A C}$ meeting $\overline{E F}$ at G; then apply the Pythagorean Theorem to $\triangle F B C, \triangle A B C$, and $\triangle E G C$.
method in: Choose H on $\overline{E C}$ so that $E H=F B$; then draw $\overline{B H}$. Find $B H$.

3-6 Use the last two vectors (directed lines) and form a parallelogram with the extension of the first vector. Also drop a perpendicular to the extension of the first vector. Then use the Pythagorean Theorem. The Law of Cosines may also be used.

3-7 Draw the altitude to the side that measures 7. Then apply the Pythagorean Theorem to the two right triangles.

3-8 meThod I: Construct $\triangle A B C$ so that $\overline{C G} \perp \overline{A B}$. (Why can this be done?) Then use Theorem \#55.
method in: Draw altitude $\overline{C J}$. Apply the Pythagorean Theorem to $\triangle G J C, \triangle J E C$, and $\triangle J H C$.

3-9 Extend $\overline{B P}$ to meet $\overline{A D}$ at E; also draw a perpendicular from C to $\overline{A D}$. Use Theorems \#51b and \#46.

3-10 Use Theorems \#55, \#29, and \#51b.
3-11 From the point of intersection of the angle bisectors, draw a line perpendicular to one of the legs of the right triangle. Then use Theorem \#55.

3-12 Apply the Pythagorean Theorem to each of the six right triangles.
3-13 Use Theorems \#41, and \#29.
3-14 Draw a perpendicular from the centroid to one of the sides; then apply Theorem \#55.

4-1 Use Theorem \#34.
4-2 Draw $\overline{A O}, \overline{B C}$, and $\overline{O C}$. Prove $\triangle B E C \sim \triangle A B O$.
4-3 Draw $\overline{Q A}$ and $\overline{Q B}$; then prove $\triangle D A Q \sim \triangle C B Q$, and $\triangle Q B E \sim$ $\triangle Q A C$. $(D, C$, and E are the feet of the perpendiculars on $\overparen{P A}$, $\overleftrightarrow{A B}$, and $\overleftrightarrow{P B}$, respectively.)

4-4 Show that $\triangle G P B$ is isosceles.
4-5 Apply the Pythagorean Theorem to $\triangle D E B, \triangle D A B, \triangle A E C$, and $\triangle A B C$.

4-6 Extend $\overline{A O}$ to meet circle O at C; then draw $\overline{M A}$. Use Theorem \#52 with chords $\overline{A O C}$ and $\overline{M P N}$.

4-7 Use Theorem \#52 with chords $\overline{A B}$ and $\overline{C D}$.
48 Draw $\overline{B C}$ and $\overline{A D}$.
METHOD I: Show $\triangle C F D \sim \triangle D E A$, and $\triangle A E B \sim \triangle B F C$.
METHOD II: Use the Pythagorean Theorem in $\triangle A E D, \triangle D F C$, $\triangle A E B$, and $\triangle B F C$.

4-9 From the center of the circle draw a perpendicular to the secant of measure 33. Then use Theorem \#54.

4-10 Draw radii to points of contact; then draw $\overline{O B}$. Consider $\overline{O B}$ as an angle bisector in $\triangle A B C$. Use Theorem \#47.

4-11 Draw $\overline{K O}$ and $\overline{L O}$. Show that $\angle K O L$ is a right angle.
4-12 Draw $\overline{D S}$ and $\overline{S J}$. Use Theorems \#51a and \#52.
4-13 Draw $\overline{B D}$ and $\overline{C D}$. Apply Theorem \#5lb.
4-14 method i: Draw $\overline{E D}$. Use Theorems \#55c and 55d. Then prove $\triangle A E F \sim \triangle A B C$.

METHOD II: Use only similar triangles.
4-15 Use Theorems \#18 and \#55.
4-16 Prove $\triangle B E C \sim \triangle A E D$, and $\triangle A E B \sim \triangle D E C . E$ is the intersection of the diagonals.

4-17 Use Theorems \#53, \#50, \#37, and \#8.
4-18 Prove $\triangle D P B \sim \triangle B P C$, and $\triangle D A P \sim \triangle A C P$.
4-19 method i: Draw diameter $\overline{B P}$ of the circumcircle. Draw $\overline{P T} \perp$ altitude $\overline{A D}$; draw $\overline{P A}$ and $\overline{C P}$. Prove $A P C O$ is a parallelogram. method if: Let $A B=A C$. (Why is this permissible?) Then choose a point P so that $A P=B P$. Prove $\triangle A C D \sim \triangle B O D$.

4-20 Draw $\overline{P C}, \overline{E D}$, and $\overline{D C}$. Show that $\overline{P C}$ bisects $\angle B P A$.
4-21 Draw $\overline{D O}$ and $\overline{C D E}$ where E is on circle O. Use Theorems \#30 and \#52.

4-22 From O draw perpendiculars to $\overline{A B}$ and $\overline{C D}$; also draw $\overline{O D}$. Use Theorems \#52 and \#55.

4-23 For chords $\overline{A B}$ and $\overline{C D}$, draw $\overline{A D}$ and $\overline{C B}$. Also draw diameter $\overline{C F}$ and chord $\overline{B F}$. Use Theorem \#55; also show that $A D=F B$.

4-24 Draw $\overline{M O}, \overline{N Q}$, and the common internal tangent. Show $M N Q O$ is a parallelogram.

4-25 (a) Draw common internal tangent $\overline{A P}$. Use Theorem \#53. Also prove $\triangle A D E \sim \triangle A B C$.
(b) METHOD I: Apply Theorem \#15 in quadrilateral ADPE. method ii: Show $\triangle A B C$ is a right triangle.

4-26 Draw $\overline{O A}$ and $\overline{O^{\prime} B}$; then draw $\overline{A E} \perp \overline{O O^{\prime}}$ and $\overline{B D} \perp \overleftrightarrow{O O^{\prime}}$. Prove $A B O^{\prime} O$ is a parallelogram.

4-27 Prove $\triangle A E O \sim \triangle A F C \sim \triangle A D O^{\prime}$.
4-28 Extend the line of centers to the vertex of the square. Also draw a perpendicular from the center of each circle to a side of the square. Use Theorem \#55a.

4-29 Apply the Pythagorean Theorem to $\triangle D E O$. E is the midpoint of $\overline{A O}$.

4-30 Find one-half the side of the square formed by joining the centers of the four smaller circles.

4-31 Draw radii to the points of contact. Use Theorem \#55.
4-32 Use an indirect method. That is, assume the third common chord is not concurrent with the other two.

4-33 Show that the opposite angles are supplementary.
4-34 Show that quadrilateral $D^{\prime} B B^{\prime} D$ is cyclic.
4-35 Show that $\angle G F A \cong \angle D F B$ after proving $B D F O$ cyclic.
4-36 Show $\angle B R Q$ is supplementary to $\angle B C Q$.

4-37 Draw $\overline{D E}$. Show quadrilateral $D C E F$ is cyclic. Then find the measure of $\angle C E D$.

4-38 Draw $\overline{A F}$. Show quadrilateral $A E F B$ is cyclic. What type of triangle is $\triangle A B E$?

4-39 Choose a point Q on $\overline{B P}$ such that $P Q=Q C$. Prove $\triangle B Q C \cong$ $\triangle A P C$.

4-40 method i: Draw $\overline{B C}, \overline{O B}$, and $\overline{O C}$. Show quadrilateral $A B G C$ is cyclic, as is quadrilateral $A B O C$.
method ii: Draw $\overline{B G}$ and extend it to meet the circle at H. Draw $\overline{C H}$. Use Theorems \#38, \#18, and \#30.

5-1 Draw $\overline{E C}$ and show that the area of $\triangle D E C$ is one-half the area of each of the parallelograms.

5-2 METHOD I: In $\triangle E D C$ draw altitude $\overline{E H}$. Use Theorems \#28, \#49, and \#24.

METHOD II: Use the ratio between the areas of $\triangle E F G$ and $\triangle E D C$.

5-3 Compare the areas of the similar triangles.
5-4 Represent the area of each in terms of the radius of the circle.
5-5 Prove $\triangle A D C \sim \triangle A F O$.
5-6 METHOD I: Draw a line through D and perpendicular to $\overline{A B}$. Then draw $\overline{A Q}$ and $\overline{D Q}$. Use the Pythagorean Theorem in various right triangles.
METHOD II: Draw a line through P parallel to $\overline{B C}$ and meeting $\overline{A B}$ and $\overline{D C}$ (extended) at points H and F, respectively. Then draw a line from P perpendicular to $\overline{B C}$. Find the desired result by adding and subtracting areas.

5-7 Draw the altitude to the line which measures 14 . Use similarity to obtain the desired result.

5-8 Use Formula \#5b with each triangle containing $\angle A$.
5-9 Draw $\overline{D C}$. Find the ratio of the area of $\triangle D A E$ to the area of $\triangle A D C$.

5-10 Use Formula \#5b with each triangle containing the angle between the specified sides.

5-11 method i: From points C and D draw perpendiculars to $\overline{A B}$. Find the ratio between the areas of $\square A E D F$ and $\triangle A B C$. method II: Use similarity and Formula \#5b for triangles containing $\angle A$.

5-12 Draw the line of centers O and Q. Then draw $\overline{N O}, \overline{N Q}, \overline{M O}$, and $\overline{M Q}$. Determine the type of triangle $\triangle K L N$ is.

5-13 Extend one of the medians one-third its length, through the side to which it is drawn; then join this external point with the two nearest vertices. Find the area of one-half the parallelogram.

5-14 Use Theorem \#55e or Formula \#5c to find the area of $\triangle A B C$. Thereafter, apply \#29.

5-15 мETHOD I: Draw the medians of the triangle. Use Theorems \#26, \#25, \#29, and \#55.
method iI: Use the result of Problem 5-14.
5-16 Draw a line through E parallel to $\overline{B D}$ meeting $\overline{A C}$ at G. Use Theorems \#56 and \#25.

5-17 Draw $\overline{E C}$. Compare the areas of triangles $B E C$ and $B A C$. Then use Theorem \#56 and its extension.

5-18 Through E, draw a line parallel to $\overleftrightarrow{A B}$ meeting $\overleftrightarrow{B C}$ and $\overleftrightarrow{A D}$ (extended) at points H and G, respectively. Then draw $\overline{A E}$ and $\overline{B E}$. Find the area of $\triangle A E B$.

5-19 Draw diagonal $\overline{A C}$. Use Theorem \#29 in $\triangle A B C$. To obtain the desired result, subtract areas.

5-20 Draw $\overline{Q B}$ and diagonal $\overline{B D}$. Consider each figure whose area equals one-half the area of parallelogram $A B C D$.

5-21 Draw $\overline{A R}$ and $\overline{A S}$. Express both areas in terms of $R S, R T$, and TS. Also use Theorems \#32a, and \#51a.

5-22 METHOD I: In equilateral $\triangle A B C$, draw a line through point P, the internal point, parallel to $\overline{B C}$ meeting $\overline{A B}$ and $\overline{A C}$ at E and F, respectively. From E draw $\overline{E T} \perp \overline{A C}$. Also draw $\overline{P H} \| \overline{A C}$ where H is on $\overline{A B}$. Show that the sum of the perpendiculars equals the altitude of the equilateral $\triangle A B C$, a constant for the triangle.
METHOD II: Draw $\overline{P A}, \overline{P B}$, and $\overline{P C}$; then add the areas of the three triangles $A P B, A P C$, and $B P C$. Show that the sum of the perpendiculars equals the altitude of equilateral $\triangle A B C$, a constant for the triangle.

6-1 Draw the radii of the inscribed circle to the points of tangency of the sides of the triangle. Also join the vertices to the center of the inscribed circle. Draw a line perpendicular at the incenter, to one of the lines drawn from the incenter to a vertex. Draw a line perpendicular to one of the sides at another vertex. Let the two perpendiculars meet. Extend the side to which the perpendicular was drawn through the point of intersection with the perpendicular so that the measure of the new line segment equals the semiperimeter of the triangle.

6-2 Extend a pair of non-parallel opposite sides to form triangles with the other two sides. Apply Heron's Formula to the larger triangle. Then compare the latter area with the area of the quadrilateral.

6-3 (a) METHOD I: Use similar triangles to get $\frac{C N}{Q M}=\frac{K N}{A M}$. Also prove $A S=A M$. Use Theorem \#21-1 to prove rhombus. METHOD iI: Use similar triangles to show $\overline{A Q}$ is an angle bisector. Use \#47 to show $\overline{S Q} \| \overline{A C}$, also show $A M=M Q$.
(b) Compare the areas of $\triangle B M Q$ and $\triangle A M Q$, also of $\triangle C S Q$ and $\triangle A S Q$.

6-4 Draw $\overline{A E}$ and $\overline{B F}$, where E and F are the points of tangency of the common external tangent with the two circles. Then draw $\overline{A N}$ (extended) and $\overline{B N}$. Use $\# 47$ twice to show that $\overline{C N}$ and $\overline{D N}$ bisect a pair of supplementary adjacent angles.

6-5 First find the area of the triangle by Heron's Formula (Formula \#5c). Then consider the area of the triangle in terms of the tri-
angles formed by joining P with the vertices. (Use Formula \#5a). Do this for each of the four cases which must be considered.

6-6 METHOD I: In $\triangle A B C$, with angle bisectors $A E=B D$, draw $\angle D B F \cong \angle A E B, \overline{B F} \cong \overline{B E}, \overline{F G} \perp \overline{A C}, \overline{A H} \perp \overline{F H}$, where G and H lie on $\overline{A C}$ and $\overline{B F}$, respectively. Also draw $\overline{D F}$. Use congruent triangles to prove the base angles equal.
METHOD II: (indirect) In $\triangle A B C$, with angle bisectors $C E=B F$, draw $\overline{G F} \| \overline{E B}$ externally, and through E draw $\overline{G E} \| \overline{B F}$. Then draw $\overline{C G}$. Assume the base angles are not congruent.
METHOD III: (indirect) In $\triangle A B C$, with angle bisectors $\overline{B E} \cong \overline{D C}$, draw parallelogram $B D C H$; then draw $\overline{E H}$. Assume the base angles are not congruent. Use Theorem \#42.
METHOD IV: (indirect) In $\triangle A B C$, with angle bisectors $\overline{B E}$ and $\overline{D C}$ of equal measure, draw $\angle F C D \cong \angle A B E$ where F is on $\overline{A B}$. Then choose a point G so that $B G=F C$. Draw $\overline{G H} \| \overline{F C}$, where H is on $\overline{B E}$. Prove $\triangle B G H \cong \triangle C F D$ and search for a contradiction. Assume $m \angle C>m \angle B$.

6-7 method 1: Draw $\overline{D \bar{H}} \| \overline{A B}$ and $\overline{M N} \perp \overline{D H}$, where H is on the circle; also draw $\overline{M H}, \overline{Q H}$, and $\overline{E H}$. Prove $\triangle M P D \cong \triangle M Q H$.
METHOD II: Through P draw a line parallel to $\overline{C E}$, meeting $\overline{E F}$, extended through F, at K, and $\overline{C D}$ at L. Find the ratio $\frac{(M P)^{2}}{(M Q)^{2}}$.
METHOD III: Draw a line through E parallel to $\overline{A B}$, meeting the circle at G. Then draw $\overline{G P}, \overline{G M}$, and $\overline{G D}$. Prove $\triangle P M G \cong$ $\triangle Q M E$.
METHOD Iv: Draw the diameter through M and O. Reflect $\overline{D F}$ through this diameter; let $\overline{D^{\prime} F^{\prime}}$ be the image of $\overline{D F}$. Draw $\overline{C F^{\prime}}$, $\overline{M F^{\prime}}$, and $\overline{M D^{\prime}}$. Also, let P^{\prime} be the image of P. Prove that P^{\prime} coincides with Q.
method v: (Projective Geometry) Use harmonic pencil and range concepts.

6-8 method i: Draw $\overline{D G} \| \overline{A B}$, where G is on $\overline{C B}$. Also draw $\overline{A G}$, meeting $\overline{D B}$ at F, and draw $\overline{F E}$. Prove that quadrilateral $D G E F$ is a kite (i.e. $G E=F E$ and $D G=D F$).
METHOD II: Draw $\overline{B F}$ so that $m \angle A B F=20$ and F is on $\overline{A C}$. Then draw $\overline{F E}$. Prove $\triangle F E B$ equilateral, and $\triangle F D E$ isosceles.

METHOD III: Draw $\overline{D F} \| \overrightarrow{A B}$, where F is on $\overline{B C}$. Extend $\overline{B A}$ through A to G so that $A G=A C$. Then draw $\overline{C \bar{G}}$. Use similarity and theorem \#47 to prove that $\overline{D E}$ bisects $\angle F D B$.
METHOD IV: With B as center and $\overline{B D}$ as radius, draw a circle meeting $\overline{B A}$, extended, at F and $\overline{B C}$ at G. Then draw $\overline{F D}$ and $\overline{D G}$. Prove $\triangle F B D$ equilateral, and $\triangle D B G$ isosceles. Also prove $\triangle D C G \cong \triangle F D A$.
METHOD v: Using C as center, $\overline{A C}$ and $\overline{B C}$ as radii, and $\overline{A B}$ as a side, construct an 18 -sided regular polygon.
method vi: (Trigonometric Solution I) Use the law of sines in $\triangle A E C$ and $\triangle A B D$. Then prove $\triangle A E C \sim \triangle D E B$.
method vir: (Trigonometric Solution II) Draw $\overline{A F} \| \overline{B C}$. Choose a point G on $\overline{A C}$ so that $A G=B E$. Extend $\overline{B G}$ to meet $\overline{A F}$ at H. Apply the law of sines to $\triangle A D B$ and $\triangle A B H$. Then prove $\triangle B D E \cong \triangle A H G$.

6-9 METHOD I: Rotate the given equilateral $\triangle A B C$ in its plane about point A through a counterclockwise angle of 60°. Let P^{\prime} be the image of P. Find the area of quadrilateral $A P C P^{\prime}$ (when B is to the left of C), and the area of $\triangle B P C$.

METHOD II: Rotate each of the three triangles in the given equilateral triangle about a different vertex, so that there is now one new triangle on each side of the given equilateral triangle, thus forming a hexagon. Consider the area of the hexagon in parts, two different ways.

6-10 Rotate $\triangle D A P$ in its plane about point A through a counterclockwise angle of 90°. Express the area of $\triangle P P^{\prime} B$ (P^{\prime} is the image of P), in two different ways using Formula $\# 5 \mathrm{c}$, and Formula $\# 5 \mathrm{~b}$. Investigate $\triangle P A P^{\prime}$ and $\triangle A P B$.

6-11 Prove a pair of overlapping triangles congruent.
Challenge 1 Draw two of the required lines. Draw the third line as two separate lines drawn from the point of intersection of the latter two lines, and going in opposite directions. Prove that these two smaller lines, in essence, combine to form the required third line.

Challenge 2 Use similarity to obtain three equal ratios. Each ratio is to contain one of the line segments proved congruent in Solution 6-11, while the measure of the other line segment in each ratio is a side of $\triangle K M L$ where K, M, and L are the circumcenters.

6-12 METHOD I: Begin by fixing two angles of the given triangle to yield the desired equilateral triangle. Then prove a concurrency of the four lines at the vertex of the third angle of the given triangle.
method II: This method begins like Method I. However, here we must prove that the lines formed by joining the third vertex of the given triangle to two of the closer vertices of the equilateral triangle are trisectors of the third angle (of the original triangle). In this proof an auxiliary circle is used.

6-13 Use similarity to prove that the orthocenter must lie on the line determined by the centroid and the circumcenter. The necessary constructions are a median, altitude, and perpendicular bisector of one side.

6-14 Draw the three common chords of pairs of circles. Show that the three quadrilaterals (in the given triangle) thus formed are each cyclic. (Note that there are two cases to be considered here.)

6-15 Draw the three common chords of pairs of circles. Use Theorems \#30, \#35, \#36, and \#48.

7-1 method i: A line is drawn through A of cyclic quadrilateral $A B C D$, to meet $\overline{C D}$, extended, at P, so that $m \angle B A C=$ $m \angle D A P$. Prove $\triangle B A C \sim \triangle D A P$, and $\triangle A B D \sim \triangle A C P$.

METHOD II: In quadrilateral $A B C D$, draw $\triangle D A P$ (internally) similar to $\triangle C A B$. Prove $\triangle B A P \sim \triangle C A D$. (The converse may be proved simultaneously.)
7.2 Draw $\overline{A F}$ and diagonal $\overline{A C}$. Use the Pythagorean Theorem; then apply Ptolemy's Theorem to quadrilateral $A F D C$.

7-3 Use the Pythagorean Theorem; then apply Ptolemy's Theorem to quadrilateral $A F B E$.

7-4 Draw $\overline{C P}$. Use the Pythagorean Theorem; then apply Ptolemy's Theorem to quadrilateral $B P Q C$.

7-5 Draw $\overline{R Q}, \overline{Q P}$, and $\overline{R P}$. Use similarity and Ptolemy's Theorem.
7-6 Prove that $A B C D$ is cyclic; then apply Ptolemy's Theorem.
7-7 Apply Ptolemy's Theorem to quadrilateral $A B P C$.
7-8 Apply Ptolemy's Theorem to quadrilateral $A B P C$.
7-9 Apply the result obtained in Problem 7-7 to $\triangle A B D$ and $\triangle A D C$.
7-10 Apply Ptolemy's Theorem to quadrilateral $A B P C$, and quadrilateral BPCD. Then apply the result obtained in Problem 7-7 to $\triangle B E C$.

7-11 Apply the result of Problem 7-8 to equilateral triangles $A E C$ and $B F D$.

7-12 Consider $\overline{B D}$ in parts. Verify result with Ptolemy's Theorem.
7-13 Use the result of Problem 7-8.
7-14 Choose points P and Q on the circumcircle of quadrilateral $A B C D$ (on arc $\overparen{A D}$) so that $P A=D C$ and $Q D=A B$. Apply Ptolemy's Theorem to quadrilaterals $A B C P$ and $B C D Q$.

7-15 On side $\overline{A B}$ of parallelogram $A B C D$ draw $\triangle A P^{\prime} B \cong \triangle D P C$, externally. Also use Ptolemy's Theorem.

7-16 method I: Draw the diameter from the vertex of the two given sides. Join the other extremity of the diameter with the remaining two vertices of the given triangle. Use Ptolemy's Theorem. (Note: There are two cases to be considered.)
method ii: Draw radii to the endpoints of the chord measuring 5. Then draw a line from the vertex of the two given sides perpendicular to the third side. Use Theorem \#55c. Ptolemy's Theorem is not used in this method. (Note: There are two cases to be considered.)

8-1 method i: Draw a line through C, parallel to $\overline{A B}$, meeting $\overline{P Q R}$ at D. Prove that $\triangle D C R \sim \triangle Q B R$, and $\triangle P D C \sim \triangle P Q A$.

METHOD II: Draw $\overline{B M} \perp \overleftrightarrow{P R}, \overline{A N} \perp \overleftrightarrow{P R}$, and $\overline{C L} \perp \overleftrightarrow{P R}$, where M, N, and L are on $\overleftrightarrow{P Q R}$. Prove that $\triangle B M Q \sim \triangle A N Q$, $\triangle L C P \sim \triangle N A P$, and $\triangle M R B \sim \triangle L R C$.

8-2 mertod i: Compare the areas of the various triangles formed, which share the same altitude. (Note: There are two cases to be considered.)
METHOD II: Draw a line through A, parallel to $\overline{B C}$, meeting $\overline{C P}$ at S, and $\overline{B P}$ at R. Prove that $\triangle A M R \sim \triangle C M B, \triangle B N C \sim$ $\triangle A N S, \triangle C L P \sim \triangle S A P$, and $\triangle B L P \sim \triangle R A P$. (Note: There are two cases to be considered.)

METHOD III: Draw a line through A and a line through C parallel to $\overline{B P}$, meeting $\overline{C P}$ and $\overline{A P}$ at S and R, respectively. Prove that $\triangle A S N \sim \triangle B P N$, and $\triangle B P L \sim \triangle C R L$; also use Theorem \#49. (Note: There are two cases to be considered.)
METHOD IV: Consider $\overline{B P M}$ a transversal of $\triangle A C L$ and $\overline{C P N}$ a transversal of $\triangle A L B$. Then apply Menelaus' Theorem.

8-3 Apply Ceva's Theorem.

8-4 Use similarity, then Ceva's Theorem.
8-5 Use Theorem \#47; then use Ceva's Theorem.
8-6 Use Theorem \#47; then use Menelaus' Theorem.
8-7 Use Theorem \#47; then use Menelaus' Theorem.
8-8 First use Ceva's Theorem to find $B S$; then use Menelaus' Theorem to find $T B$.

8-9 Use Menelaus' Theorem; then use Theorem \#54.
8-10 Use both Ceva's and Menelaus' Theorems.
8-11 Consider $\overline{N G P}$ a transversal of $\triangle A K C$, and $\overline{G M P}$ a transversal of $\triangle A K B$. Then use Menelaus' Theorem.

8-12 Draw $\overline{A D} \perp \overline{B C}$, and $\overline{P E} \perp \overline{B C}$, where D and E lie on $\overline{B C}$. For both parts (a) and (b), neither Ceva's Theorem nor Menelaus' Theorem is used. Set up proportions involving line segments and areas of triangles.

8-13 Extend $\overline{F E}$ to meet $\overleftrightarrow{C B}$ at P. Consider $\overline{A M}$ as a transversal of $\triangle P F C$ and $\triangle P E B$; then use Menelaus' Theorem.

8-14 Use one of the secondary results established in the solution of Problem 8-2, Method I. (See III, IV, and V.) Neither Ceva's Theorem nor Menelaus' Theorem is used.

8-15 Use Menelaus' Theorem and similarity.
8-16 Use Menelaus' Theorem, taking $\overline{K L P}$ and $\overline{M N P}$ as transversals of $\triangle A B C$ and $\triangle A D C$, respectively where P is the intersection of $\overline{A C}$ and $\overline{L N}$.

8-17 Use Theorems \#36, \#38, \#48, and \#53, followed by Menelaus' Theorem.

8-18 Taking $\overline{R S P}$ and $\overline{R^{\prime} S^{\prime} P^{\prime}}$ as transversals of $\triangle A B C$, use Menelaus' Theorem. Also use Theorems \#52 and \#53.

8-19 Consider $\overline{R N H}, \overline{P L J}$, and $\overline{M Q I}$ transversals of $\triangle A B C$; use Menelaus' Theorem. Then use Ceva's Theorem.

8-20 Use Ceva's Theorem and Theorem \#54.
8-21 Draw lines of centers and radii. Use Theorem \#49 and Menelaus' Theorem.

8-22 Use Theorems \#48, \#46, and Menelaus' Theorem.
8-23 Use Menelaus' Theorem exclusively.
8-24 (a) Use Menelaus' Theorem and Theorem \#34.
(b) Use Menelaus' Theorem, or use Desargues' Theorem (Problem 8-23).

8-25 Extend $\overline{D R}$ and $\overline{D Q}$ through R and Q to meet a line through C parallel to $\overline{A B}$, at points G and H, respectively. Use Theorem \#48, Ceva's Theorem and Theorem \#10. Also prove $\triangle G C D \cong$ $\triangle H C D$.

8-26 method i: Use the result of Problem 8-25, Theorem \#47, and Menelaus' Theorem.
method II: Use Desargues' Theorem (Problem 8-23).
8-27 Use Theorem \#36a and the trigonometric form of Ceva's Theorem.
8-28 Use Theorems \#18, \#5, \#46, and \#47. Then use Menelaus' Theorem.
8-29 Consider transversals $\overline{B C}, \overline{A N}$, and $\overline{D E}$ of $\triangle X Y Z$. Use Menelaus' Theorem.

8-30 Consider transversals $\overline{C^{\prime \prime} A B^{\prime}}, \overline{A^{\prime} B^{\prime \prime} C}, \overline{B A^{\prime \prime} C^{\prime}}$ of $\triangle X Y Z$. Use Menelaus' Theorem.

9-1 METHOD I: Prove quadrilaterals cyclic; then show that two angles are congruent, both sharing as a side the required line.
METHOD II: Prove quadrilaterals cyclic to show that two congruent angles are vertical angles (one of the lines forming these vertical angles is the required line).
method in: Draw a line passing through a vertex of the triangle and parallel to a segment of the required line. Prove that the other segment of the required line is also parallel to the new line. Use Euclid's parallel postulate to obtain the desired conclusion.

9-2 Discover cyclic quadrilaterals to find congruent angles. Use Theorems \#37, \#36, and \#8.

9-3 Prove X, Y, and Z collinear (the Simson Line); then prove $\triangle P A B \sim \triangle P X Z$.

9-4 Draw the Simson Lines of $\triangle A B C$ and $\triangle S C R$; then use the converse of Simson's Theorem.

9-5 Show that M is the point of intersection of the diagonals of a rectangle, hence the midpoint of $\overline{A P}$. Then use Theorem \#31.

9-6 Draw various auxiliary lines, and use Simson's Theorem.
9-7 Use Simson's Theorem, and others to prove $\triangle L P M \sim \triangle K P N$.
9-8 Use the converse of Simson's Theorem, after showing that various Simson Lines coincide and share the same Simson point.

9-9 METHOD I: Extend an altitude to the circumcircle of the triangle. Join that point with the Simson point. Use Theorems \#36, \#8, \#14, \#5, \#36a, \#37, \#7, and \#18. Also use Simson’s Theorem.

METHOD II: An isosceles (inscribed) trapezoid is drawn using one of the altitudes as part of one base. Other auxiliary lines are drawn. Use Theorems \#9, \#33, \#21, \#25, and Simson's Theorem.

9-10 Prove that each of the Simson Lines is parallel to a side of an inscribed angle. Various auxiliary lines are needed.

9-11 Use a secondary result obtained in the proof for Problem 9-10, line (III). Then show that the new angle is measured by arcs independent of point P.

9-12 Use the result of Solution 9-10, line (III).
10-1 Draw altitude $\overline{C E}$; then use the Pythagorean Theorem in various right triangles.

10-2 Apply Stewart's Theorem.
10-3 method i: Use Stewart's Theorem.
method iI: Use Heron's Formula (Problem 6-1).
10-4 Apply Stewart's Theorem, using each of the interior lines separately. Also use the Pythagorean Theorem.

10-5 Use a secondary result obtained in the proof of Stewart's Theorem [See the solution to Problem 10-1, equations (II) and (IV).]

10-6 Apply Stewart's Theorem and Theorem \#47.
10-7 Use the result obtained from Problem 10-6.
10-8 method i: Use Theorems \#47, and \#55, and the result obtained from Problem 10-6.
METHOD II: Use Theorems \#47 and \#55.
10-9 Use Theorems \#47 and \#55, and the result obtained from Problem 10-6.

APPENDICES

APPENDIX I Selected Definitions, Postulates, and Theorems

1 If two angles are vertical angles then the two angles are congruent.
2 Two triangles are congruent if two sides and the included angle of the first triangle are congruent to the corresponding parts of the second triangle. (S.A.S.)
3 Two triangles are congruent if two angles and the included side of the first triangle are congruent to the corresponding parts of the second triangle. (A.S.A.)
4 Two triangles are congruent if the sides of the first triangle are congruent to the corresponding sides of the second triangle. (S.S.S.)

5 If a triangle has two congruent sides, then the triangle has two congruent angles opposite those sides. Also converse.
6 An equilateral triangle is equiangular. Also converse.
7 If a pair of corresponding angles formed by a transversal of two lines are congruent, then the two lines are parallel. Also converse.
8 If a pair of alternate interior angles formed by a transversal of two lines are congruent, then the lines are parallel. Also converse.
9 Two lines are parallel if they are perpendicular to the same line.
10 If a line is perpendicular to one of two parallel lines, then it is also perpendicular to the other.
11 If a pair of consecutive interior angles formed by a transversal of two lines are supplementary, then the lines are parallel. Also converse.
12 The measure of an exterior angle of a triangle equals the sum of the measures of the two non-adjacent interior angles.
13 The sum of the measures of the three angles of a triangle is 180 , a constant.
14 The acute angles of a right triangle are complementary.

15 The sum of the measures of the four interior angles of a convex quadrilateral is 360 , a constant.
16 Two triangles are congruent if two angles and a non-included side of the first triangle are congruent to the corresponding parts of the second triangle.
17 Two right triangles are congruent if the hypotenuse and a leg of one triangle are congruent to the corresponding parts of the other triangle.
18 Any point on the perpendicular bisector of a line segment is equidistant from the endpoints of the line segment. Two points equidistant from the endpoints of a line segment, determine the perpendicular bisector of the line segment.
19 Any point on the bisector of an angle is equidistant from the sides of the angle.
20 Parallel lines are everywhere equidistant.
21a The opposite sides of a parallelogram are parallel. Also converse.
21b The opposite sides of a parallelogram are congruent. Also converse.
21c The opposite angles of a parallelogram are congruent. Also converse.
21d Pairs of consecutive angles of a parallelogram are supplementary. Also converse.
21e A diagonal of a parallelogram divides the parallelogram into two congruent triangles.
21f The diagonals of a parallelogram bisect each other. Also converse.
21g A rectangle is a special parallelogram; therefore 21a through 21f hold true for the rectangle.
21h A rectangle is a parallelogram with congruent diagonals. Also converse.
21i A rectangle is a parallelogram with four congruent angles, right angles. Also converse.
21j A rhombus is a special parallelogram; therefore 2la through 2lf hold true for the rhombus.
$\mathbf{2 1 k}$ A rhombus is a parallelogram with perpendicular diagonals. Also converse.
211 A rhombus is a quadrilateral with four congruent sides. Also converse.
$\mathbf{2 1 m}$ The diagonals of a rhombus bisect the angles of the rhombus.
21n A square has all the properties of both a rectangle and a rhombus; hence 21 a through 21 m hold true for a square.
22 A quadrilateral is a parallelogram if a pair of opposite sides are
both congruent and parallel.
23 The base angles of an isosceles trapezoid are congruent. Also converse.
24 If a line segment is divided into congruent (or proportional) segments by three or more parallel lines, then any other transversal will similarly contain congruent (or proportional) segments determined by these parallel lines.
25 If a line contains the midpoint of one side of a triangle and is parallel to a second side of the triangle, then it will bisect the third side of the triangle.
26 The line segment whose endpoints are the midpoints of two sides of a triangle is parallel to the third side of the triangle and has a measure equal to one-half of the measure of the third side.
27 The measure of the median on the hypotenuse of a right triangle is one-half the measure of the hypotenuse.
28 The median of a trapezoid, the segment joining the midpoints of the non-parallel sides, is parallel to each of the parallel sides, and has a measure equal to one-half of the sum of their measures.
29 The three medians of a triangle meet in a point, the centroid, which is situated on each median so that the measure of the segment from the vertex to the centroid is two-thirds the measure of the median.
30 A line perpendicular to a chord of a circle and containing the center of the circle, bisects the chord and its major and minor arcs.
31 The perpendicular bisector of a chord of a circle contains the center of the circle.
32a If a line is tangent to a circle, it is perpendicular to a radius at the point of tangency.
32b A line perpendicular to a radius at a point on the circle is tangent to the circle at that point.
32c A line perpendicular to a tangent line at the point of tangency with a circle, contains the center of the circle.
32d The radius of a circle is only perpendicular to a tangent line at the point of tangency.
33 If a tangent line (or chord) is parallel to a secant (or chord) the arcs intercepted between these two lines are congruent.
34 Two tangent segments to a circle from an external point are congruent.
35 The measure of a central angle is equal to the measure of its intercepted arc.

36 The measure of an inscribed angle equals one-half the measure of its intercepted arc.
36a A quadrilateral is cyclic (i.e. may be inscribed in a circle) if one side subtends congruent angles at the two opposite vertices.
37 The opposite angles of a cyclic (inscribed) quadrilateral are supplementary. Also converse.
38 The measure of an angle whose vertex is on the circle and whose sides are formed by a chord and a tangent line, is equal to onehalf the measure of the intercepted arc.
39 The measure of an angle formed by two chords intersecting inside the circle, is equal to half the sum of the measures of its intercepted arc and of the arc of its vertical angle.
40 The measure of an angle formed by two secants, or a secant and a tangent line, or two tangent lines intersecting outside the circle, equals one-half the difference of the measures of the intercepted arcs.
41 The sum of the measures of two sides of a non-degenerate triangle is greater than the measure of the third side of the triangle.
42 If the measures of two sides of a triangle are not equal, then the measures of the angles opposite these sides are also unequal, the angle with the greater measure being opposite the side with the greater measure. Also converse.
43 The measure of an exterior angle of a triangle is greater than the measure of either non-adjacent interior angle.
44 The circumcenter (the center of the circumscribed circle) of a triangle is determined by the common intersection of the perpendicular bisectors of the sides of the triangle.
45 The incenter (the center of the inscribed circle) of a triangle is determined by the common intersection of the interior angle bisectors of the triangle.
46 If a line is parallel to one side of a triangle it divides the other two sides of the triangle proportionally. Also converse.
47 The bisector of an angle of a triangle divides the opposite side into segments whose measures are proportional to the measures of the other two sides of the triangle. Also converse.
48 If two angles of one triangle are congruent to two corresponding angles of a second triangle, the triangles are similar. (A.A.)
49 If a line is parallel to one side of a triangle intersecting the other two sides, it determines (with segments of these two sides) a triangle similar to the original triangle.

50 Two triangles are similar if an angle of one triangle is congruent to an angle of the other triangle, and if the measures of the sides that include the angle are proportional.
51a The measure of the altitude on the hypotenuse of a right triangle is the mean proportional between the measures of the segments of the hypotenuse.
51b The measure of either leg of a right triangle is the mean proportional between the measure of the hypotenuse and the segment, of the hypotenuse, which shares one endpoint with the leg considered, and whose other endpoint is the foot of the altitude on the hypotenuse.
52 If two chords of a circle intersect, the product of the measures of the segments of one chord equals the product of the segments of the other chord.
53 If a tangent segment and a secant intersect outside the circle, the measure of the tangent segment is the mean proportional between the measure of the secant and the measure of its external segment.
54 If two secants intersect outside the circle, the product of the measures of one secant and its external segment equals the product of the measures of the other secant and its external segment.
55 (The Pythagorean Theorem) In a right triangle the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse. Also converse.
55a In an isosceles right triangle (45-45-90 triangle), the measure of the hypotenuse is equal to $\sqrt{2}$ times the measure of either leg.
55b In an isosceles right triangle (45-45-90 triangle), the measure of either leg equals one-half the measure of the hypotenuse times $\sqrt{2}$.
55 c In a $30-60-90$ triangle the measure of the side opposite the 30 angle is one-half the measure of the hypotenuse.
55d In a $30-60-90$ triangle, the measure of the side opposite the 60 angle equals one-half the measure of the hypotenuse times $\sqrt{3}$.
55e In a triangle with sides of measures 13,14 , and 15 , the altitude to the side of measure 14 has measure 12 .
56 The median of a triangle divides the triangle into two triangles of equal area. An extension of this theorem follows. A line segment joining a vertex of a triangle with a point on the opposite side, divides the triangle into two triangles, the ratio of whose areas equals the ratio of the measures of the segments of this "opposite" side.

APPENDIX II Selected Formulas

1 The sum of the measures of the interior angles of an n-sided convex polygon $=(n-2) 180$.

2 The sum of the measures of the exterior angles of any convex polygon is constant, 360.

3 The area of a rectangle: $K=b h$.

4a The area of a square:
$K=s^{2}$.
4b The area of a square:
$K=\frac{1}{2} d^{2}$.
5a The area of any triangle:
$K=\frac{1}{2} b h$, where b is the base and h is the altitude.
5b The area of any triangle:
$K=\frac{1}{2} a b \sin C$.
5c The area of any triangle:
$K=\sqrt{s(s-a)(s-b)(s-c)}$, where $s=\frac{1}{2}(a+b+c)$.
5d The area of a right triangle:
$K=\frac{1}{2} l_{1} l_{2}$, where l is a leg.
5e The area of an equilateral triangle:
$K=\frac{s^{2} \sqrt{3}}{4}$, where s is any side.
5f The area of an equilateral triangle:
$K=\frac{h^{2} \sqrt{3}}{3}$, where h is the altitude.
6a The area of a parallelogram:
$K=b h$.

6b The area of a parallelogram: $K=a b \sin C$.

7 The area of a rhombus:
$K=\frac{1}{2} d_{1} d_{2}$.
8 The area of a trapezoid:
$K=\frac{1}{2} h\left(b_{1}+b_{2}\right)$.
9 The area of a regular polygon:
$K=\frac{1}{2} a p$, where a is the apothem and p is the perimeter.
10 The area of a circle:
$K=\pi r^{2}=\frac{\pi d^{2}}{4}$, where d is the diameter.
11 The area of a sector of a circle:
$K=\frac{n}{360} \pi r^{2}$, where n is the measure of the central angle.
12 The circumference of a circle: $C=2 \pi r$.

13 The length of an arc of a circle:
$L=\frac{n}{360} 2 \pi r$, where n is the measure of the central angle of the arc.

