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INTRODUCTION

The challenge of well-posed problems transcends national boundaries,
ethnic origins, political systems, economic doctrines, and religious
beliefs; the appeal is almost universal. Why? You are invited to formulate
your own explanation. We simply accept the observation and exploit it
here for entertainment and enrichment

This book is a new, combined edition of two volumes first published
in 1970. It contains nearly two hundred problems, many with extensions
or variations that we call challenges. Supplied with pencil and paper and
fortified with a diligent attitude, you can make this material the starting
point for exploring unfamiliar or little-known aspects of mathematics.
The challenges will spur you on; perhaps you can even supply your own
challenges in some cases. A study of these nonroutine problems can
provide valuable underpinnings for work in more advanced mathematics.

This book, with slight modifications made, is as appropriate now as it
was a quarter century ago when it was first published. The National Council
of Teachers of Mathematics (NCTM), in their Curriculum and Evaluation
Standards for High School Mathematics (1989), lists problem solving as its
first standard, stating that "mathematical problem solving in its broadest
sense is nearly synonymous with doing mathematics." They go on to say,
"[problem solving] is a process by which the fabric of mathematics is
identified in later standards as both constructive and reinforced. "

This strong emphasis on mathematics is by no means a new agenda
item. In 1980, the NCTM published An AgendaforAction. There, the NCTM
also had problem solving as its first item, stating, "educators should give
priority to the identification and analysis of specific problem solving strate­
gies .... [and] should develop and disseminate examples of 'good problems'
and strategies." It is our intention to provide secondary mathematics
educators with materials to help them implement this very important
recommendation.

ABOUT THE BOOK
Challenging Problems in Geometry is organized into three main parts:
"Problems," "Solutions," and "Hints." Unlike many contemporary
problem-solving resources, this book is arranged not by problem-solving
technique, but by topic. We feel that announcing the technique to be used
stifles creativity and destroys a good part of the fun of problem solving.

The problems themselves are grouped into two sections. Section I,
"A New Twist on Familiar Topics," covers five topics that roughly
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parallel the sequence of the high school geometry course. Section II,
"Further Investigations," presents topics not generally covered in the high
school geometry course, but certainly within the scope of that audience.
These topics lead to some very interesting extensions and enable the reader
to investigate numerous fascinating geometric relationships.

Within each topic, the problems are arranged in approximate order of
difficulty. For some problems, the basic difficulty may lie in making the
distinction between relevant and irrelevant data or between known and
unknown information. The sure ability to make these distinctions is part
of the process of problem solving, and each devotee must develop this
power by him- or herself. It will come with sustained effort.

In the "Solutions" part of the book. each problem is restated and then
its solution is given. Answers are also provided for many but not all of
the challenges. In the solutions (and later in the hints), you will notice
citations such as "(#23)" and "(Formula #5b)." These refer to the
definitions, postulates, and theorems listed in Appendix I, and the
formulas given in Appendix II.

From time to time we give alternate methods of solution, for there is
rarely only one way to solve a problem. The solutions shown are far from
exhaustive. and intentionally so. allowing you to try a variety of different
approaches. Particularly enlightening is the strategy of using multiple
methods, integrating algebra, geometry, and trigonometry. Instances of
multiple methods or multiple interpretations appear in the solutions. Our
continuing challenge to you, the reader, is to find a different method of
solution for every problem.

The third part of the book, "Hints," offers suggestions for each
problem and for selected challenges. Without giving away the solution,
these hints can help you get back on the track if you run into difficulty.

USING THE BOOK
This book may be used in a variety of ways. It is a valuable supplement
to the basic geometry textbook, both for further explorations on specific
topics and for practice in developing problem-solving techniques. The
book also has a natural place in preparing individuals or student teams for
participation in mathematics contests. Mathematics clubs might use this
book as a source of independent projects or activities. Whatever the use,
experience has shown that these problems motivate people of all ages to
pursue more vigorously the study of mathematics.

Very near the completion of the first phase of this project, the
passing of Professor Charles T. Salkind grieved the many who knew and
respected him. He dedicated much of his life to the study of problem
posing and problem solving and to projects aimed at making problem
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solving meaningful, interesting, and instructive to mathematics students
at all levels. His efforts were praised by all. Working closely with this
truly great man was a fascinating and pleasurable experience.

Alfred S. Posamentier
1996



PREPARING TO
SOLVE A PROBLEM

A strategy for attacking a problem is frequently dictated by the use of
analogy. In fact, searching for an analogue appears to be a psychological
necessity. However, some analogues are more apparent than real, so
analogies should be scrutinized with care. Allied to analogy is structural
similarity or pattern. Identifying a pattern in apparently unrelated
problems is not a common achievement, but when done successfully it
brings immense satisfaction.

Failure to solve a problem is sometimes the result of fixed habits of
thought, that is, inflexible approaches. When familiar approaches prove
fruitless, be prepared to alter the line of attack. A flexible attitude may
help you to avoid needless frustration.

Here are three ways to make a problem yield dividends:
(I) The result of formal manipulation, that is, "the answer," mayor may

not be meaningful; find out! Investigate the possibility that the
answer is not unique. If more than one answer is obtained, decide on
the acceptability of each alternative. Where appropriate, estimate the
answer in advance of the solution. The habit of estimating in advance
should help to prevent crude errors in manipulation.

(2) Check possible restrictions on the data and/or the results. Vary the
data in significant ways and study the effect of such variations on the
original result

(3) The insight needed to solve a generalized problem is sometimes
gained by first specializing it. Conversely, a specialized problem,
difficult when tackled directly, sometimes yields to an easy solution
by first generalizing it.
As is often true, there may be more than one way to solve a problem.

There is usually what we will refer to as the "peasant's way" in contrast to
the "poet's way"-the latter being the more elegant method.

To better understand this distinction, let us consider the following
problem:

If the sum of two numbers is 2, and the product of these
same two numbers is 3, find the sum of the reciprocals
of these two numbers.
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Those attempting to solve the following pair of equations simultane­
ously are embarking on the "peasant's way" to solve this problem.

x + y = 2
xy = 3

Substituting for y in the second equation yields the quadratic equation,
x2 - 2x + 3 = O. Using the quadratic formula we can find x = I ± i -J2.

By adding the reciprocals of these two values of x. the answer ~appears.

This is clearly a rather laborious procedure, not particularly elegant.
The "poet's way" involves working backwards. By considering the

desired result
I I
-+-
X Y

and seeking an expression from which this sum may be derived, one
should inspect the algebraic sum:

L!:..L
xy

The answer to the original problem is now obvious! That is, since

x + y = 2 and xy = 3, x .; y ~. This is clearly a more elegant

solution than the first one.
The "poet's way" solution to this problem points out a very useful

and all too often neglected method of solution. A reverse strategy is
certainly not new. It was considered by Pappus of Alexandria about 320
A.D. In Book VII of Pappus' Collection there is a rather complete
description of the methods of "analysis" and "synthesis." T. L. Heath, in
his book A Manual of Greek Mathematics (Oxford University Press,
1931, pp. 452-53), provides a translation of Pappus' definitions of these
terms:

Analysis takes that which is sought as if it were
admitted and passes from it through its successive
consequences to something which is admitted as the
result of synthesis: for in analysis we assume that
which is sought as if it were already done, and we
inquire what it is from which this results, and again
what is the antecedent cause of the lauer, and so on,
until, by so retracing our steps, we come upon
something already known or belonging to the class of
first principles, and such a method we call analysis as
being solution backward.
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But in synthesis. reversing the progress, we take as
already done that which was last arrived at in the
analysis and, by arranging in their natural order as
consequences what before were antecedents, and
successively connecting them one with another, we
arrive finally at the construction of that which was
sought: and this we call synthesis.

Unfortunately, this method has not received its due emphasis in the
mathematics classroom. We hope that the strategy recalled here will serve
you well in solving some of the problems presented in this book.

Naturally, there are numerous other clever problem-solving strategies
to pick from. In recent years a plethora of books describing various
prOblem-solving methods have become available. A concise description of
these problem-solving strategies can be found in Teaching Secondary
School Mathematics: Techniques and Enrichment Units. by A. S.
Posamentier and 1. Stepelman, 4th edition (Columbus, Ohio: Prentice
Hall/Merrill, 1995).

Our aim in this book is to strengthen the reader's problem-solving
skills through nonroutine motivational examples. We therefore allow the
reader the fun of finding the best path to a problem's solution, an
achievement generating the most pleasure in mathematics.





PROBLEMS

SECTION I
A New Twist on Familiar Topics

1. Congruence and Parallelism

The problems in this section present applications of several topics
that are encountered early in the formal development of plane Euclidean
geometry. The major topics are congruence of line segments, angles,
and triangles and parallelism in triangles and various types of quadri­
laterals.

1-1 In any 6.ABC, E and D are interior points of AC and BC,
respectively (Fig. 1-1). AFbisects LCAD, and BFbisects LCBE.
Prove mLAEB + mLA DB = 2mLAFB.

Challenge 1 Prove that this result holds if E coincides with C.

Challenge 2 Prove that the result holds if E and D are exterior points
on extensions of AC and BC through C.

c

A &...---------"=-8
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1-2 In 6.ABC, a point D is on AC so that AB = AD (Fig. 1-2).
mLABC - mLACB = 30. Find mLCBD.

c~.
1-3 The interior bisector of LB, and the exterior bisector of LC of

6.ABC meet at D (Fig. 1-3). Through D, a line parallel to CB
meets A C at Land A B at M. If the measures of legs LC and M B
of trapezoid CLMB are 5 and 7, respectively, find the measure of
base LM. Prove your result.

Challenge Find LM if 6.ABC is equilateral.

1·3 A

D""""'"----T---~

--~f_----------~B

1-4 In right 6.ABC, CF is the median to hypotenuse AB, CE is the
bisector of LACB, and CD is the altitude to AB (Fig. 1-4).
Prove that LDCE~ LECF.

Challenge Does this result hold for a non-right triangle?

B

1-4

C""'----------~A

1-5 The measure of a line segment PC, perpendicular to hypotenuse
AC of right 6.ABC, is equal to the measure of leg Be. Show BP
may be perpendicular or parallel to the bisector of LA.
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1-6 Prove the following: if, in 6.ABC, median AM is such that
mLBAC is divided in the ratio I :2, and AM is extended through

M to D so that LDBA is a right angle, then AC = ~ AD
(Fig. 1-6).

Challenge Find two ways of proving the theorem when mLA = 90.

BA---h---~C

C

A .a::;.. ~B

1-7 In square ABCD, M is the midpoint of AB. A line perpendicular
to MC at M meets A D at K. Prove that LBCM ~ LKCM.

Challenge Prove that 6.KDC is a 3-4-5 right triangle.

1-8 Given any 6.ABC, AE bisects LBAC, BD bisects LABC,
CP .1 BD, and CQ .1 AE (Fig. 1-8), prove that PQ is parallel to
AB.

Challenge Identify the points P and Q when 6.ABC is equilateral.

Ar---------, B

1-10

A "------.....::11

1-9 Given that ABCD is a square, CF bisects LACD, and BPQ is
perpendicular to CF (Fig. 1-9), prove DQ = 2PE.

Q

1·9

1-10 Given square ABCD with mLEDC = mLECD = 15, prove
6.ABE is equilateral (Fig. 1-10).
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1-11 In any 6.ABC, D, E, and F are midpoints of the sides AC, AB,
and BC, respectively (Fig. 1-11). BG is an altitude of 6.ABC.
Prove that LEGF '" LEDF.

Challenge 1 Investigate the case when 6.ABC is equilateral.

Challenge 2 Investigate the case when AC = CB.
c

c

A'----~----... B A"-------~-----_t'_-~ B

1-12 In'right 6.ABC, with right angle at C, BD = BC, AE = AC,
EF.l BC, and DG.l AC (Fig. 1-12). Prove that DE = EF + DG.

1-13 Prove that the sum of the measures of the perpendiculars from
any point on a side of a rectangle to the diagonals is constant.

Challenge If the point were on the extension of a side of the rectangle,
would the result still hold?

1-14 The trisectors of the angles of a rectangle are drawn. For each
pair of adjacent angles, those trisectors that are closest to the
enclosed side are extended until a point of intersection is estab­
lished. The line segments connecting those points of intersection
form a quadrilateral. Prove that the quadrilateral is a rhombus.

Challenge 1 What type of quadrilateral would be formed if the
original rectangle were replaced by a square?

Challenge 2 What type of figure is obtained when the original figure
is any parallelogram?

Challenge 3 What type of figure is obtained when the original figure
is a rhombus?

1-15 In Fig. 1-15, BE and AD are altitudes of 6.ABC. F, G, and K
are midpoints of AH, AB, and BC, respectively. Prove that
LFGK is a right angle.
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A

BL---¥---~------~C

1-16 In parallelogram ABCD, M is the midpoint of BC. DT is drawn
from D perpendicular to ill as in Fig. 1-16. Prove that cr =
CD.

Challenge Make the necessary changes in the construction lines, and
then prove the theorem for a rectangle.

T

B...----------":::::o'"'C71..-\

1·16 '-0::.----------..... 0

1-17 Prove that the line segment joining the midpoints of two opposite
sides of any quadrilateral bisects the line segment joining the
midpoints of the diagonals.

1-18 In any 6.ABC, XYZ is any line through the centroid G (Fig. 1-18).
Perpendiculars are drawn from each vertex of 6.ABC to this
line. Prove CY = AX + BZ.

C c

A"'=---~

B

1-19 In any 6.ABC, CPQ is any line through C, interior to 6.ABC
(Fig. 1-19). BP is perpendicular to line CPQ, AQ is perpendicular
to line CPQ, and M is the midpoint of AB. Prove that MP = MQ.



6 PROBLEMS

Challenge Show that the same result holds if the line through C is
exterior to 6.ABC.

1-20 In Fig. 1-20, ABCD is a parallelogram with equilateral triangles
ABF and ADE drawn on sides AB and AD, respectively. Prove
that 6.FCE is equilateral.

F

1-20

1·21 If a square is drawn externally on each side of a parallelogram,
prove that

(a) the quadrilateral determined by the centers of these squares
is itself a square
(b) the diagonals of the newly formed square are concurrent with
the diagonals of the original parallelogram.

Challenge Consider other regular polygons drawn externally on the
sides of a parallelogram. Study each of these situations!

2. Triangles in Proportion

As the title suggests, these problems deal primarily with similarity
of triangles. Some interesting geometric proportions are investigated,
and there is a geometric illustration of a harmonic mean.

Do you remember manipulations with proportions such as: if
a c a-b c-d
b = d then -b- = -d- ? They are essential to solutions of many

problems.
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2-1 In 6.ABC, DE II BC, FE" DC, AF = 4, and FD = 6 (Fig. 2-1).
Find DB.

Challenge 1 Find DB if AF = ml and FD = m2'

Challenge 2 FG" DE, and HG II FE. Find DB if AH = 2 and
HF= 4.

Challenge 3 Find DB if AH = ml and HF = m2'

2·1

B '-------.;ac

A

~-___:~--------~c

E

2-2 In isosceles 6.ABC (AB = AC), CB is extended through B to P
(Fig. 2-2). A line from P, parallel to altitude BF, meets AC at D
(where D is between A and F). From P, a perpendicular is drawn
to meet the extension of AB at E so that B is between E and A.
Express BF in terms of PD and PE. Try solving this problem
in two different ways.

Challenge Prove that BF = PD + PE when A B = AC, P is between
Band C, D is between C and F, and a perpendicular from P
meets AB at E.

2-3 The measure of the longer base of a trapezoid is 97. The measure
of the line segment joining the midpoints of the diagonals is 3.
Find the measure of the shorter base.

Challenge Find a general solution applicable to any trapezoid.

2-4 In 6.ABC, D is a point on side BA such that BD:DA = 1:2.
E is a point on side CB so that CE:EB = I :4. Segments DC
and AE intersect at F. Express CF: FD in terms of two positive
relatively prime integers.
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Challenge Show that if BD: DA = m:n and CE:EB = r:5, then

CF = (~)(m + ") .
FD S /I

2-5 In 6.ABC, BE is a median and 0 is the midpoint of BE. Draw
AO and extend it to meet BC at D. Draw CO and extend it to
meet BA at F. If CO = 15, OF = 5, and AO = 12, find the
measure of 0 D.

Challenge Can you establish a relationship between OD and AO?

2-6 In parallelogram ABCD, points E and F are chosen on diagonal
AC so that AE = FC. If BE is extended to meet AD at H, and
BF is extended to meet DC at G, prove that HG is parallel to Ae.

Challenge Prove the theorem if E and F are on AC, exterior to the
parallelogram.

2-7 AM is the median to side BC of 6.ABC, and P is any point on
AM. BP extended meets AC at E, and CP extended meets AB at
D. Prove that DE is parallel to Be.

Challenge Show that the result holds if P is on AM, exterior to
6.ABe.

2-8 In 6.ABC, the bisector of LA intersects BC at D (Fig. 2-8).
A perpendicular to A D from B intersects A D at E. A line segment
through E and parallel to AC intersects BC at G, and AB at H.
If AB = 26, BC = 28, AC = 30, find the measure of DG.

Challenge Prove the result for CF l- AD where F is on AD exterior
to 6.ABe.

A

B'-====~:-- ~c

c

HL.------~--.I;oL--~B
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2-9 In 6.A BC, altitude BE is extended to G so that EG = the measure
of altitude CF. A line through G and parallel to A C meets BA
at H, as in Fig. 2-9. Prove that AH = AC.

Challenge 1 Show that the result holds when LA is a right angle.

Challenge 2 Prove the theorem for the case where the measure of
altitude BE is greater than the measure of altitude CF,
and G is on BE (between B and E) so that EG = CF.

2-10 In trapezoid ABCD (AB II DC), with diagonals AC and DB
intersecting at P, AM, a median of 6.ADC, intersects BD at E
(Fig. 2-10). Through E, a line is drawn parallel to DC cutting AD,
AC, and BC at points H, F, and G, respectively. Prove that
HE= EF= FG.

2·10

D/£-------~------~C

2-11 A line segment AB is divided by points K and L in such a way that
(AL)2 = (AK)(AB) (Fig. 2-11). A line segment AP is drawn
congruent to AL. Prove that PL bisects LKPB.

p

AL----+.----~------.....::..B

Challenge Investigate the situation when LAPB is a right angle.

2-12 P is any point on altitude CD of 6.ABC. AP and BP meet sides
CBand CA at points Q and R, respectively. Prove that LQDC '"
LRDC.
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2-13 In .6.ABC, Z is any point on base AB (Fig. 2-13). CZ is drawn.
A line is drawn through A parallel to CZ meeting Be at X. A
line is drawn through B parallel to CZ meeting At at Y. Prove

1 1 1
that AX + BY = cz·

Challenge

y

2-13

A":::;"'--~zf------~

Two telephone cable poles, 40 feet and 60 feet high,
respectively, are placed near each other. As partial support,
a line runs from the top of each pole to the bottom of the
other. How high above the ground is the point of inter­
section of the two support lines?

2-14 In .6.ABC, mLA = 120. Express the measure of the internal
bisector of LA in terms of the two adjacent sides.

Challenge Prove the converse of the theorem established above.

2-15 Prove that the measure of the segment passing through the point
of intersection of the diagonals of a trapezoid and parallel to the
bases with its endpoints on the legs, is the harmonic mean be­
tween the measures of the parallel sides. The harmonic mean of
two numbers is defined as the reciprocal of the average of the
reciprocals of two numbers. The harmonic mean between a and
b is equal to

(
a - 1+ b - I) -1= 'lab •

2 a+b

2-16 In OABCD, E is on BC (Fig. 2-16a). AE cuts diagonal BD at G
and DC at F. If AG = 6 and GE = 4, find EF.
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Challenge 1 Show that AG is one-half the harmonic mean between
AFand AE.

Challenge 2 Prove the theorem when E is on the extension of CD
through B (Fig. 2-16b).

2·16b

3. The Pythagorean Theorem

You will find two kinds of problems in this section concerning the
key result of Euclidean geometry, the theorem of Pythagoras. Some
problems involve direct applications of the theorem. Others make
use of results that depend on the theorem, such as the relationship
between the sides of an isosceles right triangle or a 30-60-90 triangle.

3-1 In any .6.ABC, E is any point on altitude AD (Fig. 3-1). Prove
that (AC)2 - (CE)2 = (AB)2 - (EB) 2.

A

c£----!.-L---~ B

Challenge 1 Show that the result holds if E is on the extension of
AD through D.

Challenge 2 What change in the theorem results if E is on the extension
of A D through A?

3-2 In .6.ABC, median AD is perpendicular to median BE. Find AB
if BC = 6 and AC = 8.
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Challenge 1 Express AB in general terms for BC = G, and AC = b.

Challenge 2 Find the ratio of AB to the measure of its median.

3-3 On hypotenuse AB of right .6.ABC, draw square ABLH ex­
ternally. If AC = 6 and BC = 8, find CH.

Challenge 1 Find the area of quadrilateral HLBC.

Challenge 2 Solve the problem if square ABLH overlaps .6.ABC.

3-4 The measures of the sides of a right triangle are 60, 80, and 100.
Find the measure of a line segment, drawn from the vertex of the
right angle to the hypotenuse, that divides the triangle into two
triangles of equal perimeters.

3-5 On sides AB and DC of rectangle ABCD, points F and E are
chosen so that AFCE is a rhombus (Fig. 3-5). If AB = 16 and
BC = 12, find EF.

3·5

Challenge If AB = G and BC = b, what general expression will give
the measure of EF?

3-6 A man walks one mile east, then one mile northeast, then another
mile east. Find the distance, in miles, between the man's initial
and final positions.

Challenge How much shorter (or longer) is the distance if the course
is one mile east, one mile north, then one mile east?

3-7 If the measures of two sides and the included angle of a triangle
are 7, ySO, and 135, respectively, find the measure of the segment
joining the midpoints of the two given sides.

Challenge 1 Show that when mLA = 135,

EF = ~ V b2 + c2 + bcv2,



The Pythagorean Theorem 13

where E and F are midpoints of sides AC and AB,
respectively, of .6.ABC.

NOTE: G, b, and e are the lengths of the sides opposite
LA, LB, and LC of .6.ABC.

Challenge 2 Show that when mLA = 120,

EF = ~ yb 2 + e2 + beYl.

Challenge 3 Show that when mLA = 150,

EF = ~ yb 2 + e2 + beY3.

Challenge 4 On the basis of these results, predict the values of EF for
mLA = 30, 45, 60, and 90.

3-8 Hypotenuse AB of right .6.ABC is divided into four congruent
segments by points G, E, and H, in the order A, G, E, H, B. If
AB = 20, find the sum of the squares of the measures of the line
segments from C to G, E, and H.

Challenge Express the result in general terms when AB = e.

3-9 In quadrilateral ABCD, AB = 9, BC = 12, CD = 13, DA = 14,
and diagonal AC = 15 (Fig. 3-9). Perpendiculars are drawn from
Band D to AC, meeting AC at points P and Q, respectively. Find
PQ.

A

LI- ---.,;30B

3·10

o
3-10 In .6.ABC, angle C is a right angle (Fig. 3-10). AC = BC = 1,

and D is the midpoint ofAC. BD is drawn, and a line perpendicular
to BD at P is drawn from C. Find the distance from P to the inter­
section of the medians of .6.ABC.

Challenge Show that PG = c~~o when G is the centroid, and e is

the length of the hypotenuse.

B
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3-11 A right triangle contains a 60° angle. If the measure of the
hypotenuse is 4, find the distance from the point of intersection
of the 2 legs of the triangle to the point of intersection of the angle
bisectors.

3-12 From point P inside .6.ABC, perpendiculars are drawn to the
sides meeting BC, CA, and AB, at points D, E, and F, respectively.
If BD = 8, DC = 14, CE = 13, AF = 12, and FB = 6, find
AE. Derive a general theorem, and then make use of it to solve
this problem.

3-13 For .6.ABC with medians AD, BE, and CF, let m = AD +
BE + CF, and let s = AB + BC + CA. Prove that ~ s >

3
m> 4s.

3
3-14 Prove that 4 (a 2 + b 2 + c 2

) = ma
2 + mb 2 + me

2
• (me means

the measure of the median drawn to side c.)

Challenge 1 Verify this relation for an equilateral triangle.

Challenge 2 The sum of the squares of the measures of the sides of a
triangle is 120. If two of the medians measure 4 and 5,
respectively, how long is the third median?

Challenge 3 If AE and BF are medians drawn to the legs of right
(A£)2 + (BF)2

.6.ABC, find the numeral value of (AB)2 •

4. Circles Revisited

Circles are the order of the day in this section. There are problems
dealing with arc and angle measurement; others deal with lengths of
chords, secants, tangents, and radii; and some problems involve both.

Particular attention should be given to Problems 4-33 thru 4-40,
which concern cyclic quadrilaterals (quadrilaterals that may be in­
scribed in a circle). This often neglected subject has interesting applica­
tions. If you are not familiar with it, you might look at the theorems
that are listed in Appendix I.
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4-1 Two tangents from an external point P are drawn to a circle,
meeting the circle at points A and B. A third tangent meets the
circle at T, and tangents PA and PiJ at points Q and R, respec­
tively. Find the perimeter p of ~PQR.

4-2 AB and AC are tangent to circle 0 at Band C, respectively, and
CE is perpendicular to diameter BD (Fig. 4-2). Prove (BE)(BO) =
(AB)(CE).

Challenge 1 Find the value of AB when E coincides with O.

Challenge 2 Show that the theorem is true when E is between Band O.

AB BO
Challenge 3 Show that VBE = V£l5'

A

4-2

J--_~4D ,¥--~k'---~B

4-3 From an external point P, tangents PA and PiJ are drawn to a---..
circle. From a point Q on the major (or minor) arc AB, per-
pendiculars are drawn to AB, PA, and PiJ. Prove that the per­
pendicular to AB is the mean proportional between the other
two perpendiculars.

Challenge Show that the theorem is true when the tangents are
parallel.

4-4 Chords AC and DB are perpendicular to each other and intersect
at point G (Fig. 4-4). In ~AGD the altitude from G meets AD
at E, and when extended meets BC at P. Prove that BP = Pc.

Challenge One converse of this theorem is as follows. Chords AC
and DB intersect at G. In ~AGD the altitude from G meets
AD at E, and when extended meets BC at P so that BP =
Pc. Prove that AC 1. BD.
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4-S Square ABCD is inscribed in a circle. Point E is on the circle.
If AB = 8. find the value of

(AE)2 + (BE)2 + (CE)2 + (DE)2.

Challenge Prove that for ABCD, a non-square rectangle, (AE)2 +
(BE)2 + (CE)2 + (DE)2 = 2d2, where d is the measure
of the length of a diagonal of the rectangle.

4-6 Radius AO is perpendicular to radius OB, MN is parallel to AB
meeting AO at P and OB at Q, and the circle at M and N
(Fig. 4-6). If MP = v'56, and PN = 12, find the measure of the
radius of the circle.

M A

4-6

p.....:;;----If------~c

4-7 Chord CD is drawn so that its midpoint is 3 inches from the
center of a circle with a radius of 6 inches. From A, the midpoint,....... - -
of minor arc CD, any chord AB is drawn intersecting CD in M.
Let v be the range of values of (AB)(AM), as chord AB is made to
rotate in the circle about the fixed point A. Find v.

4-8 A circle with diameter AC is intersected by a secant at points B
and D. The secant and the diameter intersect at point P outside
the circle, as shown in Fig. 4-8. Perpendiculars AE and CF are
drawn from the extremities of the diameter to the secant. If
EB = 2, and BD = 6, find DF.

Challenge Does DF = EB? Prove it!

4-9 A diameter CD of a circle is extended through D to external
point P. The measure of secant CP is 77. From P, another secant
is drawn intersecting the circle first at A, then at B. The measure
of secant PB is 33. The diameter of the circle measures 74.
Find the measure of the angle formed by the secants.

Challenge Find the measure of the shorter secant if the measure of the
angle between the secants is 45.
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4-10 In 6.ABC, in which AB = 12, BC = 18, and AC = 25, a
semicircle is drawn so that its diameter lies on AC, and so that it
is tangent to AB and Be. If 0 is the center of the circle, find the
measure of AO.

Challenge Find the diameter of the semicircle.

4-11 Two parallel tangents to circle 0 meet the circle at points M and
N. A third tangent to circle 0, at point P, meets the other two
tangents at points K and L. Prove that a circle, whose diameter is
KL, passes through 0, the center of the original circle.

....-...
Challenge Prove that for different positions of point P, on MN, a

family of circles is obtained tangent to each other at O.

4-12 LM is a chord of a circle, and is bisected at K (Fig. 4-12). DKJ is
another chord. A semicircle is drawn with diameter DJ. KS,
perpendicular to DJ, meets this semicircle at S. Prove KS = KL.

Challenge Show that if DKJ is a diameter of the first circle, or if
DKJ coincides with LM, the theorem is trivial.

s

4-13 6.ABC is inscribed in a circle with diameter AD. A tangent to the
circle at D cuts AB extended at E and AC extended at F. If
AB = 4, AC = 6, and BE = 8, find CF.

Challenge 1 Find mLDAF.

Challenge 2 Find Be.

4-14 Altitude A D of equilateral 6.A BC is a diameter of circle O. If the
circle intersects AB and AC at E and F, respectively, find the ratio
of EF:Be.

Challenge Find the ratio of EB: BD.
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4-15 Two circles intersect in A and B, and the measure of the common
chord AB is 10. The line joining the centers cuts the circles in P
and Q. If PQ = 3 and the measure of the radius of one circle is
13, find the radius of the other circle.

Challenge Find the second radius if PQ = 2.

4-16 ABCD is a quadrilateral inscribed in a circle. Diagonal BD
bisects Ae. If AB = 10, AD = 12, and DC = 11, find Be.

Challenge Solve the problem when diagonal BD divides AC into two
segments, one of which is twice as long as the other.

4-17 A is a point exterior to circle O. PT is drawn tangent to the circle
so that PT = PA. As shown in Fig. 4-17, C is any point on circle
0, and AC and PC intersect the circle at points D and B, re­
spectively. AB intersects the circle at E. Prove that DE is parallel
toAP.

P'"""_........, ~,

Challenge 1 Prove the theorem for A interior to circle O.

Challenge 2 Explain the situation when A is on circle o.

4-18 PA and PB are tangents to a circle, and PCD is a secant. Chords
AC, BC, BD, and DA are drawn. If AC = 9, AD = 12, and
BD = 10, find Be.

Challenge If in addition to the information given above, PA = 15
and PC = 9, find AB.

4-19 The altitudes of f:::.ABC meet at o. BC, the base of the triangle,
has a measure of 16. The circumcircle of f:::.ABC has a diameter
with a measure of 20. Find AO.

4-20 Two circles are tangent internally at P, and a chord, AB, of the
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larger circle is tangent to the smaller circle at C (Fig. 4-20). PB
and PA cutthe smaller circle at E and D, respectively. If AB = 15,
while PE = 2 and PD = 3, find AC.

Challenge Express AC in terms of AB, PE, and PD.

4·20
c

4-21 A circle, center 0, is circumscribed about .6.ABC, a triangle in
which LC is obtuse (Fig. 4-21). With OC as diameter, a circle is
drawn intersecting AB in D and D'. If AD = 3, and DB = 4,
find CD.

Challenge 1 Show that the theorem is or is not true if mL C = 90.

Challenge 2 Investigate the case for mLC < 90.

4-22 In circle 0, perpendicular chords AB and CD intersect at E so
that AE = 2, EB = 12, and CE = 4. Find the measure of the
radius of circle O.

Challenge Find the shortest distance from E to the circle.

4-23 Prove that the sum of the measure of the squares of the seg­
ments made by two perpendicular chords is equal to the square
of the measure of the diameter of the given circle.

Challenge Prove the theorem for two perpendicular chords meeting
outside the circle.

4-24 Two equal circles are tangent externally at T. Chord TM in circle
o is perpendicular to chord TN in circle Q. Prove that MN II OQ
and MN = OQ.

Challenge Show that MN = y2(R2 + r2) if the circles are unequal,
where Rand r are the radii of the two circles.
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4-25 From point A on the common internal tangent of tangent circles
o and 0', secants AEB and ADC are drawn, respectively (Fig.
4-25). If DE is the common external tangent, and points C and B
are collinear with the centers of the circles, prove

(a) mL1 = mL2, and
(b) LA is a right angle.

A

Cl"---'!----::+--~-.........

A

B.......-""':::O-=-"""'--~C

Challenge 1 Prove or disprove that if BC does not pass through the
centers of the circles, the designated pairs of angles are
not equal and LA is not a right angle.

Challenge 2 Prove that DE is the mean proportional between the
diameters of circles 0 and 0'.

4-26 Two equal intersecting circles 0 and 0' have a common chord
RS. From any point P on RS a ray is drawn perpendicular to RS
cutting circles 0 and 0' at A and B, respectively. Prove that AB
is parallel to the line of centers, DiY, and that AB = 00'.

4-27 A circle is inscribed in a triangle whose sides are 10, 10, and 12
units in measure (Fig. 4-27). A second, smaller circle is inscribed
tangent to the first circle and to the equal sides of the triangle.
Find the measure of the radius of the second circle.

Challenge 1 Solve the problem in general terms if AC = a, BC = 2b.

Challenge 2 Inscribe a third, smaller circle tangent to the second
circle and to the equal sides, and find its radius by
inspection.

Challenge 3 Extend the legs of the triangle through Band C, and
draw a circle tangent to the original circle and to the
extensions of the legs. What is its radius?
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4-31

AI-----t"-+=-__.,-.--1 B

4-29

4-28 A circle with radius 3 is inscribed in a square. Find the radius of
the circle that is inscribed between two sides of the square and
the original circle.

Challenge Show that the area of the small circle is approximately 3%
of the area of the large circle.

4-29 AB is a diameter of circle 0, as shown in Fig. 4-29. Two circles
are drawn with AO and OB as diameters. In the region between
the circumferences, a circle D is inscribed, tangent to the three
previous circles. If the measure of the radius of circle D is 8, find
AB.

Challenge Prove that the area of the shaded region equals the area of
circle E.

c

4-30 A carpenter wishes to cut four equal circles from a circular piece
of wood whose area is 971" square feet. He wants these circles of
wood to be the largest that can possibly be cut from this piece of
wood. Find the measure of the radius of each of the four new
circles.

Challenge 1 Find the correct radius if the carpenter decides to cut
out three equal circles of maximum size.

Challenge 2 Which causes the greater waste of wood, the four circles
or the three circles?

4-31 A circle is inscribed in a quadrant ofa circle of radius 8 (Fig. 4-31).
What is the measure of the radius of the inscribed circle?

Challenge Find the area of the shaded region.

4-32 Three circles intersect. Each pair of circles has a common chord.
Prove that these three chords are concurrent.

Challenge Investigate the situation in which one circle is externally
tangent to each of two intersecting circles.
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4-33 The bisectors of the angles of a quadrilateral are drawn. From
each pair of adjacent angles, the two bisectors are extended until
they intersect. The line segments connecting the points of inter­
section form a quadrilateral. Prove that this figure is cyclic (i.e.,
can be inscribed in a circle).

4-34 In cyclic quadrilateral ABCD, perpendiculars to AB and CD are
erected at Band D and extended until they meet sides CD and
A1J at B' and D', respectively. Prove AC is parallel to B'D'.

4-35 Perpendiculars BD and CE are drawn from vertices Band C of
L::.ABC to the interior bisectors of angles C and B, meeting them
at D and E, respectively (Fig. 4-35). Prove that DE intersects AB
and AC at their respective points of tangency, F and G, with the
circle that is inscribed in L::.ABC.

A

B.....--":::O"-:;;.....----;;:sC

4-36 A line, PQ, parallel to base BC of L::.ABC, cuts AB and AC at P
and Q, respectively (Fig. 4-36). The circle passing through P and
tangent to AC at Q cuts AB again at R. Prove that the points R,
Q, C, and B lie on a circle.

Challenge Prove the theorem when P and R coincide.

c

4·37
A

4·36

B CAB

4-37 In equilateral L::.ABC, D is chosen on AC so that AD = ~ (AC),
- 1 -and E is chosen on BC so that CE = 3 (BC) (Fig. 4-37). BD and

AE intersect at F. Prove that LCFB is a right angle.
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Challenge Prove or disprove the theorem when AD = ~ (A C) and
1

CE = 4(BC).

4-38 The measure of the sides of square ABCD is x. F is the midpoint
of BC, and AE .1 DF (Fig. 4-38). Find BE.

4·38

A""=:----~F_--F---f

4-39 If equilateral 6.ABC is inscribed in a circle, and a point P is,,-...
chosen on minor arc AC, prove that PB = PA + pc.

4-40 From point A, tangents are drawn to circle 0, meeting the circle
at Band C (Fig. 4-40). Chord BF /I secant ADE. Prove that FC
bisects DE.

5. Area Relationships

While finding the area of a polygon or circle is a routine matter
when a formula can be applied directly, it becomes a challenging task
when the given information is "indirect." For example, to find the area
of a triangle requires some ingenuity if you know only the measures of
its medians. Several problems here explore this kind of situation. The
other problems involve a comparison of related areas. To tackle these
problems, it may be helpful to keep in mind the following basic rela­
tionships. The ratio of the areas of triangles with congruent altitudes
is that of their bases. The ratio of the areas of similar triangles is the
square of the ratio of the lengths of any corresponding line segments.
The same is true for circles, which are all similar, with the additional
possibility of comparing the lengths of corresponding arcs. Theorem
#56 in Appendix I states another useful relationship.

5-1 As shown in Fig. 5-1, E is on AB and C is on FG. Prove OABCD
is equal in area to OEFGD.
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A._----jr-=---"""

F

5-1

G

Challenge Prove that the same proposition is true if E lies on the
extension of AB through B.

5-2 The measures of the bases of trapezoid ABCD are 15 and 9, and
the measure of the altitude is 4. Legs DA and CB are extended to
meet at E. If F is the midpoint of A D, and G is the midpoint of
BC, find the area of !:::"FGE.

Challenge Draw GL II ED and find the ratio of the area of !:::,.GLC to
the area of !:::,.EDC.

5-3 The distance from a point A to a line liC is 3. Two lines / and I',
parallel to liC, divide !:::,.ABC into three parts of equal area.
Find the distance between / and 1'.

5-4 Find the ratio between the areas of a square inscribed in a circle
and an equilateral triangle circumscribed about the same circle.

Challenge 1 Using a similar procedure, find the ratio between the areas
of a square circumscribed about a circle and an equilat­
eral triangle inscribed in the same circle.

Challenge 2 Let D represent the difference in area between the cir­
cumscribed triangle and the inscribed square. Let K
represent the area of the circle. Is the ratio D: K greater
than 1, equal to 1, or less than I?

Challenge 3 Let D represent the difference in area between the
circumscribed square and the circle. Let T represent the
area of the inscribed equilateral triangle. Find the ratio
D:T.

5-5 A circle 0 is tangent to the hypotenuse BC of isosceles right
!:::"ABC. AB and AC are extended and are tangent to circle 0 at E
and F, respectively, as shown in Fig. 5-5. The area of the triangle
is X 2

• Find the area of the circle.



Area Relationships 25

5-5

Challenge Find the area of trapezoid EBCF.

5-6 PQ is the perpendicular bisector of AD, AB 1.. BC, and DC 1.. BC
(Fig. 5-6). If AB = 9, BC = 8, and DC = 7, find the area of
quadrilateral APQB.

A

5-6

L..L.._~ ---I~C

5-7 A triangle has sides that measure 13, 14, and 15. A line per­
pendicular to the side of measure 14 divides the interior of the
triangle into two regions of equal area. Find the measure of the
segment of the perpendicular that lies within the triangle.

Challenge Find the area of the trapezoid determined by the per­
pendicular to the side whose measure is 14, the altitude to
that side, and sides of the given triangle.

5-8 In fJ.ABC, AB = 20, AC = 22~, and BC = 27. Points X and Y

are taken on AB and AC, respectively, so that AX = A Y. If the
1

area of fJ.AXY = 2area of fJ.ABC, find AX.

Challenge Find the ratio of the area of fJ.BXY to that of fJ.CXY.

5-9 In fJ.ABC, AB = 7, AC = 9. On AB, point D is taken so that
BD = 3. DE is drawn cutting AC in E so that quadrilateral

BCED has ithe area of fJ.ABC. Find CEo



26 PROBLEMS

Challenge Show that if BD = ! c, and the area of quadrilateral
1 II

BCED = - K, where K is the area of 6.ABC, then
m

CE = b ( n - m ) •
m(1I - I)

5-10 An isosceles triangle has a base of measure 4, and sides measuring
3. A line drawn through the base and one side (but not through
any vertex) divides both the perimeter and the area in half. Find
the measures of the segments of the base defined by this line.

Challenge Find the measure of the line segment cutting the two sides
of the triangle.

5-11 Through D, a point on base BC of 6.ABC, DEand DFare drawn
parallel to sides AB and AC, respectively, meeting AC at E and
AB at F. If the area of 6.EDC is four times the area of 6.BFD,
what is the ratio of the area of 6.AFE to the area of 6.ABC?

Challenge Show that if the area of 6.EDC is k 2 times the area of
6.BFD, then the ratio of area of 6.AFE to the area of
6.ABC is k: (I + k)2.

5-12 Two circles, each of which passes through the center of the other,
intersect at points M and N (Fig. 5-12). A line from M intersects
the circles at K and L. If KL = 6, compute the area of 6.KLN.

L

5-12

c

M

Challenge If r is the measure of the radius of each circle, find the least
value and the greatest value of the area of 6.KLN.

5-13 Find the area of a triangle whose medians have measures 39, 42,
45.

5-14 The measures of the sides of a triangle are 13, 14, and 15. A second
triangle is formed in which the measures of the three sides are the
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same as the measures of the medians of the first triangle. What is
the area of the second triangle?

Challenge 1 Show that K(m) = G) K where K represents the area of

6.ABC, and K(m) the area of a triangle with sides ma,
mb, me, the medians of 6.ABC.

Challenge 2 Solve Problem 5-13 using the results of Challenge 1.

5-15 Find the area of a triangle formed by joining the midpoints of
the sides ofa triangle whose medians have measures 15, 15, and 18.

Challenge Express the required area in terms of K(m), where K(m) is
the area of the triangle formed from the medians.

5-16 In 6.ABC, E is the midpoint of BC, while F is the midpoint of
AE, and 'jjfr meets AC at D. If the area of 6.ABC = 48, find the
area of 6.AFD.

Challenge 1 Solve this problem in general terms.
1 1

Challenge 2 Change AF = "2 AE to AF = "3 AE, and find a general

solution.

5-17 In 6.ABC, D is the midpoint of side BC, E is the midpoint of
AD, F is the midpoint of BE, and G is the midpoint of FC (Fig.
5-17). What part of the area of 6.ABC is the area of 6.EFG?

Challenge Solve the problem if BD = ~ BC, AE = ~ AD, BF = j BE,
I

and GC = "3 Fe.

A

B e.-__~__..;;;::... C BL.-------~C

5-18 In trapezoid ABCD with upper base A D, lower base BC, and legs
AB and CD, E is the midpoint of CD (Fig. 5-18). A perpendicular,
EF, is drawn to BA (extended if necessary). If EF = 24 and
AB = 30, find the area of the trapezoid. (Note that the figure is
not drawn to scale.)
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Challenge Establish a relationship between points F, A, and B such
that the area of the trapezoid ABCD is equal to the area of
6.FBH.

5-19 In OABCD, a line from C cuts diagonal BD in E and AB in F.
If F is the midpoint of AB, and the area of 6.BEC is 100, find the
area of quadrilateral AFED.

Challenge Find the area of 6.GEC where G is the midpoint of BD.

5-20 P is any point on side AB of OABCD. CP is drawn through P
meeting DA extended at Q. Prove that the area of 6.DPA is
equal to the area of 6. QPB.

Challenge Prove the theorem for point P on the endpoints of side BA.

- ,,-...
5-21 RS is the diameter of a semicircle. Two smaller semicircles, RT

,,-... - -
and TS, are drawn on RS, and their common internal tangent AT
intersects the large semicircle at A, as shown in Fig. 5-21. Find
the ratio of the area of a semicircle with radius AT to the area of
the shaded region.

A

5-21

R ~---_S

T

5-22 Prove that from any point inside an equilateral triangle, the sum
of the measures of the distances to the sides of the triangle is
constant.

Challenge In equilateral 6.ABC, legs AB and BC are extended
through B so that an angle is formed that is vertical to
LABC. Point P lies within this vertical angle. From P,
perpendiculars are drawn to sides BC. AC, and AB at
points Q, R, and S, respectively. Prove that PR - (PQ +
PS) equals a constant for 6.ABC.



SECTION II
Further Investigations

6. A Geometric Potpourri

A variety of somewhat difficult problems from elementary Euclidean
geometry will be found in this section. Included are Heron's Theorem
and its extension to the cyclic quadrilateral, Brahmagupta's Theorem.
There are problems often considered classics, such as the butterfly
problem and Morley's Theorem. Other famous problems presented are
Euler's Theorem and Miquel's Theorem.

Several ways to solve a problem are frequently given in the Solution
Part of the book, as many as seven different methods in one case!
We urge you to experiment with different methods. After all, 'the right
answer' is not the name of the game in Geometry.

6-1 Heron's Formula is used to find the area of any triangle, given
only the measures of the sides of the triangle. Derive this famous
formula. The area of any triangle = ys(s - a)(s - b)(s - c),
where a, b, c are measures of the sides of the triangle and s is the
semiperimeter.

Challenge Find the area of a triangle whose sides measure 6, y2, Y50.

6-2 An interesting extension of Heron's Formula to the cyclic
quadrilateral is credited to Brahmagupta, an Indian mathematician
who lived in the early part of the seventh century. Although
Brahmagupta's Formula was once thought to hold for all
quadrilaterals, it has been proved to be valid only for cyclic
quadrilaterals.

The formula for the area of a cyclic quadrilateral with side
measures a, b, c, and dis

K = y(S--:::-a)(s - b)(s - (')(s - d),

where s is the semiperimeter. Derive this formula.
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Challenge 1 Find the area of a cyclic quadrilateral whose sides
measure 9, 10, 10, and 21.

Challenge 2 Find the area of a cyclic quadrilateral whose sides
measure 15, 24, 7, and 20.

6-3 Sides BA and CA of !:::,.ABC are extended through A to form
rhombuses BATR and CAKN. (See Fig. 6-3.) BN and RC,
intersecting at P, meet AB at Sand AC at M. Draw MQ parallel
to AB. (a) Prove AMQS is a rhombus and (b) prove that the area
of !:::,.BPC is equal to the area of quadrilateral ASPM.

K

6·3

R ....... _

N

c

6-4 Two circles with centers A and B intersect at points M and N.

Radii AP and BQ are parallel (on opposite sides of AB). If the
common external tangents meet AB at D, and PQ meets AB at
C, prove that LCND is a right angle.

6-5 Ina triangle whose sides measure 5", 6", and 7", point P is 2"
from the 5" side and 3" from the 6" side. How far is P from the
7" side?

6-6 Prove that if the measures of the interior bisectors of two angles
of a triangle are equal, then the triangle is isosceles.

6-7 In circle 0, draw any chord AB, with midpoint M. Through M
two other chords, FE and CD, are drawn. CE and FD intersect
AB at Q and P, respectively. Prove that MP = MQ. (See Fig.
6-7.) This problem is often referred to as the butterfly problem.

6-8 !:::,.ABC is isosceles with CA = CB. mLABD = 60, mLBAE =

50, and mLC = 20. Find the measure of LEDB (Fig. 6-8).
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6-7

6-9 Find the area of an equilateral triangle containing in its interior a
point P, whose distances from the vertices of the triangle are 3, 4,
and 5.

6-10 Find the area of a square ABCD containing a point P such that
PA = 3, PB = 7, and PD = 5.

Challenge 1 Find the measure of Pc.

Challenge 2 Express PC in terms of PA, PB, and PD.

6-11 If, on each side of a given triangle, an equilateral triangle is
constructed externally, prove that the line segments formed by
joining a vertex of the given triangle with the remote vertex of the
equilateral triangle drawn on the side opposite it are congruent.

Challenge 1 Prove that these lines are concurrent.

Challenge 2 Prove that the circumcenters of the three equilateral
triangles determine another equilateral triangle.

6-12 Prove that if the angles of a triangle are trisected, the intersections
of the pairs of trisectors adjacent to the same side determine an
equilateral triangle. (This theorem was first derived by F. Morley
about 1900.)

6-13 Prove that in any triangle the centroid trisects the line segment
joining the center of the circumcircle and the orthocenter (i.e.
the point of intersection of the altitudes). This theorem was first
published by Leonhard Euler in 1765.
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Challenge 1 The result of this theorem leads to an interesting problem
first published by James Joseph Sylvester (1814-1897).
The problem is to find the resultant of the three vectors
OA, 0lJ, and OC acting on the center of the circumcircle
o of !:::,.ABC.

Challenge 2 Describe the situation when !:::,.ABC is equilateral.

Challenge 3 Prove that the midpoint of the line segment determined
by the circumcenter and the orthocenter is the center of
the nine-point circle. The nine-point circle of a triangle
is determined by the following nine points; the feet of the
altitudes, the midpoints of the sides of the triangle, and
the midpoints of the segments from the vertices to the
orthocenter.

6-14 Prove that if a point is chosen on each side of a triangle, then the
circles determined by each vertex and the points on the adjacent
sides pass through a common point (Figs. 6-14a and 6-14b). This
theorem was first published by A. Miquel in 1838.

Challenge 1 Prove in Fig.6-14a,mLBFM = mLCEM = mLADM;
or in Fig. 6-14b, mLBFM = mLCDM = mLGEM.

Challenge 2 Give the location of M when AF = FB = BE = EC =

CD = DA.

6·148
A

6-15 Prove that the centers of the circles in Problem 6-14 determine a
triangle similar to the original triangle.

Challenge Prove that any other triangle whose sides pass through the
intersections of the above three circles, P, Q, and R (two
at a time), is similar to !:::,.ABC.
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7. Ptolemy and the Cyclic Quadrilateral

One of the great works of the second Alexandrian period was a
collection of earlier studies, mainly in astronomy, by Claudius Ptole­
maeus (better known as Ptolemy). Included in this work, the Almagest,
is a theorem stating that in a cyclic (inscribed) quadrilateral the sum
of the products of the opposite sides equals the product of the diagonals.
This powerful theorem of Ptolemy enables us to solve problems which
would otherwise be difficult to handle. The theorem and some of its
consequences are explored here.

'-I Prove that in a cyclic quadrilateral the product of the diagonals is
equal to the sum of the products of the pairs of opposite sides
(Ptolemy's Theorem).

Challenge 1 Prove that if the product of the diagonals ofa quadrilateral
equals the sum of the products of the pairs of opposite
sides, then the quadrilateral is cyclic. This is the converse
of Ptolemy's Theorem.

Challenge 2 To what familiar result does Ptolemy's Theorem lead
when the cyclic quadrilateral is a rectangle?

Challenge 3 Find the diagonal, d, of the trapezoid with bases a and b,
and equal legs c.

'-2 E is a point on side AD of rectangle ABCD, so that DE = 6,
while DA = 8, and DC = 6. If CE extended meets the cir­
cumcircle of the rectangle at F, find the measure of chord DF.
(See Fig. 7-2.)

7·2

Challenge Find the measure of FB.
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'-3 On side AB of square ABCD, right L:J.ABF, with hypotenuse AB,
is drawn externally to the square. If AF = 6 and BF = 8 find
EF, where E is the point of intersection of the diagonals of the
square.

Challenge Find EF, when F is inside square ABCD.

'-4 PointPonsideABofrightL:J.ABCisplacedsothatBP = PA = 2.
Point Q is on hypotenuse AC so that PQ is perpendicular to AC.
If CB = 3, find the measure of BQ, using Ptolemy's Theorem.
(See Fig. 7-4.)

Challenge 1 Find the area of quadrilateral CBPQ.

Challenge 2 As P is translated from B to A along BA, find the range
of values of BQ, where PQ remains perpendicular to CA.

c

7-4

BlZ:...--~----->o.A

7-5

'-5 If any circle passing through vertex A of parallelogram ABCD
intersects sides AB, and AD at points P and R, respectively, and
diagonal AC at point Q, prove that (AQ)(AC) = (AP)(AB) +
(AR)(A D). (See Fig. 7-5.)

Challenge Prove the theorem valid when the circle passes through C.

'-6 Diagonals AC and BD of quadrilateral ABCD meet at E. If

AE = 2, BE = 5, CE = 10, DE = 4, and BC = ~1 ' find AB.

Challenge Find the radius of the circumcircle if the measure of the

distance from DC to the center 0 is 2~ .

,-, If isosceles L:J.ABC (AB = AC) is inscribed in a circle, and a
. . ~ h PA AC r h

pomt P IS on BC, prove t at PH + PC = BC' a constant lor t e
given triangle.
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7-8 If equilateral !:::,.ABC is inscribed in a circle, and a point P is on
iiC, prove that PA = PB + Pc.

7-9 If square ABCD is inscribed in a circle, and a point P is on Be,
PA + PC PD

prove that f>iJ-+-PD = PA·

7-10 If regular pentagon ABCDE is inscribed in a circle, and point P
is on iiC, prove that PA + PD = PB + PC + PE.

7-11 If regular hexagon ABCDEF is inscribed in a circle, and point P
is on iiC, prove that PE + PF = PA + PB + PC + PD.

Challenge Derive analogues for other regular polygons.

7-12 Equilateral !:::,.ADC is drawn externally on side AC of !:::,.ABC.
Point P is taken on BD. Find mLAPC such that BD = PA +
PB + Pc.

Challenge Investigate the case where !:::,.A DC is drawn internally on
side AC of !:::,.ABC.

7-13 A line drawn from vertex A of equilateral !:::"ABC, meets BC at D

and the circumcircle at P. Prove that plD = )8 + )C·

Challenge 1 If BP = 5 and PC = 20, find AD.

Challenge 2 If mBP:mPC = I : 3, find the radius of the circle In

challenge I.

7-14 Express in terms of the sides of a cyclic quadrilateral the ratio of
the diagonals.

Challenge Verify the result for an isosceles trapezoid.

7-15 A point P is chosen inside parallelogram ABCD such that
LAPB is supplementary to LCPD. Prove that (AB)(AD) =
(BP)(DP) + (AP)(CP).

7-16 A triangle inscribed in a circle of radius 5, has two sides measuring
5 and 6, respectively. Find the measure of the third side of the
triangle.

Challenge Generalize the result of this problem for any triangle.
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8. Menelaus and Ceva:

Collinearity and Concurrency

Proofs of theorems dealing with collinearity and concurrency are
ordinarily clumsy, lengthy, and, as a result, unpopular. With the aid of
two famous theorems, they may be shortened.

The first theorem is credited to Menelaus of Alexandria (about
100 A.D.). In 1678, Giovanni Ceva, an Italian mathematician, pub­
lished Menelaus' Theorem and a second one of his own, related to it.
The problems in this section concern either Menelaus' Theorem,
Ceva's Theorem, or both. Among the applications investigated are
theorems of Gerard Desargues, Blaise Pascal, and Pappus of Alex­
andria. A rule of thumb for these problems is: try to use Menelaus'
Theorem for collinearity and Ceva's Theorem for concurrency.

8-1 Points P, Q, and R are taken on sides AC, AB, and BC (extended
if necessary) of L:J.ABC. Prove that if these points are collinear,

AQ BR CP
QB· RC· PA = - 1.

This theorem, together with its converse, which is given in the
Challenge that follows, constitute the classic theorem known as
Menelaus' Theorem. (See Fig. 8-la and Fig. 8-lb.)

p~ .'"Q' p

'-R '~RC C

Challenge In f::,.ABC points P, Q, and R are situated respectively on
sides AC, AB, and BC (extended when necessary). Prove

that if AQ . BR. CP = -I
QB RC PA '

then P, Q, and R are collinear. This is part of Menelaus'
Theorem.

8-2 Prove that three lines drawn from the vertices A, B, and C of
L:J.ABC meeting the opposite sides in points L, M, and N, re-

. I ·f d I·f AN BL CM 1spectlve y, are concurrent 1 an on y 1 NB . LC· MA = .
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This is known as Ceva's Theorem. (See Fig. 8-2a, and Fig. 8-2b.)

N

8-2a

B'''';;;''---~--''';;;''''C

8-3 Prove that the medians of any triangle are concurrent.

8-4 Prove that the altitudes of any triangle are concurrent.

Challenge Investigate the difficulty in applying this proof to a right
triangle by Ceva's Theorem.

8-5 Prove that the interior angle bisectors of a triangle are concurrent.

8-6 Prove that the interior angle bisectors of two angles of a non­
isosceles triangle and the exterior angle bisector of the third angle
meet the opposite sides in three collinear points.

8-' Prove that the exterior angle bisectors of any non-isosceles triangle
meet the opposite sides in three collinear points.

8-8 In right !:::"ABC, P and Q are on BC and AC, respectively, such
that CP = CQ = 2. Through the point of intersection, R, of AP
and BQ, a line is drawn also passing through C and meeting AB

at S. PQ extended meets AB at T. If the hypotenuse AB = 10 and
AC = 8, find TS.

Challenge 1 By how much is TS decreased if P is taken at the midpoint
of BC?

Challenge 2 What is the minimum value of TS?

8-9 A circle through vertices Band C of !:::,.ABC meets AB at P and
- ~. <-----> QC (RC)(AC)
AC at R. If PR meets BC at Q, prove that QB = (PB)(AB) .

(See Fig. 8-9.)

Challenge Investigate the case where the points P and R are on the
extremities of BA and CA, respectively.
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Q~--;;\-------"I

.~
P x Q Y

8-10 In quadrilateral ABCD, AS and CD meet at P, while AD and Be
meet at Q. Diagonals AC and ED meet PQ at X and Y, respec-

tively (Fig. 8-10). Prove that ~~ = - ~~ .

8-11 Prove that a line drawn through the centroid, G, of L:::,.ABC, cuts
sides AB and AC at points M and N, respectively, so that
(AM)(NC) + (AN)(MB) = (AM)(AN). (See Fig. 8-11.)

P~B K C

8-12 In L:::,.ABC, points L, M, and N lie on BC, AC, and AB, respect­
ively, and AL, BM, and CN are concurrent.

) F o d h . I I f PL PM PN(a m t e numenca va ue 0 AL + BM + CN'

(b F o hOI I f AP BP CP) md t e numenca va ue 0 AL + BM + CN'

8-13 Congruent line segments AE and AF are taken on sides AB and
AC, respectively, of L:::,.ABe. The median AM intersects EF at

° QE AC
pomt Qo Prove that QF = AB'

8-14 In L:::,.ABC, Al, EM, and CN are concurrent at P. Express the ratio

;~ in terms of segments made by the concurrent lines on the sides

of L:::,.A Be. (See Fig. 8-2a, and Fig. 8-2b.)

° BP CP
Challenge Complete the expressIOns for PM and PN'
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8-15 Side AB of square ABCD is extended to P so that BP = 2(AB).
With M, the midpoint of DC, BM is drawn meeting AC at Q.

PQ meets BC at R. Using Menelaus' theorem, find the ratio ~: .
(See Fig. 8-15.)

Challenge 1 Find ~~ , when BP = A B.

Challenge 2 Find ~:' when BP = k· AB.

~p
D M C

A

'Fl:::-C D M

8-16 Sides AB, Be, CD, and DA of quadrilateral ABCD are cut by a
straight line at points K, L, M, and N, respectively. (See Fig. 8-16.)

BL AK DN CM
Prove that LC· KB· NA' MD = 1.

Challenge 1 Prove the theorem for parallelogram ABCD.

Challenge 2 Extend this theorem to other polygons.

8-17 Tangents to the circumcircle of L:J.ABC at points A, B, and C
meet sides Be, AC, and AB at points P, Q, and R, respectively.
Prove that points P, Q, and R are collinear. (See Fig. 8-17.)

8-18 A circle is tangent to side BC, of L:J.ABC at M, its midpoint, and
cuts AB and AC at points R, R', and S, S', respectively. If RS and
R'S' are each extended to meet Be at points P and P' respectively,
prove that (BP)(BP') = (CP)(CP'). (See Fig. 8-18.)
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Challenge 1 Show that the result implies that CP = BP'.

Challenge 2 Investigate the situation when 6.ABC is equilateral.

8-19 In 6.ABC (Fig. 8-19) P, Q, and R are the midpoints of the sides
AB, BC, and AC. Lines AN, Hi, and eM are concurrent, meeting
the opposite sides in N, L, and M, respectively. If 'PI meets Be
at J, MQ meets ;re at I, and RN meets AS at H, prove that H, I,
and J are collinear.

8-20 6.ABC cuts a circle at points E, E', D, D', F, F', as in Fig. 8-20.
Prove that if AD, BF, and CE are concurrent, then AD', BF',
and CE' are also concurrent.

8-21 Provc that the three pairs of common extcrnal tangents to three
circles, taken two at a time, meet in three collinear points.

c

8-22

8·22

AM is a median of 6.ABC, and point G on AM is the centroid.
AM is extended through M to point P so that GM = MP.
Through P, a line parallel to AC cuts AB at Q and BC at P J ;

through P, a line parallel to AB cuts CB at Nand AC at P2;

and a line through P and parallel to CB cuts AS at P3. Prove that
points PJ, P 2> and P 3 arc collincar. (See Fig. 8-22.)
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8·23 If ~A lB l C 1 and ~A 2B2C2 are situated so that the lines joining
the corresponding vertices, ~, 'ii;Ji;, and C;C;, are con­
current (Fig. 8-23), then the pairs of corresponding sides intersect
in three collinear points. (Desargues' Theorem)

Challenge Prove the converse.

8·24 A circle inscribed in ~ABC is tangent to sides BC, CA, and AB at
points L, M, and N, respectively. If M N extended meets BC at P,

BL BP
(a) prove that - = -­

LC PC

(b) prove that if FiL meets AC at Q and Ml meets AB at R, then
P, Q, and R are collinear.

8-25 In ~ABC, where CD is the altitude to AB and P is any point on
DC, AP meets CB at Q, and BP meets CA at R. Prove that
mLRDC = mLQDC, using Ceva's Theorem.

8·26 In ~ABC points F, E, and D are the feet of the altitudes drawn
from the vertices A, B, and C, respectively. The sides of the pedal
~FED, EF, DF, and DE, when extended, meet the sides of
6.ABC, AB, AC, and BC (extended) at points M, N, and L,
respectively. Prove that M, N, and L are collinear. (See Fig. 8-26.)

A

B""'-------'"----::s C

8-27 In 6.ABC (Fig. 3-27), L, M, and N are the feet of the altitudes
from vertices A, B, and C. Prove that the perpendiculars from A,
B, and C to MN, LN, and LM, respectively, are concurrent.

Challenge Prove that PL, QM, and RN are concurrent.

8-28 Prove that the perpendicular bisectors of the interior angle bi­
sectors of any triangle meet the sides opposite the angles being
bisected in three collinear points.
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8·29 Figure 8-29a shows a hexagon ABCDEF whose pairs of opposite
sides are: [AB, DE], [CB, EF], and [CD, AF]. If we place points
A, B, C, D, E, and F in any order on a circle, the above pairs of
opposite sides intersect at points L, M, and N respectively. Prove
that L, M, and N are collinear. Fig. 8-29b shows one arrangement
of the six points, A, B, C, D, E, and F on a circle.

F

c

8-29b
E

N

Challenge 1 Prove the theorem for another arrangement of the points
A, B, C, D, E, and F on a circle.

Challenge 2 Can you explain this theorem when one pair of opposite
sides are parallel?

8-30

8·30 Points A, B, and C are on one line and points A', B', and C' are
on another line (in any order). (Fig. 8-30) If AiF and A'B meet
at C", while ACi and A1(: meet at B", and jjCi and iJ---;z. meet at
A", prove that points A", B", and C" are collinear.
(This theorem was first published by Pappus of Alexandria about
300 A.D.)
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9. The Simson Line

If perpendiculars are drawn from a point on the circumcircle of a
triangle to its sides, their feet lie on a line. Although this famous line
was discovered by William Wallace in 1797, careless misquotes have,
in time, attributed it to Robert Simson (1687-1768). The following
problems present several properties and applications of the Simson
Line.

9-1 Prove that the feet of the perpendiculars drawn from any point on
the circumcircle of a given triangle to the sides of the triangle are
collinear. (Simson's Theorem)

Challenge 1 State and prove the converse of Simson's Theorem.

Challenge 2 Which points on the circumcircle of a given triangle lie
on their own Simson Lines with respect to the given
triangle?

9-2 Altitude AD of 6.ABC meets the circumcircle at P. (Fig. 9-2)
Prove that the Simson Line of P with respect to 6.ABC is parallel
to the line tangent to the circle at A.

Challenge Investigate the special case where BA = CA.

9-3 From point P on the circumcircle of 6.ABC, perpendiculars PX,
PY, and PZ are drawn to sides AC, AB, and Be, respectively.
Prove that (PA)(PZ) = (PB)(PX).

9·2 9-4

9-4 In Fig. 9-4, sides AB, Be, and CA of 6.ABC are cut by a trans­
versal at points Q, R, and S, respectively. The circumcircles of
6.ABC and 6.SCR intersect at P. Prove that quadrilateral APSQ
is cyclic.
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9-5 In Fig. 9-5, right L:::,.ABC, with right angle at A, is inscribed in
circle O. The Simson Line of point P, with respect to L:::,.ABC,
meets PA at M. Prove that MO is perpendicular to PA.

Challenge Show that PAis a side of the inscribed hexagon if
mLAOM = 30.

9-6 From a point P on the circumference of circle 0, three chords are
drawn meeting the circle at points A, B, and C. Prove that the
three points of intersection of the three circles with PA, PB, and
PC as diameters, are collinear.

Challenge Prove the converse.

9-7 P is any point on the circumcircle of cyclic quadrilateral ABCD.
If PK, PL, PM, and PN are the perpendiculars from P to sides
AB, Be, CD, and DA, respectively, prove that (PK)(PM) =
(PL)(PN).

9-5

B~---+-""':-~

9-8

9-8 In Fig. 9-8, line segments AB, BC, EC, and ED form triangles
ABC, FBD, EFA, and EDC. Prove that the four circumcircles of
these triangles meet at a common point.

Challenge Prove that point P is concyclic with the centers of these
four circumcircles.

9-9 The line joining the orthocenter of a given triangle with a point on
the circumcircle of the triangle is bisected by the Simson Line
(with respect to that point).

9-10 The measure of the angle determined by the Simson Lines of two
given points on the circumcircle of a given triangle is equal to
one-half the measure of the arc determined by the two points.
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Challenge Prove that if three points are chosen at random on a circle,
the triangle formed by these three points is similar to the
triangle formed by the Simson Lines of these points with
respect to any inscribed triangle.

9-11 If two triangles are inscribed in the same circle, a single point on
the circumcircle determines a Simson Line for each triangle.
Prove that the angle formed by these two Simson Lines is con­
stant, regardless of the position of the point.

9-12 In the circumcircle of 6.ABC, chord PQ is drawn parallel to
side Be. Prove that the Simson Lines of 6.ABC, with respect to
points P and Q, are concurrent with the altitude A D of 6. ABe.

10. The Theorem of Stewart

The geometry student usually feels at ease with medians, angle bi­
sectors, and altitudes of triangles. What about 'internal line segments'
(segments with endpoints on a vertex and its opposite side) that are
neither medians, angle bisectors, nor altitudes? As the problems in this
section show, much can be learned about such segments thanks to
Stewart's Theorem. Named after Matthew Stewart who published it in
1745, this theorem describes the relationship between an 'internal line
segment', the side to which it is drawn, the two parts of this side, and
the other sides of the triangle.

c
1()"1

Bt:::==~==+=:;::::~A
m D n

y
c

10-1 A classic theorem known as Stewart's Theorem, is very useful as
a means of finding the measure of any line segment from the
vertex of a triangle to the opposite side. Using the letter designa­
tions in Fig. 10-1, the theorem states the following relationship:
a 2n + b2m = c(d2 + mn). Prove the validity of the theorem.
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Challenge If a line from C meets AS at F, where F is not between A
and B, prove that

(BC)2(AF) - (AC)2(BF) = AB[CF)2 - (AF)(BF)].

10-2 In an isosceles triangle with two sides of measure 17, a line
measuring 16 is drawn from the vertex to the base. If one segment
of the base, as cut by this line, exceeds the other by 8, find the
measures of the two segments.

10-3 In 6.ABC, point E is on AB, so that AE = ~ EB. Find CE if
AC = 4, CB = 5, and AB = 6.

Challenge Find the measure of the segment from E to the midpoint
ofCB.

10-4 Prove that the sum of the squares of the distances from the vertex
of the right angle, in a right triangle, to the trisection points along

the hypotenuse, is equal to ~ the square of the measure of the
hypotenuse.

Challenge 1 Verify that the median to the hypotenuse of a right
triangle is equal in measure to one-half the hypotenuse.
Use Stewart's Theorem.

Challenge 2 Try to predict, from the results of Problem 10-4 and
Challenge I, the value of the sum of the squares for a
quadrisection of the hypotenuse.

10-5 Prove that the sum of the squares of the measures of the sides of
a parallelogram equals the sum of the squares of the measures of
the diagonals.

Challenge A given parallelogram has sides measuring 7 and 9, and a
shorter diagonal measuring 8. Find the measure of the
longer diagonal.

10-6 Using Stewart's Theorem, prove that in any triangle the square of
the measure of the internal bisectors of any angle is equal to the
product of the measures of the sides forming the bisected angle
decreased by the product of the measures of the segments of the
side to which this bisector is drawn.
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Challenge 1 Can you also prove the theorem in Problem 10-6 without
using Stewart's Theorem?

Challenge 2 ~rove that in 6.ABC, fa = b ~ cO, when LBAC is a
nght angle.

10-7 The two shorter sides of a triangle measure 9 and 18. If the internal
angle bisector drawn to the longest side measures 8, find the
measure of the longest side of the triangle.

Challenge Find the measure ofa side ofa triangle if the other two sides
and the bisector of the included angle have measures 12,
15, and 10, respectively.

10-8 In a right triangle, the bisector of the right angle divides the
hypotenuse into segments that measure 3 and 4. Find the measure
of the angle bisector of the larger acute angle of the right triangle.

10-9 In a 30-60-90 right triangle, if the measure of the hypotenuse
is 4, find the distance from the vertex of the right angle to the
point of intersection of the angle bisectors.
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1. Congruence and Parallelism

I-I In any 6ABC, E and D are interior points of AC and BC, re­
spectively (Fig. SI-la). AF bisects LCAD, and BF bisects LCBE.
Prove mLAEB + mLADB = 2mLAFB.

x·

mLAFB = 180 - [(x + w) + (y + z)] (#13)

mLAEB = 180 - [(2x + w) + z] (#13)

mLADB = 180 - [(2y + z) + w] (#13)

mLAEB + mLA DB = 360 - [2x + 2y + 2z + 2w]

2mLAFB = 2[180 - (x + y + z + w)]

2mLAFB = 360 - [2x + 2y + 2z + 2w]

Therefore, mLAEB + mLADB = 2mLAFB.
c

(I)

(twice I)

A ......-------......;;:-B A L- ...... B

Challenge 1 Prove that this result holds if E coincides with C (Fig.
SI-lb).

PROOF:

We must show that mLAEB + mLADB = 2mLAFB.

Let mLCAF = mLFAD = x.
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Since LA DB is an exterior angle of !:lAFD,

mLADB = mLAFD + x (#12).

Similarly, in !:lAEF,

mLAFD = mLAEB + x (#12).

mLA DB + mLAEB + x = 2mLAFD + x,

thus, mLAEB + mLADB = 2mLAFB.

1-2 In !:lABC, a point D is on AC so that AB = AD (Fig. 51-2).

mLABC - mLACB = 30. Find mLCBD.

mLCBD = mLABC - mLABD

Since AB = AD, mLABD = mLADB (#5).

c~.
Therefore, by substitution,

mLCBD = mLABC - mLA DB. (I)

But mLA DB = mLCBD + mLC (#12). (II)

Substituting (II) into (I), we have

mLCBD = mLABC - [mLCBD + mLC].

mLCBD = mLABC - mLCBD - mLC

Therefore, 2mLCBD = mLABC - mLACB = 30, and

mLCBD = 15.
COMMENT: Note that mLACB is undetermined.

1-3 The interior bisector of LB, and the exterior bisector of LC of
!:lABC meet at D (Fig. 51-3). Through D, a line parallel to CB
meets AC at Land AB at M. If the measures of legs LC and MB
of trapezoid CLMB are 5 and 7, respectively, find the measure of
base LM. Prove your result.
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A

_.....:!.~---------_...:......-..,;;:-. B

mL I = mL2 and mL2 = mL3 (#8).

Therefore, mL I = mL3 (transitivity).

In isosceles l:lDMB, DM = MB (#5).

Similarly, mL4 = mL5 and mL5 = mLLDC (#8).

Therefore, mL4 = mLLDC (transitivity).

Thus, in isosceles l:l DLC, DL = CL (#5).

Since DM = DL + LM, by substitution,

MB = LC + LM, or LM = MB - LC.

Since LC = 5 and MB = 7, LM = 2.

Challenge Find LM if l:lABC is equilateral.

ANSWER: Zero

1-4 In right l:lABC, CF is the median drawn to hypotenuse AB, CE
is the bisector ofLACB, and CO is the altitude to AB (Fig. SI-4a).
Prove that LOCE '" LECF.

B

Sl-4a

C A

METHOD I: In right l:lABC, CF = ~ AB = FA (#27).

Since l:lCFA is isosceles, LFCA '" LA (#5). (I)

In right l:lBDC, LB is complementary to LBCD.

In right l:lABC, LB is complementary to LA.
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Therefore, LBCD::::: LA. (II)

From (I) and (II), LFCA '" LBCD. (III)

Since CE is the bisector of LACB, LACE '" LBCE. (IV)

In right 6.ABC, PC ..L CA and PC = BC and AE bisects LA.
By subtracting (III) from (IV), we have LDCE '" LECF.

METHOD II: Let a circle be circumscribed about right 6.ABC.
Extend CE to meet the circle at G; then draw FG (Fig. Sl-4b).

Since CE bisects LACB, it also bisects A'GB. Thus, G is the
~ - - --

midpoint of AGB, and FG ..L AB. Since both FG and CD are
perpendicular to AB,

FG" CD (#9), and LDCE '" LFGE (#8). (I)

Since radius CF'" radius FG, 6.CFG is isosceles and

LECF'" LFGE. (II)

Thus, by transitivity, from (I) and (II), LDCE '" LECF.

Challenge Does this result hold for a non-right triangle?

ANSWER: No, since it is a necessary condition that BA pass
through the center of the circumcircle.

1-5 The measure ofa line segment PC, perpendicular to hypotenuse AC
of right 6.ABC, is equal to the measure of leg BC. Show BP may
be perpendicular or parallel to the bisector of LA.

CASE I: We first prove the case for BP II AE (Fig. Sl-5a).
In right 6.ABC, PC ..L AC, PC = BC, and AE bisects LA.
LCEA is complementary to LCAE, while LBDA is comple­
mentary to LDAB (#14).
Since LCAE '" LDAB, LBDA '" LCEA. However, LBDA '"
LEDC (#1). Therefore, LCED '" LCDE, and 6.CED is
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isosceles (#5). Since isosceles triangles CED and CPB share the
same vertex angle, they are mutually equiangular. Thus, since
LCED '" LCPB, EA /I PB (#7).

p

51-Sa c
p

CASE II: We now prove the case for AE..l BP (Fig. SI-5b).
LCPF is complementary to LCFP (#14). Since LCFP '"
LBFA (#1), LCPF is complementary to LBFA. However, in
/:).CPB, cp'" CB and LCPB '" LCBP (#5); hence, LCBP is
complementary to LBFA. But LCBP is complementary to
LPBA. Therefore, LBFA '" LFBA (both are complementary
to LCBP). Now we have /:).FAB isosceles with AD an angle
bisector; thus, AD ..1 BFP since the bisector of the vertex angle
of an isosceles triangle is perpendicular to the base.

1-6 Prove the following: if, in /:).ABC, median AM is such that mL BAC
is divided in the ratio I: 2, and AM is extended through M to 0

so that LOBA is a right angle, then AC = ~ AO (Fig. 51-6).
A

p

Let mLBAM = x; then mLMAC = 2x. Choose point P on
AD so that AM = MP.

Since BM = MC, ACPB is a parallelogram (#21f). Thus,
BP = AC.

Let T be the midpoint of A D making BT the median of right
/:).ABD.
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1
It follows that BT = 1. AD, or BT = AT (#27), and, conse-

quently, mLTBA = x. LBTP is an exterior angle of isosceles
b.BTA. Therefore, mLBTP = 2x (#12). However, since BP " AC
(#2Ia), mLCAP = mLBPA = 2x (#8). Thus, b.TBP is isosceles
with BT = BP.

Since BT = ~ AD and BT = BP = AC, AC = ~ AD.

QUESTION: What is the relation between points P and D when
mLA = 90?

1-7 In square ABCD, M is the midpoint of AB. A line perpendicular
to MC at M meets AD at K. Prove that LBCM '" LKCM.

METHOD I: Draw ML II AD (Fig. SI-7a). Since AM = MB and
AD" ML " BC, KP = PC (#24). Consider right b.KMC; MP
is a median. Therefore, MP = PC (#27). Since b.MPCis isosceles,
mL I = mL2. However, since ML II BC, mL I = mL3 (#8),
thus, mL2 = mL3; that is, LBCM '" LKCM.

Sl·7a

METHOD II: Extend KM to meet CB extended at G (Fig. SI·7b).
Since AM = MB and mLKAM = mLMBG (right angles) and
mLAMK = mLGMB, b.AMK'" b.BMG (A.S.A.). Then,
KM = MG. Now, b.KMC '" b.GMC (S.A.S.), and LBCM '"
LKCM.

METHOD III: Other methods may easily be found. Here is one
without auxiliary constructions in which similarity is employed
(Fig. SI-7c).

1
AM = M B = 2s, whcre BC = s.

LAMK is complementary to LBMC, and LBCM is com­
plementary to LBMC (#14).
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Ar---~--....,B

o c

Therefore, right 6.MAK - right 6.CBM, and AK = ~ s.

In right 6.MAK, MK = S'~'5 (#55), while in right 6.CBM,

MC = s~ (#55).

o
. MK 41MB

Therefore, Since MC = V5 = 2 = BC' right 6.MKC - right

2
6.BMC (#50), and LBCM '" LKCM.

1-8 Given any 6.ABC, AE bisects LBAC, BD bisects LABC,
CP .1 BD, and CQ .1 AE, prove that PQ is parallel to AB.

c

A.a::;.,--~f------~~B

Extend CP and CQ to meet AB at Sand R, respectively (Fig.
SI-8). It may be shown that 6.CPB '" 6.SPB, and 6.CQA '"
6.RQA (A.S.A.).
It then follows that CP = SP and CQ = RQ or P and Q are
midpoints of CS and CR, respectively. Therefore, in 6.CSR,
PQ II SR (#26). Thus, PQ II AB.

Challenge Identify the points P and Q when 6.ABC is equilateral.

ANSWER: P and Q are the midpoints of CA and CB,
respectiveIy.
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1-9 Given that ABCD is a square, CF bisects LACD, and BPQ 1- CF
(Fig. 51-9), prove DQ = 2PE.

R Q

51·9

Draw RE II BPQ. Since E is the midpoint of DB (#2In) in
!:l DQB, DR = QR (#25). Since RE 1- CF (#10), !:lRGC "-'
!:lEGC, and LCRG = LCEG.

Therefore, RQPE is an isosceles trapezoid (#23), and PE = QR.
2RQ = DQ and, therefore, DQ = 2PE.

1-10 Given square ABCD with mLEDC = mLECD = 15, prove
!:lABE is equilateral.

METHOD I: In square ABCD, draw AF perpendicular to DE
(Fig. SI-lOa). Choose point G on AF so that mLFDG = 60.
Why does point G fall inside the square? mLAGD = 150 (#12).
Since mLEDC = mLECD = 15, mLDEC = 150 (#13); thus,
LAGD "-' LDEC.

Therefore, !:lAGD "-' !:lDEC (S.A.A.), and DE = DG.

In right !:lDFG, DF = ~ (DG) (#55c).
1

Therefore, DF = :2 (DE), or DF = EF.

Since AF is the perpendicular bisector of DE, AD = AE (# 18).
A similar argument shows BC = BE. Therefore, AE =

BE = A B (all are equal to the measure of a side of square ABCD).

Ar--------,
5l·l0b 15.

15·

15·
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METHOD II: In square ABCD, with mLEDC = mLECD = 15,
draw !:lAFD on AD such that mLFAD = mLFDA 15.
Then draw FE (Fig. SI-lOb).

!:lFAD '" !:lEDC (A.S.A.), and DE = DF.
Since LADC is a right angle, mLFDE = 60 and !:lFDE is
equilateral so that DF = DE = FE. Since mLDFE = 60 and
mLAFD = 150 (#13), mLAFE = 150. Thus, mLFAE = 15
and mLDAE = 30.
Therefore, mLEAB = 60. In a similar fashion it may be proved
that mLABE = 60; thus, !:lABE is equilateral.

METHOD III: In square ABCD, with mLEDC = mLECD = 15,
draw equilateral !:lDFC on DC externally; then draw EF (Fig.
Sl-lOe).

EF is the perpendicular bisector of DC (#18).
Since AD = FD, and mLADE= mLFDE= 75, !:lADE'"
!:lFDE (S.A.S.).

Since mLDFE = 30, mLDAE = 30.
Therefore, mLBAE = 60.

In a similar fashion, it may be proved that mLABE = 60; thus,
!:lABE is equilateral.

15·

5l-l0dS'.'O<'~·
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METHOD IV: Extend DE and CE to meet BC and A D at K and H,
respectively (Fig. Sl-lOd). In square ABCD, mLKDC =
mLHCD = 15, therefore, ED = EC (#5).

Draw AF and CG perpendicular to DK.

In right !:lDGC, mLGCD = 75 (#14), while mLA DF = 75 also.

Thus, !:lADF'" !:lDCG, and DF = CG. mLGEC = 30 (#12).
1 1

In !:lGEC, CG = 2(EC) (#55c). Therefore, CG = 2(ED), or
1

DF = 2 (ED).
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Since AF is the perpendicular bisector of DE, AD = AE (#18).

In a similar fashion, it may be proved that BE = BC; therefore,
6.ABE is equilateral.

1-11 In any 6.ABC, D, E, and F are midpoints of the sides AC, AB,
and BC, respectively. BG is an altitude of 6.ABC (Fig. SI-II).
Prove that LEGF '" LEDF.

c

AL----~---...sB

GF is the median to hypotenuse CB of right 6.CGB, therefore,

GF = ~ (CB) (#27).
1

DE = 2CB (#26), therefore, DE = GF.

Join midpoints E and F. Thus, EF" AC (#26).

Therefore, DGFE is an isosceles trapezoid (#23).
Then LDEF '" LGFE.
Thus, 6.GFE '" 6.DEF (S.A.S.), and LEGF '" LEDF.

1-12 In right 6.ABC, with right angle at C, BD = BC, AE = AC,
EF .1 BC, and DG .1 AC. Prove that DE = EF + DG.

c

AL------~---¥-....:!.j:L-~B

Draw CP .1 AB, also draw CE and CD (Fig. 81-12).

mL3 + mL 1 + mL2 = 90

mL3 + mL 1 = mL4 (#5)
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By substitution, mL4 + mL2 = 90;

but in right b.CPE, mL4 + mL I = 90 (#14).
Thus, L I """" L2 (both are complementary to L4), and right
b.CPE"""" right b.CFE, and PE = EF.

Similarly, mL9 + mL7 + mL6 = 90,
mL9 + mL7 = mL5 (#5).

By substitution, mL5 + mL6 = 90.

However, in right b.CPD, mL5 + mL7 = 90 (#14).
Thus, L6 """" L 7 (both are complementary to L5), and right

b.CPD """" right b.CGD, and DP = DG.

Since DE = DP + PE, we get DE = DG + EF.

1-13 Prove that the sum of the measures of the perpendiculars from
any point on a side ofa rectangle to the diagonals is constant.

A...,....----__p-----~B

51·13

D"""-----------~C

Let P be any point on side AB of rectangle ABCD (Fig. SI-13).
PG and PF are perpendiculars to the diagonals.
Draw AJ perpendicular to DB, and then PH perpendicular to AJ.

Since PHJFis a rectangle (a quadrilateral with three right angles),
we get PF = HJ.

Since PH and BD are both perpendicular to AJ, PH is parallel to
BD (#9).

Thus, LAPH"""" LABD (#7).

Since AE = EB (#2If, 2Ih), LCAB """" LABD (#5). Thus, by
transitivity, LEAP """" LAPH; also in b.APK, AK = PK (15).
Since LAKH """" LPKG (#1), right b.AHK """" right b.PGK
(S.A.A.). Hence, AH = PG and, by addition, PF + PG =
HJ + AH = AJ, a constant.

1-14 The trisectors of the angles of a rectangle are drawn. For each
pair of adjacent angles, those trisectors that are closest to the
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enclosed side are extended until a point ofintersection is established.
The line segments connecting those points of intersection form a
quadrilateral. Prove that the quadrilateral is a rhombus.

As a result of the trisections,
isosceles 6.AHD '" isosceles 6.BFC, and
isosceles 6.AGB '" isosceles 6. DEC (Fig. SI-14a).
Since AH = HD = FB = FC, and AG = GB = DE = CE,

and LHAG '" LGBF'" LFCE'" LHDE'" ~ right angle,

6.HAG '" 6.FBG '" 6.FCE '" 6.HDE (S.A.S.).
Therefore, HG = FG = FE = HE, and EFGH is a rhombus
(#21-1).

Sl·14a

Sl·14b

1It:;...----------~c

Challenge 1 What type ofquadrilateral would be formed if the original
rectangle were replaced by a square?

Consider ABCD to be a square (Fig. SI-14b). All of the
above still holds true; thus we still maintain a rhombus.
However, we now can easily show 6.AHG to be isosceles,
mLAGH = mLAHG = 75.
Similarly, mLBGF = 75. mLAGB = 120, since
mLGAB = mLGBA = 30.

Therefore, mLHGF = 90. We now have a rhombus
with one right angle; hence, a square.

1-15 In Fig. SI-15, BE and AD are altitudes of 6.ABC. F, G, and K
are midpoints ofAH, AB, and BC, respectively. Prove that LFGK
is a right angle.

In 6.AHB, GF II BH (#26).

And in 6.ABC, GK II AC (#26).

Since BE ..L AC, BE ..L GK,

then GF ..L GK (#10); that is, LFGK is a right angle.
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T

~'\ollt,;:;;""--------~D

1-16 In parallelogram ABCD, M is the midpoint of BC. DT is drawn
from D perpendicular to MA (Fig. SI-16). Prove CT = CD.

Let R be the midpoint of AD; draw CR and extend it to meet

TD at P. Since AR = ~ AD, and MC = ~ BC, AR = Me. Since

AR II MC, ARCM is a parallelogram (#22). Thus, CP" MT.
In f::>.ATD, since RP II AT and passes through the midpoint of
A D, it must also pass through the midpoint of T D (#25). Since
MT" CP, and MT ..L TD, CP..L TD (#10). Thus, CP is the
perpendicular bisector of TD, and CT = CD (#18).

1-17 Prove that the line segment joining the midpoints of two opposite
sides of any quadrilateral bisects the line segment joining the
midpoints of the diagonals.

ABCD is any quadrilateral. K, L, P, and Q are midpoints of AD,
BC, BD, and AC, respectively. We are to prove that KL bisectsPQ.

Draw KP and QL (Fig. SI-17).
B

A

"-- ~c

1 - -
In f::>.ADB, KP = 2. AB, and KP " AB (#26).

Similarly, in f::>.ACB, QL = ~ AB, and QL II AB (#26).

By transitivity, KP = QL, and KP" QL. It then follows that
KPLQ is a parallelogram (#22), and so PM = QM (#21f).
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1-18 In any ~ABC, XYZ is any line through the centroid G. Per­
pendiculars are drawn from each vertex of ~ABC to this line.
Prove CY = AX + BZ.

Draw medians CD, AF, and BH.

From E, the midpoint of CG, draw EP..L XZ.

Also draw DQ ..L XZ (Fig. SI-18).

Since LCGY"'" LQGD (#1), and EC = EG = DG (#29),

~QGD "'" ~PGE, and QD = EP.

AX II BZ (#9), therefore, QD is the median of trapezoid AXZB,
1

and QD = 2 (AX + BZ) (#28).
1 1 1

EP = 2C Y (#25, #26), therefore, 2C Y = 2 (A X + BZ)

(transitivity), and CY = AX + BZ.
c

c

~-------!----~B

1-19 In any ~ABC, CPO is any line through C interior to ~ABC.
BP is perpendicular to line CPQ, AQ is perpendicular to line CPQ,
and M is the midpoint of AB. Prove that MP = MQ.

Since BP ..L CG and A Q ..L CG, BP II A Q, (#9).

Without loss of generality, let AQ > BP (Fig. SI-19a).

Extend BP to E so that BE = AQ.

Therefore, AEBQ is a parallelogram (#22).
Draw diagonal EQ.

EQ must pass through M, the midpoint of AB, since the diagonals
of the parallelogram bisect each other. Consequently, M is also
the midpoint of EQ.

In right ~EPQ, MP is the median to hypotenuse EQ.
1

Therefore, MP = 2EQ = MQ (#27).
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Challenge Show that the same result holds if the line through C is
exterior to .6.ABC.

Extend PB through B to E so that BE = A Q (Fig. S1-19b).
Since A Q II PE (#9), quadrilateral AEBQ is a parallelo­
gram (#22).
Thus, if M is the midpoint of AB, it must also be the
midpoint of QE (#2If).

Therefore, in right .6. QPE, MP = ~ EQ = MQ (#27).

51·19b

AIL-!!J.¥--:

51·20

F

1-20 In Fig. SI-20, ABCD is a parallelogram with equilateral triangles
ABF and ADE drawn on sides AB and AD, respectively. Prove
that .6.FCE is equilateral.

In order to prove .6.FCE equilateral, we must show .6.AFE ro.J

.6.BFC ro.J .6.DCE so that we may get FE = FC = CEo

Since AB = DC (#2Ib), and AB = AF = BF (sides of an equi­
lateral triangle are equal), DC = AF = BF. Similarly, AE =
DE = Be.

We have LA DC ro.J LABe.

mLEDC = 360 - mLADE - mLADC = 360 - mLABF­
mLABC = mLFBe.

Now mLBAD = 180 - mLADC (#2Id),
and mLFAE = mLFAB + mLBAD + mLDAE = 120 +
mLBAD = 120 + 180 - mLADC = 300 - mLADC =
mLEDe.

Thus, .6.AFE ro.J .6.BFC ro.J .6.DCE (S.A.S.), and the conclusion
follows.
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1-21 If a square is drawn externally on each side of a parallelogram,
prove that

(a) the quadrilateral, determined by the centers of these squares,
is itself a square

(b) the diagonals of the newly formed square are concurrent with
the diagonals of the original parallelogram.

H',....----.."

51·21

F

, R'
/ ', ,, ,

KI'.----~L

(a) ABCD is a parallelogram.
Points P, Q, R, and S are the centers of the four squares ABCH,

DAIJ, DCLK, and CBFE, respectively (Fig. SI-21).

PA = DR- and AQ = QD (each is one-half a diagonal).
LADC is supplementary to LDAB (#2Id), and
LIAH is supplementary to LDAB (since LIAD ro.J LHAB ro.J

right angle). Therefore, LADe ro.J LIAH.

Since mLRDC = mLQDA = mLHAP = mLQAI = 45,
LRDQ ro.J LQAP. Thus, !::::.RDQ ro.J !::::.PAQ (S.A.S.), and
QR = QP.

In a similar fashion, it may be proved that QP = PS and PS =
RS.

Therefore, PQRS is a rhombus.
Since !::::.RDQ ro.J !::::.PAQ, LDQR ro.J LAQP;

therefore, LPQR ro.J LDQA (by addition).
Since LDQA ro.J right angle, LPQR ro.J right angle, and PQRS
is a square.
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(b) To prove that the diagonals of square PQRS are concurrent
with the diagonals of parallelogram ABCD, we must prove that
a diagonal of the square and a diagonal of the parallelogram
bisect each other. In other words, we prove that the diagonals of
the square and the diagonals of the parallelogram all share the
same midpoint, (i.e., point 0).

LBAC ro.J LACD (#8), and

mLPAB = mLRCD = 45; therefore, LPAC ro.J LRCA.
Since LAOP ro.J LCOR (#1), and AP = CR, f:,AOP ro.J f:,COR
(S.A.A.).

Thus, AO = CO, and PO = RO.
Since DB passes through the midpoint of AC (#21f), and,
similarly, QS passes through the midpoint of PR, and since AC
and PR share the same midpoint (i.e., 0), we have shown that
AC, PR, DB, and QS are concurrent (i.e., all pass through
point 0).

2. Triangles in Proportion

2-1 In f:,ABC, DE II BC, FE " DC, AF = 4, and FD = 6 (Fig.
S2-1). Find DB.

52·1

B'-------~c

AF AE 2 AE
In f:,A DC, FD = EC (#46). So, 3 = EC'

. AD AE
However In f:,ABC, DB = EC (#46),

(I)
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10 AEand- =-.
DB EC

2 10
From (I) and (II), "3 = DB' Thus, DB = 15.

Challenge 1 Find DB ifAF = ml and FD = m2'

(II)

Challenge 2 In Fig. S2-1, FG II DE, and HG II FE. Find DB if
AH = 2andHF = 4.

ANSWER: DB = 36

Challenge 3 Find DB if AH = m 1 and HF = m2'

2-2 In isosceles ~ABC (AB = AC), CB is extended through B to P
(Fig. S2-2). A line from P, parallel to altitude BF, meets AC at D
(where D is between A and F). From P, a perpendicular is drawn
to meet the extension of AB at E so that B is between E and A.
Express BF in terms of PD and PE. Try solving this problem in
two different ways.

A

P€------,~--------~c

E

METHOD I: Since ~ABC is isosceles, LC "'"' LABC.

However, LPBE "'"' LABC (#1).

Therefore, LC'-:::=, LPBE.

Thus, right ~BFC..., right ~PEB (#48), and ~~ = :~.
- - PD PB+BC

In ~PDC, since BF is parallel to PD, BF = BC (#49).

Using a theorem on proportions, we get
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PD - BF PB + BC - BC PB
BF BC - BC

PD - BF PE
Therefore, BF = BF'

Thus, PD - BF = PE, and BF = PD - PE.

METHOD II: Since PD is parallel to BF, and BF is perpendicular to
AC, PD is perpendicular to AC (# 10).

Draw a line from B perpendicular to PD at G.
LABC "" LACB (#5), and LABC "" LPBE (#1);

therefore, LACB "" LPBE (transitivity).
LEand LFare right angles; thus, 6.PBEand 6.BCFaremutually
equiangular and, therefore, LEPB "" LFBC.

Also, since BF II PD, LFBC "" LDPC (#7).

By transitivity, LGPB(LDPC) "" LEPB.

Thus, 6.GPB "" 6.EPB (A.A.S.), and PG = PE.

Since quadrilateral GBFD is a rectangle (a quadrilateral with
three right angles is a rectangle), BF = GD.

However, since GD = PD - PG, by substitution we get,
BF = PD - PE.

2-3 The measure of the longer base of a trapezoid is 97. The measure
of the line segment joining the mIdpoints of the diagonals is 3
(Fig. S2-3). Find the measure of the shorter base. (Note that the
figure is not drawn to scale.)

A B

S2~
D---------------C

METHOD I: Since E and F are the midpoints of DB and AC,
respectively, EF must be parallel to DC and AB (#24).

Since EF is parallel to DC, 6.EGF,..., 6. DGC (#49), and
GC DC
GF = EF'

However since DC = 97 and EF = 3 GC = 97., , GF 3

GC - GF 97 - 3 FC 94
Then, GF = -3-' or GF = 3'
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. FA 94 GA 91
SmceFC = FA, GF = 3' or GF = 3'

. GA AB
Smce D.AGB "" D.FGE (#48), GF = EF'

91 AB
Thus, "3 = 3""' and AB = 91.

- - 1
METHOD II: Extend FE to meet AD at H. In D.ADC, HF = :2 (DC)
(#25, #26).

Since DC = 97 HF = 97 •, 2

Since EF = 3 HE = 91., 2
1

In D.ADB, HE = 2(AB) (#25, #26).

Hence, AB = 91.

Challenge Find a general solution applicable to any trapezoid.

ANSWER: b - 2d, where b is the length of the longer base
and d is the length of the line joining the midpoints of the
diagonals.

2-4 In D.ABC, D is a point on side BA such that BD:DA = 1:2
(Fig. S2-4). E is a point on side CB so that CE:EB = I :4. Seg­
ments DC and AE intersect at F. Express CF:FD in terms of
two positive relatively prime integers.

Draw DG II BC.

D.A DG "" D.ABE (#49), and ~~ = ~~ = j.
2

Then DG = 3 (BE).
CF EC

But D.DGF "" D.CEF (#48), and FD = DG'

1
1 CF 4 (BE) 3

Since EC = - (BE), - = -- = -.
4 FD 3 (BE) 8

3

A

A

BL------~.;;:::"aC B....::;;.------!,........-----JI.--~-C
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2-5 In ~ABC, BE is a median and 0 is the midpoint of BE (Fig.
S2-5). Draw AO and extend it to meet BC at D. Draw CO and
extend it to meet BA at F. /fCO = 15, OF = 5, and AO = 12,
find the measure of00.

Draw EH parallel to AD. Since E is the midpoint of AC, EG =

~ (AO) = 6 (#25, #26). Since H is the midpoint of CD, GH =
1 --
z (OD) (#25, #26). In ~BEH, OD is parallel to EH and 0 is

the midpoint of BE; therefore, OD = ~ EH (#25, #26).
lIt

Then OD = z[EG + GH], so OD = z[6 + zOD] = 4.

Note that the measures of CO and OF were not necessary for the
solution of this problem.

Challenge Can you establish a relationship between 00 and AO?
1 -

ANSWER: OD = "3 AO, regardless of the measures of CO,

OF, and AO.

2-6 In parallelogram ABCD, points E and F are chosen on diagonal
AC so that AE = FC (Fig. S2-6). /f BE is extended to meet AD
at H, and BF is extended to meet DC at G, prove that HG is
parallel to AC.

r-~-------:::?JC

A------!'f'------J

In OABCD, AE = Fe.

Since LBEC ro.J LHEA (#1), and LHAC ro.J LACB (#8),
AE HE

~HEA ~ ~BEC (#48), and EF + Fe = BE'

Similarly, ~BFA ~ ~GFC (#48), and AEF~EF = ~~.

H . FC AE HE FG ( . .. )owever, since = , BE = BF transitivity.

Therefore, in ~HBG, HG " EF (#46), or HG " AC.
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2-7 AM is the median to side BC of~ABC, and P is any point on AM
(Fig. S2-7). BP extended meets AC at E, and CP extended meets
AB at D. Prove that DE is parallel to BC.

Extend APM to G so that PM = MG. Then draw BG and CG.

Since BM = MC, PG and BC bisect each other, making BPCG
a parallelogram (#21f). Thus, PC " BG and BP II GC (#2Ia), or

BE " GC and DC " BG. It follows that DP " BG.
. AD AP

Therefore, In ~ABG, DB = PG (#46). (I)

Similarly, in ~AGC where PE II GC, ~-f: = :~ (#46). (II)
AD AE

From (I) and (II), DB = EC'

Therefore, DE is parallel to BC, since in ~ABC, DE cuts sides
AB and AC proportionally (#46).

A

A

~cB , __ -

----~--
G

S2-8

t.::.==::::::;~ ~ c

2-8 In ~ABC, the bisector of LA intersects BC at D (Fig. S2-8). A
perpendicular to AD from B intersects AD at E. A line segment
through E and parallel to AC intersects BC at G, and AB at H.
If AB = 26, BC = 28, AC = 30, find the measure ofDG.

L I '" L2 (#8), L I '" L5 (angle bisector),

therefore, L2 '" L5.

In ~AHE, AH = HE (#5).

In right ~AEB, L4 is complementary to L5 (#14), and L3 is
complementary to L2.

Since L2 '" L5, L3 is complementary to L5.

Therefore, since both L3 and L4 are complementary to L5,
they are congruent. Thus, in ~BHE, BH = HE (#5) and, there­
fore, BH = A H. In ~ABC, since HG II A C and H is the midpoint
of AB, G is the midpoint of BC (#25), and BG = 14.
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In ~ABC, AD is an angle bisector, therefore,

AB BD
AC = DC (#47).

Let BD = x; then DC = 28 - x. By substituting,

26 x
30 = 28 _ x' and x = 13 = BD.

Since BG = 14, and BD = 13, then DG = 1.

2-9 In ~ABC, altitude BE is extended to G so that EG = the measure
of altitude CF. A line through G and parallel to AC meets BA
at H (Fig. S2-9). Prove that AH = AC.

c

H'L..------~-~:-'--~B

Since BE .1 AC and HG II AC, HG.l BG.

LH "" LBAC (#7)

Since LAFC is also a right angle, ~AFC...., ~HGB (#48),

AC BH
and FC = GB' (I)

In ~BHG, AE 1/ HG;

AH BH
therefore, GE = GB (#46). (II)

AC AH
From (I) and (II), FC = GE .

Since the hypothesis stated that GE = FC, it follows that
AC = AH.

2-10 In trapezoid ABCD (AB II DC), with diagonals AC and DB
intersecting at P, AM, a median of ~ADC, intersects BD at E
(Fig. S2-W). Through E, a line is drawn parallel to DC cutting
AD, AC, and BC at points H, F, and G, respectively. Prove that
HE = EF = FG.
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52·10

D""'-------~------;::..C

In !J.ADM, since HE" DM, !J.AHE ~ !J.ADM (#49).
HE AE . ---

Therefore, DM = AM' In !J.AMC, smce EF" MC,
EF AE

!J.AEF ~ !J.AMC (#49). Therefore, MC = AM'

In !J.DBC, since EG " DC, !J.BEG ~ !J.BDC (#49).
EG BG

Therefore, DC = BC'

B BG AE #24) h EG AE ( . . . )ut BC = AM ( ; t us, DC = AM transItIVIty.

It then follows that :~ = ~~ = ~~. (I)

But, since M is the midpoint of DC, DM = MC, and
DC = 2MC. (II)

Substituting (II) in (I), we find that HE = EF, and :; = 2(~C)'
1

Thus, EF = 2 (EG) and EF = FG.

We therefore get HE = EF = FG (transitivity).

2-11 A line segment AB is divided by points K and L in such a way
that (AL)2 = (AK)(AB) (Fig. S2-11). A line segment AP is
drawn congruent to AL. Prove that PL bisects LKPB.

p

AL---+---1;---------:~B

Since AP = AL, (AL)2 = (AK)(AB) may be written (AP)2 =
. AK AP

(AK)(AB), or, as a proportton, AP = AB'



Triangles in Proportion 73

~KAP '" ~PAB (#50).
It then follows that LPKA "" LBPA, and LKPA "" LPBA.
Since LPKA is an exterior angle of ~KPB,

mLPKA = mLKPB + mLPBK (#12).
LPKA '" LBPA may be written as

mLPKA = mLBPL + mLKPL + mLAPK. (I)

Since AP = AL, in ~APL,

mLALP = mLKPL + mLAPK (#5). (II)

Considering LPKA as an exterior angle of ~KPL,

mLPKA = mLALP + mLKPL (#12). (III)

Combine lines (I) and (III) to get

mLBPL + mLKPL + mLAPK = mLALP + mLKPL.

Therefore, mLBPL + mLAPK = mLALP (by subtraction).
(IV)

Combine lines (II) and (IV) to get

mLKPL + mLAPK = mLBPL + mLAPK.

Therefore, mLKPL = mLBPL (by subtraction), and PL bisects
LKPB.

2-12 P is any point on altitude CD of ~ABC (Fig. S2-12). AP and
BP meet sides CB and CA at points Q and R, respectively. Prove
that LQDC '" LRDC.

c

A_=- ---,~-~~____!~~B

Draw RUS " CD, and QVT " CD.
RU AU

~AUR '" ~APC (#49), so CP = AP'
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US AU
~ASU ~ ~ADP (#49), so PD = AP'

RU US RU CP
Therefore, CP = PD' and US = PD'

QV BV
~BVQ ~ ~BPC (#49), so CP = BP'

VT BV
~BTV~ ~BDP (#49), so PD = BP'

h l' QV VT ( . . .) d QV CP
T ere. ore, CP = PD transItivity, an VT = PD'

RU QV ( . . .) d I US VT + I
US = VT tranSItivity, an + RU = QV ;

RU + US QV + VT
therefore, RU = QV •

RS QT RS RU
RU = QV' QT = QV'

. - - - UP DS
Smce RS" CD" QT, PQ = DT (#24).

RU UP
~RPU ~ ~ VPQ (#48), and QV = PQ'

h l' RS DS ( ...
T ere. ore, QT = DT transltlVlty).

LRSD '" LQTD '" right angle, ~RSD ~ ~QTD (#50);

LSDR '" LTDQ, LRDC '" LQDC (subtraction).

2-13 In ~ABC, Z is any point on base AB as shown in Fig. S2-13a.
CZ is drawn. A line is drawn through A parallel to CZ meeting Be
at X. A line is drawn through B parallel to CZ meeting AC at Y.

1 1 1
Prove that AX + BY = CZ •

Consider ~AYB; since CZ II BY, ~ACZ~ ~AYB (#49), and
AZ AB
CZ = BY'

Consider ~BXA; since CZ " AX, ~BCZ~ ~BXA (#49), and
BZ AB
CZ = AX'

. . AZ BZ AB AB
By addition, CZ + CZ = BY + AX'

AB AB AB
But AZ + BZ = AB, therefore, CZ = BY + AX'

Dividing by (AB) we obtain dz = ;Y + A1X'
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A ""'-__+"" --'w

Challenge Two telephone cable poles, 40 feet and 60 feet high, re­
spectively, are placed near each other. As partial support,
a line runs from the top of each pole to the bottom of the
other, as shown in Fig. S2-13b. How high above the ground
is the point of intersection of the two support lines?

Using the result of Problem 2-13, we immediately obtain
the following relationship:

1 1 1 1 100 1
X= 4O+6Q;X= 2400= 24'

Therefore, X = 24. Thus, the point of intersection of the
two support lines is 24 feet above the ground.

2·14 In ~ABC, mLA = 120 (Fig. S2-14). Express the measure of
the internal bisector of LA in terms of the two adjacent sides.

Er-,
I ,

52·14 I ........
I ........
I ........
I .... ..,F'" ,,"- ,
I ........ A ......... ,

~B 0 c

Draw a line through B parallel to A D meeting CA at E, and a
line through C parallel to A D meeting BA at F.

Since LEAB is supplementary to LBAC, mLEAB = 60, as
does the measure of its vertical angle, LFAC.
Now, mLBAD = mLEBA = 60 (#8), and mLDAC =
mLACF = 60 (#8).
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Therefore, ~EAB and ~FAC are equilateral triangles since they
each contain two 60° angles.
Thus, AB = EB and AC = FC.

From the result of Problem 2-13, we also know that

1 1 1
AD = EB+ FC'

B b ·· 1 1 1
Ysu stitutlOn, AD = AB + AC'

C b·· ti· 1 AC + AB
om mmg ractlOns, AD = (AB)(AC)'

(AB)(AC)
Therefore, AD = AC + AB'

2-15 Prove that the measure of the segment passing through the point
of intersection of the diagonals of a trapezoid and parallel to the
bases, with its endpoints on the legs, is the harmonic mean between
the measures of the parallel sides. (See Fig. S2-15.) The harmonic
mean of two numbers is defined as the reciprocal of the average
of the reciprocals of two numbers. The harmonic mean between

(
8- 1 + b-I)-l 2ab

a and b is equal to 2 = 8 + b •

Dc...----------~C

In order for FG to be the harmonic mean between AB and DC

it must be true that FG = 1 2 1

AB+ DC

1 1 1
From the result of Problem 2-13, FE = AB + DC' and

FE = 1 1 1 . Similarly, EG = 1 1 1

AB + DC AB + DC

Therefore, FE = EG. Thus, since FG = 2FE,
2

FG = 1 l' and FG is the harmonic mean between AB

AB+ CD

and CD.
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2-16 In parallelogram ABCD, E is on BC. AE cuts diagonal BD at G
and DC at F, as shown in Fig. S2-16. If AG = 6 and GE = 4,
find EF.

S21:~,
c

GF GD
~FDG ~ ~ABG (#48), and AG = GB'

GD AG
~BGE~ ~DGA (#48), and GB = GE'

h t" b . .. GF AG
T erelore, y tranSltlvlty, AG = GE'

B b · . 4 + EF 6 d EF 5y su stltutlOn, -6- = 4 an =.
NOTE: AG is the mean proportional between GF and GE.

3. The Pythagorean Theorem

3-1 In any ~ABC, E is any point on altitude AD (Fig. S3-l). Prove
that (AC)2 - (CE)2 = (AB)2 - (EB)2.

A

CL---~L---~B

By the Pythagorean Theorem (#55),

for ~ADC, (CD)2 + (AD)2 = (AC)2;

for ~EDC, (CD)2 + (ED)2 = (EC)2.

By subtraction, (AD)2 - (ED)2 = (AC)2 - (EC)2. (I)

By the Pythagorean Theorem (#55),
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for lJ.ADB, (DB)2 + (AD)2 = (AB)2;

for lJ.EDB, (DB)2 + (ED)2 = (EB)2.

By subtraction, (AD)2 - (ED)2 = (AB)2 - (EB)2. (II)
Thus, from (I) and (II),

(AC)2 - (EC)2 = (AB)2 - (EB) 2.

NOTE: For E coincident with D or A, the theorem is trivial.

3-2 In lJ.ABC, median AD is perpendicular to median BE (Fig. S3-2).
Find AB ifBC = 6 and AC = 8.

Let AD = 3x; then AG = 2x and DG = x (#29).

Let BE = 3y; then BG = 2yand GE = y (#29).

By the Pythagorean Theorem,

for lJ.DGB, x 2 + (2y)2 = 9 (#55);

for lJ.EGA, y2 + (2X)2 = 16 (#55).

By addition, 5x2 + 5y 2 = 25;

therefore, x 2 + y2 = 5.

However, in lJ.BGA, (2y)2 + (2X)2 = (AB)2 (#55),

or 4y 2 + 4x2 = (AB)2.

Since x 2 + y2 = 5, 4x2 + 4y 2 = 20.

By transitivity, (AB)2 = 20, and AB = 20.

Challenge 1 Express AB in general terms for BC = a, and AC = b.

fa2+bl
ANSWER: AB = '\J-S-j-

Challenge 2 Find the ratio ofAB to the measure of its median.

ANSWER: 2:3

c

llL-----..aA

L
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3-3 On hypotenuse AB ofright ~ABC, draw square ABLH externally
(Fig. S3-3). If AC = 6 and BC = 8, find CH.

Draw CDG perpendicular to AB.
. AD AC

In nght ~ABC, AB = 10 (#55), and AC = AB (#5Ib).

Substituting in this ratio, we find AD = 3.6; therefore, DB = 6.4.
. AD CD

In nght ~ABC, CD = DB (#5Ia);

therefore, CD = 4.8.

Since DG = 10, CG = 14.8. HG = AD = 3.6.

In right ~HGC, (HG)2 + (CG)2 = (HC)2 (#55), and HC =
2V58.

Challenge I Find the area ofquadrilateral HLBC.

ANSWER: 106

Challenge 2 Solve the problem if square ABLH overlaps ~ABC.

ANSWER: 2VW

3-4 The measures of the sides of a right triangle are 60, 80, and 100
(Fig. S3-4). Find the measure of a line segment, drawn from the
vertex of the right angle to the hypotenuse, that divides the triangle
into two triangles of equal perimeters.

A

B:'--------><-----~C

Let AB = 60, AC = 80, and BC = 100. If ~ABD is to have
the same perimeter as ~ACD, then AB + BD must equal
AC + DC, since both triangles share AD; that is, 60 + BD =
80 + 100 - BD. Therefore, BD = 60 and DC = 40.

Draw DE perpendicular to AC.

Right ~EDC ~ right ~ABC (#49); therefore, ~~ = ~~.

By substituting the appropriate values, we have : = 1:' and
ED = 24.
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By the Pythagorean Theorem (#55), for .6.EDC, we find EC = 32;
then, by subtraction, AE = 48. Again using the Pythagorean
Theorem (#55), in .6.AED, AD = 240.

3-5 On sides AB and DC of rectangle ABCD, points F and E are
chosen so that AFCE is a rhombus, as in Fig. S3-5a. If AB = 16
and BC = 12, find EF.

53-Sa

METHOD I: Let AF = FC = EC = AE = x (#21-1).

Since AF = x and AB = 16, BF = 16 - x.
Since BC = 12, in right .6.FBC, (FB)2 + (BC)2 = (FC)2 (#55),

25
or (16 - X)2 + (12)2 = x 2

, and x = "2'

Again by applying the Pythagorean Theorem (#55) to .6.ABC,
we get AC = 20.

Since the diagonals of a rhombus are perpendicular and bisect
each other, .6.EGC is a right triangle, and GC = 10.

Once more applying the Pythagorean Theorem (#55),

in .6.EGC, (EG)2 + (GC)2 = (EC)2.
625 15

(EG)2 + 100 = 4' and EG = "2'

Thus, FE = 2(EG) = 15.

. 25 25
METHOD II: Smce x = "2 (see Method I), EC = "2'

Draw a line through B parallel to EF meeting DC at H (Fig.
S3-5b).

53-5b
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Since quadrilateral BFEH is a parallelogram (#2Ia), and FB =

AB - AF = ~, EH = ~. Therefore, HC = 9.

In right .6. BCH, (BH)2 = (BC)2 + (HC)2 (#55), so that
BH = 15.
Therefore, EF = BH = 15 (#2Ib).

Challenge If AB = a and BC = b, what general expression will give
the measure ofEF?

ANSWER: ~ y'a 2 + b2
a

3-6 A man walks one mile east, then one mile northeast, then another
mile east (Fig. S3-6). Find the distance, in miles, between the man's
initial and final positions.

S
(start)

53-6

(finish)
~:-:----=--~F

/'
" I/ :V2

// , "2
// I______ _ L Do

1 C "l

Let Sand F be the starting and finishing positions, respectively.

Draw FD .1 SA, then draw FC II A B.

In rhombus ABFC, CF = BF = AC = 1 (#21-1); also SA = l.

In isosceles right .6.FDC, FD = CD = V; (#55b).

Applying the Pythagorean Theorem (#55) to right .6. DSF,

(FD)2 + (SD)2 = (SF)2

(V;r + (2 +~r = (SF)2

.y5 + 2y'2 = SF.

Challenge How much shorter (or longer) is the distance if the course is
one mile east, one mile north, then one mile east?

ANSWER: The new course is shorter by .y5 + 2y'2 - 0.

3-7 If the measures of two sides and the included angle ofa triangle are
7, v'sO, and 135, respectively, find the measure of the segment
joining the midpoints of the two given sides (Fig. S3-7).
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c

B

Draw altitude CD. Since mLCAB = 135, mLDAC = 45,
therefore, .6. A DC is an isosceles right triangle. If AC = v'5O =
50, then DA = DC = 5 (#55b).
In .6.DBC, since DB = 12 and DC = 5, BC = 13 (#55).

1 13
Therefore, EF = :2 (BC) = "2 (#26).

Challenge 4 On the basis of these results, predict the values of EF when
mLA = 30, 45, 60, and 90.

When mLA = 30, EF = ~ yb 2 + c2
- bcV3;

when mLA = 45, EF = ~ yb 2 + c2
- bc0;

when mLA = 60, EF = ~ yb 2 + c2
- bcVI;

when mLA = 90, EF = ~ yb 2 + c2
- bcVO.

3-8 Hypotenuse AB of right .6.ABC is divided into four congruent
segments by points G, E, and H, in the order A, G, E, H, B (Fig.
S3-8a). If AB = 20, find the swn of the squares of the measures
of the line segments from C to G, E, andH.

METHOD I: Since AB = 20, AG = GE = EH = HB = 5. Since
the measures of AC, CB, and CG are not given, .6.ABC may be
constructed so that CG is perpendicular to AB without affecting
the sum required.
Since CG is the altitude upon the hypotenuse of right .6.ABC,

5 CG 2
CG = 15 (#51a), and (CG) = 75.

By applying the Pythagorean Theorem to right .6.HGC, we find

(CG)2 + (GH)2 = (HC)2 (#55),

or 75 + 100 = 175 = (HC)2.
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Since CE = GH (#27), (CE)2 = (GH)2 = 100. Therefore,

(CG)2 + (CE)2 + (HC)2 = 75 + 100 + 175 = 350.

METHOD II: In Fig. S3-8b, CJ is drawn perpendicular to AB.

Since AB = 20, CE = 10 (#27). Let GJ = x, and JE = 5 - x.

In .6.CJG and .6.CJE, (CG)2 - x 2 = 10 2 - (5 - X)2 (#55),

or (CG)2 = 75 + lOx. (I)

Similarly, in .6.CJH and .6.CJE,

(CH)2 - (10 - X)2 = 10 2 - (5 - X)2,

or (CH)2 = 175 - lOx. (II)

By addition of (I) and (II), (CG)2 + (CH)2 + (CE)2 =

75 + lOx + 175 - lOx + 100 = 350.

Notice that Method II gives a more general proof than Method I.

Challenge Express the result in general terms when AB = c.

7c 2

ANSWER: ""8
B

c

A B

At-~+-"";---:lC

o

3-9 In quadrilateral ABCD, AB = 9, BC = 12, CD = 13, DA = 14,
and diagonal AC = 15. Perpendiculars are drawn from Band D
to AC, meeting AC at points P and Q, respectively (Fig. S3-9).
FindPQ.

Consider .6.ACD. If we draw the altitude from C to AD we find
that CE = 12, AE = 9, and ED = 5 (#55e).

Therefore, .6.ABC '" .6.AEC (S.S.S.).

Thus, altitude BP, when extended, passes through E. In .6.A BC,
AC AB 15 9 27
AB = AP (#5Ib), and 9" = AP; therefore, AP = 5"'
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Now consider D.AQD, where PEl/ QD (#9).
27

AE AP 9 5
ED = PQ (#46), and "5 = PQ ; thus, PQ = 3.

3-10 In D.ABC, angle C is a right angle (Fig. S3-1O). AC and BC are
each equal to 1. D is the midpoint of AC. BD is drawn, and a line
perpendicular to BD at P is drawn from C. Find the distance from
P to the intersection of the medians of D.ABC.

Applying the Pythagorean Theorem to D. DCB,

(DC)2 + (CB)2 = (DB)2 (#55).

1 2 l;c4 + I = (DB) , DB = 2v 5

Since the centroid of a triangle trisects each of the medians (#29),

DG = ! (DB) = ! (!0) = ! 0
3 3 2 6

Consider right D. DCB where CP is the altitude drawn upon the
hypotenuse.

DB DC
Therefore, DC = DP (#51b).

1 1

20
2 0

-1- = DP' DP = 10
2

Thus, PG = DG - DP, and

1 1 1
PG = 60 - 100 = 15 0 .

A

53·10
c

s~.
o

3-11 A right triangle contains a 60° angle. If the measure ofthe hypotenuse
is 4, find the distance from the point of intersection of the 2 legs of
the triangle to the point of intersection of the angle bisectors.



The Pythagorean Theorem 85

In Fig. S3-11, AB = 4, mLCAB = 60; therefore mLB = 30
and AC = 2 (#55c). Since AE and CD are angle bisectors,
mLCAE = 30, and mLACD = 45. From the point of inter­
section, I, of the angle bisectors draw FI.l AC. Thus, the angles
of .6.AIF measure 30°, 60°, and 90°.

Let AF = y. Since y = ~ (AI)V3 (#55d), then AI = ~, and
y yy'3

FI = y'3 = -3- (#55c).

Since mLFCI = 45, FC = FI = (2 - y) (#5).
yy'3 _1'1

Therefore, (2 - y) = -3-' and y = (3 - v 3).

Hence, FC = (2 - y) = V3 - I.

Then CI = (FC)V2 = 0(v3 - I), and CI = V6 - 0 (#55a).

~-~:-----~c

3-12 From point P inside .6.ABC, perpendiculars are drawn to the sides
meeting BC, CA, and AB, at points D, E, and F, respectively
(Fig. S3-12). If BD = 8, DC = 14, CE = 13, AF = 12, and
FB = 6, find AE. Derive a general theorem, and then make use
of it to solve this problem.

The Pythagorean Theorem is applied to each of the six right
triangles shown in Fig. S3-12.

(BD)2 + (PD)2 = (PB) 2, (FB)2 + (PF)2 = (PB)2;

therefore, (BD)2 + (PD)2 = (FB)2 + (PF)2. (I)

(DC)2 + (PD)2 = (PC)2, (CE)2 + (PE)2 = (PC)2;

therefore, (DC)2 + (PD)2 = (CE)2 + (PE)2. (II)

(EA)2 + (PE)2 = (PA)2, (AF)2 + (PF)2 = (PA)2;

therefore, (EA)2 + (PE)2 = (AF)2 + (PF)2. (III)

Subtracting (11) from (I), we have
(BD)2 - (DC)2 = (FB)2 + (PF)2 - (CE)2 - (PE)2. (IV)
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Rewriting (III) in the form (EA)2 = (AF)2 + (PF)2 - (PE)2,
and subtracting it from (IV) we obtain

(BD)2 - (DC)2 - (EA)2 = (FB)2 - (CE)2 - (AF)2, or

(BD)2 + (CE)2 + (AF)2 = (DC)2 + (EA)2 + (FB)2.

Thus, if, from any point P inside a triangle, perpendiculars are
drawn to the sides, the sum of the squares of the measures of
every other segment of the sides so formed equals the sum of the
squares of the measures of the other three segments.

Applying the theorem to the given problem, we obtain

8 2 + 13 2 + 12 2 = 6 2 + 14 2 + X 2
, 145 = X 2

, VI45 = X.

A

s~
B 0 C

3-13 For .6ABC with medians AD, BE, and CF, let m = AD +
BE + CF, and let s = AB + BC + CA (Fig. S3-13). Prove that
3 3
2s > m> 4s.

BG + GA > AB, CG + GA > AC, and BG + CG > BC (#41).

By addition, 2(BG + GC + AG) > AB + AC + Be.

Since BG + GC + AG = ~ (BE + CF + AD) (#29),

by substitution, 2 Gm) > s, or j m > s; therefore, m > ~ s.

~AB + FG > BG,~ BC + GD > CG,~AC + GE> AG (#41)

Byaddition,~ (AB + BC + AC) + FG + GD + GE> BG +
CG + AG.
Sb " 1 +1 21 1 3

u stltutmg, 2s 3m > 3m, 2s > "3 m, m < :2 s.

3 3
Thus, :2 s > m > 4s.

3
3-14 Prove that 4(a 2 + b 2 + c 2

) = rna 2 + mb 2 + me 2
• (me means

the measure of the median drawn to side c.)
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c

In D.ABC, medians AE, BD, CF, and GP.l AB are drawn, as in
Fig. S3-14a. Let GP = h, and PF = k.

Since AF = ~, then AP = ~ - k.

Apply the Pythagorean Theorem (#55),

in D.AGP, h2 + (~- kf = Gmaf,

c 2 4
or h2 + '4 - ck + k 2 = 9ma 2. (I)

In D.BGP, h 2 + G+ kf = Gmbf,
c 2 4

orh2 + 4" + ck + k 2 = 9mb2. (II)

2c 2 4 4
Adding (I) and (II), 2h 2 + ""4 + 2k 2 = 9ma2 + 9mb2,

4 4 c 2

or 2h 2 + 2k 2 = 9ma2 + 9mb 2 - 2" .

. 2 2 (1 )2However, 10 D.FGP, h + k = "3 me .

2 k2 2 2Therefore,2h + 2 = 9 me .

By substitution of (IV) into (III),

2 2 4 2 4 2 c2

9me = 9ma + 9mb - 2" .

2 8 2 8 2 4 2Therefore, c = 9ma + 9mb - 9me .

S· '1 1 b 2 8 2 + 8 2 4 2Iml ar y, = 9ma 9me - 9mb ,

2 8 2 8 2 4 2and 0 = 9mb + 9me - 9ma .

By addition, 02 + b2 + c2 = ~ (ma2 + mb 2 + me2),

or~(02 + b2 + c2) = ma2 + mb 2 + m/.

(III)

(IV)
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Challenge 2 The sum of the squares of the measures of the sides of a
triangle is 120. If two of the medians measure 4 and 5,
respectively, how long is the third median?

From the result of Problem 3-14, we know that
3

m a
2 + mb 2 + m/ = 4(a 2 + b2 + c2).

This gives us 52 + 42 + m 2 = ~ (120).

So m 2 = 49, and m = 7.

Challenge 3 If AE and BF are medians drawn to the legs of right
. (AE)2 + (BF)2 .

.6ABC, find the numerical value of - (AB)2 (Fig.
53-14b).

c

u~
A 0 B

Use the previously proved theorem (Problem 3-14) that
the sum of the squares of the measures of the medians

3
equals 4 the sum of the squares of the measures of the

sides of the triangle.

(AE)2 + (BF)2 + (CD)2

= ~ [(AC)2 + (CB)2 + (AB)2] (1)

By the Pythagorean Theorem (#55).

(AC)2 + (CB)2 = (AB)2. (II)

t
Also, (CD) = 2 (AB) (#27). (III)

By substituting (11) and (Ill) into (1),

(AE)2 + (BF)2 + GABr = ~ [(AB)2 + (AB)2],

or (AE)2 + (BF)2 = ~ (AB)2 - ~ (AB)2.

Then (AE)2 + ~E!5)~ = 5 .
(AB)! 4
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4. Circles Revisited
4-1 Two tangents from an external point P are drawn to a circle,

meeting the circle at points A and B. A third tangent meets the
circle at T, and tangents PA andPB at points Qand R, respectively.
Find the perimeter p of 6PQR.

We first consider the case shown in Fig. S4-la where AQ = QT
and BR = RT (#34).

Therefore,p = PQ + QT + RT + PR = PQ + QA + BR +
PR = PA + PB.
We next consider the case shown in Fig. S4-lb where AQ = QT
and BR = RT (#34).

Therefore, p = PA + AQ + QT + RT + RB + PB

= PA + QR + QR + PB

= PA + PB + 2QR.

p

54·2

4-2 AB and AC are tangent to circle 0 at Band C, respectively, and
CE is perpendicular to diameter BD (Fig. S4-2). Prove (BE)(BO) =
(AB)(CE).

Draw AO, BC, and OC, as in Fig. S4-2. We must first prove
AO 1- Be. Since AB = AC (#34), and BO = OC (radii), AO is
the perpendicular bisector of BC (#18). Since LABD is a right
angle (#32a), L3 is complementary to L2. In right6APB, L I
is complementary to L2. Therefore, L I '" L3.

Thus, right 6BEC ~ right 6ABO, and

AB BO
BE = CE' or (BE)(BO) = (AB)(CE).
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Challenge 3
AB BO

Show that VHE = y'ED .

AB BO
We have proved that BE = CE' (I)

Since ~BCD is a right triangle (#36),

(CE)2 = (BE)(ED) (#5Ia). Then CE = VliEVE15. (II)

AB BO
From (I) and (II) we get BE = VlfEVEJj (III)

By multiplying both sides of (III) by Y~E we get:

AB BO
yBE = VEJj'

4-3 From an external point P, tangents PA and PH are drawn to a
circle (Fig. S4-3a). From a point Q on the major (or minor) arc
~ - ---+ ---+

AB, perpendiculars are drawn to AB, PA, and PB. Prove that
the perpendicular to AB is the mean proportional between the other
two perpendiculars.

PA and PiJ are tangents; QD 1. PA, QE 1. PiJ, and QC 1. AB.

Draw QA and QB.
1 ~ 1 ~

mLDAQ = 2mAQ (#38); mLQBA = 2mAQ (#36)

Therefore, mLDAQ = mLQBA (transitivity),

right ~DAQ ~ right ~CBQ (#48), and ~~ = ~;.
1 ~ 1 ~

mLQBE = 2mQB (#38); mLQAB = 2mQB (#36)

Therefore, mLQBE = mLQAB (transitivity), and

right ~QBE~ right ~QAC (#48) so that ~~ = ~;.

We therefore obtain ~~ = ~~ (transitivity). In Fig. S4-3a, point

__....::::..~£.........L...L----~p
_......LJi;:::""...ll-£.. ~ P

S4·3a
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Q is on the major arc of circle O. Fig. S4-3b shows Q on the
minor arc. Note that the proof applies equally well in either case.

4-4 Chords AC and DB are perpendicular to each other and intersect
at point G (Fig. S4-4). In ~AGD the altitude from G meets AD
at E, and when extended meets BC at P. Prove that BP = Pc.

In right ~AEG LA is complementary to L I (#14), and L2 is
complementary to L 1. Therefore, LA '" L2.

However, L2 '" L4 (#1). Thus, LA '" L4.

Since LA and LB are equal in measure to ~ mDC (#36), they are

congruent. Therefore, L4 '" LB, and BP = GP (#5).

Similarly, LD '" L3 and LD ,....., LC so that GP = Pc.

Thus, CP = PB.

54·5

4-S Square ABCD is inscribed in a circle (Fig. 84-5). Point E is Oil

the circle. IfAB = 8,find the value of(AE)2 + (BE)2 + (CE)2 +
(DE)2.

In this problem we apply the Pythagorean Theorem to various
right triangles. DB and AC are diameters; therefore, ~DEB,
~DAB, ~AEC, and ~ABC are right triangles (#36).
In ~DEB, (DE)2 + (BE)2 = (BD)2;

in ~DAB, (AD)2 + (AB)2 = (BD)2 (#55).

Therefore (DE)2 + (BE)2 = (AD)2 + (AB)2.

In ~AEC, (AE)2 + (CE)2 = (AC)2;

in ~ABC (AB)2 + (BC)2 = (AC)2 (#55).

Therefore, (AE)2 + (CE)2 = (AB)2 + (BC)2.

By addition, (AE)2 + (CE)2 + (DE)2 + (BE)2 = (AB)2 +
(BC)2 + (AD)2 + (AB)2. Since the measures of all sides of
square ABCD equal 8,

(AE)2 + (CE)2 + (DE)2 + (BE)2 = 4(8 2) = 256.
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To generalize, (AE)2 + (CE)2 + (DE)2 + (BE)2 = 4s2 where
s is the measure of the length of the side of the square. Interpret
this result geometrically!

4-6 In Fig. 84-6, radius AO is perpendicular to radius OB, MN is
parallel to AB meeting AO at P and OB at Q, and the circle at
M and N. If MP = yS6, and PN = 12, find the measure of the
radius of the circle.

Extend radius AO to meet the circle at C. We first prove that
MP = NQ by proving ~AMP '" ~BNQ.

Since ~AOB is isosceles, LOAB '" LOBA (#5), and trapezoid
APQB is isosceles (#23); therefore, AP = QB. Since MN II AB,
LMPA '" LPAB (#8), and LNQB '" LQBA (#8). Thus, by

transitivity, LMPA '" LBQN. MA '" liN (#33). Therefore,

MA1J '" fiiiA and LAMN '" LBNM (#36). Therefore,
~AMP '" ~BNQ (S.A.A.), and MP = QN.

Let PO = a, and radius OA = r. Thus, AP = r - a.

(AP)(PC) = (MP)(PN) (#52)

(r - a)(r + a) = (yS6)(l2)

r 2
- a 2 = 12yS6

We now find a 2 by applying the Pythagorean Theorem to isosceles
right ~POQ.

(PO)2 + (QO)2 = (PQ)2, so a2 + a2 = (12 - yS6)2, and

a 2 = 100 - 12V56.

By substituting in equation (I),

r 2 = 12V56 + 100 - 12V56, and r = 10.

M A A

54-6

c
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4-7 Chord CD is drawn so that its midpoint is 3 inches from the center
of a circle with a radius of 6 inches (Fig. 54-7). From A, the mid­
point of minor arc CD, any chord AB is drawn intersecting CD in
M. Let v be the range of values of (AB)(AM), as chord AB is
made to rotate in the circle about the fixed point A. Find v.

(AB)(AM) = (AM + MB)(AM) = (AM)2 + (MB)(AM) =
(AM)2 + (CM)(MD) (#52)

E is the midpoint of CD, and we let EM = x. In ~OED, ED =
Vrt (#55). Therefore, CE = Vrt.
(CM)(MD) = h/2i + x)(Vrt - x), and in ~AEM, (AM)2 =
9 + x 2

, (#55).

(AB)(AM) = 9 + x 2 + (V27 + x)(v27 - x) = 36
Therefore, v has the constant value 36.

QUESTION: Is it permissible to reason to the conclusion that
v = 36 by considering the two extreme positions of point M,
one where M is the midpoint of CD, the other where M coincides
with C (or D)?

4-8 A circle with diameter AC is intersected by a secant at points B
and D. The secant and the diameter intersect at point P outside the
circle, as shown in Fig. 54-8. Perpendiculars AE and CF are
drawn from the extremities of the diameter to the secant. If
EB = 2, and BD = 6, find DF.

p.....:::;;;--~~----.....=.....IIIC

METHOD I: Draw BC and A D. LA BC roo.J LA DC roo.J right angle,
since they are inscribed in a semicircle. mLFDC + mLEDA =
90andmLFCD + mLFDC = 90; therefore, LEDA roo.J LFCD,
since both are complementary to LFDC.

Thus, right ~CFD ~ right ~DEA (#48), and ~~ = ;~ ,

or (EA)(FC) = (DF)(ED). (I)
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Similarly, mLEAB + mLEBA = 90 and mLFBC +
mLEBA = 90;

therefore, LEAB "-' LFBC, since both are complementary to

LEBA. Thus, right L:::.AEB ~ right L:::.BFC, and ;~ = ;;,

or (EA)(FC) = (EB)(FB).

From (I) and (II) we find (DF)(ED) = (EB)(FB).

Substituting we get (DF)(8) = (2)(DF + 6), and DF = 2.

(II)

MLTHOD II: By applying the Pythagorean Theorem (#55),

in L:::.AED, (ED)2 + (EA)2 = (AD)2;

in L:::.DFC, (DF)2 + (FC)2 = (DC)2.

(ED)2 + (DF)2 = (AD):.! + (DC)2 - «EA)2 + (FC)2)

In L:::.AEB, (EB)2 + (EA)2 = (AB)2;

in L:::.BFC, (BF)2 + (FC)2 = (BC)2.

(EB)2 + (BF)2 = (AB)2 + (BC)2 - «EA)2 + (FC)2)

Since (AD)2 + (DC)2 = (AC)2 = (AB)2 + (BC)2,

we get (ED)2 + (DF)2 = (EB)2 + (BF)2. (I)

Let DF = x. Substituting, (8)2 + x 2 = (2)2 + (x + 6)2,

64 + x 2 = 4 + x 2 + 12x + 36, and x = 2.

Challenge Does DF = EB? Prove it!

From Method I, (I) and (II), (DF)(ED) = (EB)(FB).

Then, (DF)(EB + BD) = (EB)(BD + DF),

and (DF)(EB) + (DF)(BD) = (EB)(BD) + (EB)(DF).

Therefore, DF = EB.

From Method II, (I),

(ED)2 + (DF)2 = (EB)2 + (BF)2.

Then, (EB + BD)2 + (DF)2 = (EB)2 + (BD + DF)2,

and (EB)2 + 2(EB)(BD) + (BD)'l + (DF)2 = (EB)2 +
(BD)2 + 2(BD)(DF) + (DF)2.

Therefore, EB = DF.
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Cl--~~----+~P

54·9b

cl----...,:!------i~P

54-9a

4-9 A diameter CD of a circle is extended through D to external
point P. The measure of secant CP is 77. From P, another secant
is drawn intersecting the circle first at A, then at B. (See Fig.
S4-9a.) The measure of secant PB is 33. The diameter of the circle
measures 74. Find the measure of the angle formed by the secants.
(Note that the figure is not drawn to scale.)

B

Since CD = 74 and PC = 77, PD = 3. Since (PA)(PB) =
(PD)(PC) (#54), (PA)(33) = (3)(77), and PA = 7.
Therefore, BA = 26. Draw OE 1- AB. Then AE = BE = 13

(#30). Since 0 D = 37 and PD = 3, OP = 40.
In right f::,PEO, PE = 20 and PO = 40.
Therefore, mLEOP = 30 and mLP = 60 (#55c).

Challenge Find the measure of secant PB when mLCPB = 45 (Fig.
S4-9b).

In right f::,PEO, OE = 200 (#55b).

Since OB = 37, in right f::,BEO, BE = V569 (#55).
Therefore, PB = 200 + yS69.

4-10 In f::,ABC, in which AB = 12, BC = 18, and AC = 25, a
semicircle is drawn so that its diameter lies on AC, and so that it
is tangent to AB and BC (Fig. 54-10). If 0 is the center of the
circle, find the measure of AO.

B

~
4'lOD, E

, , I

, ,"',I I
A C

x 0

Draw radii 0 D and OE to the points of contact of tangents AB
and BC, respectively. OD = OE (radii), and mLBDO =
mLBEO = 90 (#32a). Since DB = BE (#34), right ~BDO ""'
right f::,BEO (#17), and LDBO ""' LEBO.
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- . AB BC
In 6.ABC, BO bisects LB so that AD = OC (#47).

Let AO = x· then !.3 = _1_8- and x = 10 = AO.
, x 25 - x'

Challenge Find the diameter of the semicircle.

yf6479
A.NSWER: -6- ~ 13.4

4-11 Two parallel tangents to circle ° meet the circle at points M and
N. A third tangent to circle 0, at point P, meets the other two
tangents at points K and L (Fig. S4-11). Prove that a circle,
whose diameter is KL, passes through 0, the center of the original
circle.

Draw KO and LO. If KL is to be a diameter of a circle passing
through 0, then LKOL will be an angle inscribed in a semicircle,
or a right angle (#36).

Thus, we must prove that LKOL is a right angle. It may easily
be proved that OK bisects LMKP and OL bisects LPLN
(Problem 4-10).

Since mLMKP + mLNLP = 180 (#ll), we determine that
mLOKL + mLOLK = 90 and mLKOL = 90 (#13).

It then follows that LKOL is an inscribed angle in a circle whose
diameter is KL; thus, 0 lies on the new circle.

M S

"54·11 \
\
I
I

/
/
L

4-12 LM is a chord of a circle, and is bisected at K (Fig. S4-12). OKJ
is another chord. A semicircle is drawn with diameter OJ. KS,
perpendicular to OJ, meets this semicircle at S. Prove KS = KL.

Draw DS and SJ.

L DSJ is a right angle since it is inscribed in a semicircle. Since
SK is an altitude drawn to the hypotenuse of a right triangle,



DK SK
SK = KJ (#5Ia), or

(SK)2 = (DK)(KJ).
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(I)

However, in the circle containing chord LM, DJ is also a chord
and (DK)(KJ) = (LK)(KM) (#52).

Since LK = KM, (DK)(KJ) = (KL)2. (II)

From lines (I) and (II), (SK)2 = (KL)2, or SK = KL.

A

4-13 Triangle ABC is inscribed in a circle with diameter AD, as shown
in Fig. S4-13. A tangent to the circle at D cuts AB extended at E
and AC extended at F. IfAB = 4, AC = 6, and BE = 8,jind CF.

Draw DC and BD.

LABD r""oJ LACD r""oJ right angle, since they are inscribed in
semicircles (#36).

. A£ AD
In nght 6.ADE, AD = AB (#5Ib);

thus, (A D)2 = (AE)(AB).

. AF AD
In nght 6.ADF, AD = AC (#5Ib);

thus, (A D)2 = (AF)(AC).

By transitivity, (AE)(AB) = (AF)(AC).

By substitution, (12)(4) = (6 + CF)(6), and CF = 2.

Challenge 1 Find mLDAF.

ANSWER: 30

(;hallenge 2 Find Be.

ANSWER: 2(V6 + I)
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4-14 Altitude AD of equilateral ~ABC is a diameter of circle o. If
the circle intersects AB and AC at E and F, respectively, as in
Fig. S4-14, find the ratio ofEF:BC.

METHOD I: Let GD = 1, and draw ED.

LAED is a right angle (#36). mLABD = 60 and AD 1- BC;

therefore, mLBAD = 30, and mLADE = 60 (#14).
Because of symmetry, AD 1- EF. Therefore, mLGED = 30.

In ~GED, since GD = 1, we get ED = 2 (#55c), and EG =

o (#55d).
In ~AEG (30-60-90 triangle), since EG = 0, we get AG = 3.

AG EF
~AEF <OJ ~ABC (#49), and AD = Be·

Since AG:AD = 3:4, the ratio EF:BC = 3:4.

METHOD II: ~EOG is a 30--60-90 triangle. Therefore, OG =
1 1 32OE = 20D; thus, OG = GD, and AG = 4AD. However,

3
~AEF <OJ ~ABC (#49). Therefore, EF = 4 BC, or EF:BC =
3:4.

Challenge Find the ratio of EB: BD.

ANSWER: 1:2

A

B C

54-15a

4-15 Two circles intersect in A and B, and the measure of the common
chord AB = 10. The line joining the centers cuts the circles in P
and Q (Fig. S4-15a). If PQ = 3 and the measure of the radius of
one circle is 13, find the radius of the other circle. (Note that the
illustration is not drawn to scale.)

Since 0'A = 0'Band OA = OB, 00' is the perpendicular bi­
sector of AB (# 18).
Therefore, in right ~ATO, since AO = 13 and AT = 5, we find
OT = 12 (#55).
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Since OQ = 13 (also a radius of circle 0), and OT = 12, TQ = 1.

We know that PQ = 3.

In Fig. S4-15a, PT = PQ - TQ; therefore, PT = 2. Let 0'A =
O'P = r, and PT = 2, TO' = r - 2.

Applying the Pythagorean Theorem in right DoATO',

Substituting, 52 + (r - 2)2 = r 2
, and r = 2; .

In Fig. S4-15b, PT = PQ + TQ; therefore, PT = 4. Again, let
O'A = O'P = r; then TO' = r - 4.

Applying the Pythagorean Theorem in right 6.ATO',

Substituting, 52 + (r - 4)2 = r 2
, and r = ¥.

Challenge Find the second radius if PQ = 2.

ANSWER: 13

54·15b 54·16

4-16 ABCD is a quadrilateral inscribed in a circle. Diagonal BD bisects
AC, as in Fig. 54-16. If AB = 10, AD = 12, and DC = 11,
find Be.

I ,,-..... I ,,-.....
mLDBC = 2m(DC); mLDAC = 2m(DC) (#36).

Therefore, LDBC r"'oJ LDAC, and LCEB r"'oJ LDEA (#1).

Thus, 6.BEC ~ 6.AED (#48), and

AD DE
CB = CEo (I)

I ,,-..... I ,,-.....
Similarly, mLCAB = 2m(CB), and mLCDB = 2m(CB) (#36).

Therefore, LCAB r"'oJ LCDB, and LAEB r"'oJ LDEC (#1).
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DC DE
Thus, 6.AEB ~ 6. DEC (#48), and AB = AE· (II)

AD DC
But AE = CE; hence, from (I) and (II), CB = AB·

S b · . 12 11 d C 120
u sbtutmg, CB = 10' an B = IT .

Challenge Solve the problem when diagonal BD divides AC into two
segments, one 0/ which is twice as long as the other.

ANSWER: CB = 240 if AE = ! AC
11 ' 3

CB = 60 if AE = ~ AC
11' 3

c

4-17 A is a point exterior to circle 0. PT is drawn tangent to the circle
so that PT = PA. As shown in Fig. S4-17a, C is any point on
circle 0, and AC and PC intersect the circle at points D and B,
respectively. AB intersects the circle at E. Prove that DE is parallel
to AP.

PC PT. PC AP
PT = PB (#53). Smce PT = AP, AP = PB·

Since 6.APC and 6.BPA share the same angle (i.e., LAPC),
and the sides which include this angle are proportional, 6.APC ~

6.BPA (#50). Thus, LBAP""'" LACP. However, since LACP
is supplementary to LDEB (#37), and LAED is supplementary
to LDEB, LACP""'" LAED.

By transitivity, LBAP""'" LAED so that DE II AP (#8).

Challenge 1 Prove the theorem/or A interior to circle 0.

As in the proof just given, we can establish that LBAP ,.....,
LACP. See Fig. S4-17b. In this case, LDEB""'" LACP
(#36); therefore, LBAP""'" LDEB, and DE is parallel
to AP (#7).

p
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Challenge 2 Explain the situation when A is on circle O.

ANSWER: DE reduces to a point on PA; thus we have a
limiting case of parallel lines.

4-18 PA and PB are tangents to a circle, and PCD is a secant. Chords
AC, BC, BD, and DA are drawn, as illustrated in Fig. S4-18. If
AC = 9, AD = 12, and BD = lO,find Be.

I ..--... I ..--...
mLPBC = 2,m(BC) (#38). mLPDB = 2m(BC) (#36).

Therefore, LPBC""'" LPDB.
CB PB

Thus, .6.DPB ~ .6.BPC (#48), and DB = PD· (I)

Since PA = PB (#34), by substituting in (I) we get ~~ = ;~.

Similarly, .6. DAf ~ .6.ACP (#48), and ~~ = ;~. (II)

AC CB 9 CB I
From (I) and (II), AD = DB' and 12 = 10 ' or CB = 72,·

15 and

A

If in addition to the information given above, PA =
PC = 9, find AB.

ANSWER: AB = II!
4

A___~O:::::::----------:7 p

54.18 54·19a

Challenge

4-19 The altitudes of .6.ABC meet at 0 (Fig. S4-19a). BC, the base
of the triangle, has a measure of 16. The circumcircle of .6.ABC
has a diameter with a measure of20. Find AO. (Figure not drawn
to scale.)

METHOD I: Let BP be a diameter of the circle circumscribed about
.6.ABC. Draw PC and PA. Draw PT perpendicular to AD.
Since LBCP is inscribed in a semicircle, it is a right angle (#36).
Therefore, since BP = 20 and BC = 16, we get, by the Pythag­
orean Theorem, PC = 12.

LBAP is a right angle (#36).
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Therefore, LPAO is complementary to LEAO.

Also, in right !:::"EAO, LEOA is complementary to LEAO (414).

Thus, LPAO""'" LEOA; hence, EC II AP (#8).

Since AD .1 BC and PC .1 BC (#36), AD 1/ PC (#9).

It then follows that APCO is a parallelogram (#2Ia), and AO =
PC = 12.

A

54·19b

METHOD II: The solution above is independent of the pOSItIon
of point A on the circle. But we may more easily do this problem
by letting A D be the perpendicular bisector of BC, in other words
letting !:::"ABC be isosceles (AB = AC). Our purpose for doing
this is to place the circumcenter on altitude A D as shown in
Fig. S4-19b.

The circumcenter P is equidistant from the vertices (AP = BP),
and lies on the perpendicular bisectors of the sides (#44).

Since altitude AD is the perpendicular bisector of BC, P lies on AD.

Since the circumdiameter is 20, AP = BP = 10.

In !:::"PBD, since BP = 10 and BD = 8, then PD = 6 (#55).

Thus, AD = 16.

LDAC is complementary to LDCA, and

LDBO is complementary to LBCA (#14).

Therefore, LDAC""'" DBO.

Thus, right !:::"ACD ~ right !:::"BOD (#48), and ;~ = g~ .
Substituting, ¥= 08

D
; then OD = 4, and by subtraction,

AO = 12.

4-20 Two circles are tangent internally at P, and a chord, AB, of the
larger circle is tangent to the smaller circle at C. PB and PA cut
the smaller circle at E and D, respectively (Fig. S4-20). IfAB = 15,
while PE = 2 and PD = 3, find AC.
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Draw ED and the common external tangent through P.
1 ---.. 1 ---..

mLPED = 2 m(PD) (#36), mLTPD = 2. m(PD) (#38).

Therefore, LPED""'" LTPD. (I)

Similarly, mLPBA = ~ m(PA) (#36).
1 ---..

mLTPA = 2. m(PA) (#38).

Therefore, LPBA ,....., LTPA. (II)

Thus, from (I) aI:ld (II), LPED '"" LPBA, and ED " BA (#7).
PB PE PB 2 -

In f:::"PBA, PA = PD (#46). Thus, PA = 3' Now draw CD. (III)

1 ---.. 1 ---..
mLPDC = 2. m(PC) (#36), while mLPCB = 2. m(PC) (#38).

Therefore, LPDC""'" LPCB.
1 ---.. 1 ---..

SincemLPCD = 2. m(PD) (#36), andmLTPD = 2. m(PD)(#38),

LPCD""'" LTPD. Since, from (II), LPBA""'" LTPD, LPCD""'"
LPBA.

Thus, f:::"PBC ~ f:::"PCD (#48), and LBPC""'" LDPC.

Since, in f:::"PBA, PC bisects LBPA, ~~ = ~~ (#47).
2 BC

From (III), j = AC'
2

Since AB = 15, BC = AB - AC = 15 - AC; therefore, 3 =
15 - AC

AC ,and AC = 9.

Challenge Express AC in terms ofAB, PE, and PD.

(AB)(PD)
ANSWER: AC = PE + PD

4-21 A circle, center 0, is circumscribed about f:::"ABC, a triangle in
which LC is obtuse (Fig. S4-21). With OC as diameter, a circle
is drawn intersecting AB in 0 and Of. If AD = 3, and DB = 4,
find CD.



104 SOLUTIONS

Extend CD to meet circle 0 at E. In the circle with diameter OC,
oD is perpendicular to CD (#36). In circle 0, since 0 D is
perpendicular to CE, CD = DE (#30). Again in circle 0,
(CD)(DE) = (AD)(DB) (#52).

Since CD = DE, (CD)2 = (3)(4), and CD = VT2 = 2vI

54·21

c

54·22

4-22 In circle 0, perpendicular chords AB and CD intersect at E so
that AE = 2, EB = 12, and CE = 4 (Fig. S4-22). Find the
measure of the radius of circle O.

From the center 0, drop perpendiculars to CD and AB, meeting
these chords at points F and G, respectively. Join 0 and D.

Since (AE)(EB) = (CE)(ED) (#52), ED = 6.

OF bisects CD (#30), and CD = 10; therefore, FD = 5.

Similarly, since AB = 14, then GB = 7 and GE = 5.

Quadrilateral EFOG is a rectangle (a quadrilateral with three
right angles is a rectangle). Therefore, GE = FO = 5.

Applying the Pythagorean Theorem to isosceles right .6.FOD,
we find DO = 5V2, the radius of circle O.

Challenge Find the shortest distance from E to the circle.

ANSWER: 5V2 - V26

4-23 Prove that the sum of the squares of the measures of the segments
made by two perpendicular chords is equal to the square of the
measure of the diameter of the given circle.

Draw AD, CB, diameter COF, and BF as illustrated in Fig.
S4-23.
Since AB .1 CD, .6.CEB is a right triangle, and c2 + b2 = y2
(#55). In right .6.AED, a2 + d2 = x 2. (#55)

By addition, a2 + b2 + c2 + d2 = x 2 + y2.
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In right ~CBF, y2 + Z2 = m 2.

L4 is complementary to L2 (#14), and L3 is complementary to
Ll. -..
However, L2 = L I (#36); therefore, L4 = L3. Thus, A DF""'"
~ ~ ~

lJFD, and AD""'" BF; hence, x = z.

Therefore, y2 + x 2 = m 2, and a 2 + b2 + c2 + d2 = m 2.

8

54·24

F

4-24 Two equal circles are tangent externally at T. Chord TM in circle
o is perpendicular to chord TN in circle Q (Fig. S4-24). Prove
that MN II OQ and MN = OQ.

Draw the line of centers OQ, MO, and NQ; then draw the
common internal tangent KT meeting MN at K.

1 ~ 1 ~

mLKTN = 2mNT and mLKTM = 2mMT (#38).

mLKTN + mLKTM = mLMTN = 90.
1 ~ 1 ~

Therefore, 2mNT + 2mMT = 90,

or mNT + mMT = 180.

Thus, mLMOT + mLNQT = 180 (#35), and MO II NQ (#11).

Since MO = NQ (radii of equal circles), MNQO is a parallelo­
gram (#22).

It then follows that MN = OQ and MN II OQ.

4-25 As illustrated, from point A on the common internal tangent of
tangent circles 0 and 0', secants AEB and ADC are drawn,
respectively. If DE is the common external tangent, and points
C and B are collinear with the centers of the circles, prove

(a) mL I = mL2, and
(b) LA is a right angle.
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(a) Draw common internal tangent AP (Fig. S4-25).

For circle 0', (AP)2 = (AC)(AD) (#53);
for circle 0, (AP)2 = (AB)(AE) (#53).

AC AB
Therefore, (AC)(AD) = (AB)(AE), or AE = AD'

Thus, .6.A DE ~ .6.ABC (#50), and mL I = mL2.

(b) METHOD I: Draw DP and PE. GE = GP and DG = GP (#34).
Therefore, in isosceles .6. DGP, L3 '" L4; and in isosceles
.6.EGP, L5 '" L6. Since mL3 + mL4 + mL5 + mL6 =
180, mL4 + mL5 = 90 = mLDPE.
Since mLCDP = 90 and mLPEB = 90 (#36), in quadrilateral
ADPE LA must also be a right angle (#15).

METHOD II: Draw DO' and OE. DO'1. DE and EO 1. DE
(#32a). Therefore, DO'" OE,andmLDO'B + mLEOC = 180.

Thus, mDP + mEP = 180 (#35).
1 ~ 1 ~

However, mLDCP = 2mDP, and mLEBP = 2mEP (#36).
1 ~ ~

By addition, mLDCP + mLEBP = 2(mDP + mEP) =
12(180) = 90. Therefore, mLBAC = 90 (#13).

A

4-26 Two equal intersecting circles 0 and 0' have a common chord
RS (Fig. S4-26). From any point P on RS a ray is drawn per·
pendicular to RS cutting circles 0 and 0' at A and B, respectively.
Prove that AB parallel to the line of centers 00', and that AB =
00'.

Draw OA and 0'B; then draw AE 1. 00' and BD 1. 00'.

Since PAB 1. RS and the line of centers 00' 1. RS, AB II 00'
(#9).
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Consider f:::"AOE and f:::"BO'D. Since AB II 00' D, AE = BD
(#20), and A 0 = 0'B since they are radii of equal circles.
Thus, right f:::"AOE ro.J right f:::"BO'D (#17).

Therefore, LAOE ro.J LBO'D, and AO II 0'B (#7).

It follows that ABO'O is a parallelogram (#22).

Thus, AB = 00' (#2Ib).

4-27 A circle is inscribed in a triangle whose sides are 10, 10, and 12 units
in measure (Fig. S4-27). A second, smaller circle is inscribed
tangent to the first circle and to the equal sides of the triangle. Find
the measure of the radius of the second circle.

A

Draw AO'OF, OE, and 0'D. OE 1. AC and 0'D 1. AC (#32a).
CF = CE = 6 (#34)

Since AC = 10, AE = 4. In right f:::"AFC, AF = 8 (#55).

Right f:::"AEO,.., right f:::"AFC (#48), and ~~ = ~~.

Substituting, ;E = ~, and OE = 3.

Therefore, GF = 6, and AG = 2.

Let 0'D = O'G = r. Then O'A = 2 - r

Since 0'D II OE (#9), right f:::"ADO',.., right f:::"AEO, and
O'D OE
O'A = OA'

Since in right f:::"AEO, AE = 4 and OE = 3, AO = 5 (#55).
r 3 3Thus -- = - and r = _.

'2-r 5' 4

Challenge 1 Solve the problem in general terms if AC = a, BC = 2b.

b(a - b)3/2
ANSWER: r = (a + b)3/2
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Challenge 2 Inscribe still another, smaller circle, tangent to the second
circle and to the equal sides. Find its radius by inspection.

I 3 3
ANSWER: 4' 4 = 16

Challenge 3 Extend the legs of the triangles through Band C, and draw
a circle tangent to the original circle and to the extensions
of the legs. What is its radius?

ANSWER: 12

4-28 A circle with radius 3 is inscribed in a square, as illustrated in
Fig. S4-28. Find the radius of the circle that is inscribed between
two sides of the square and the original circle.

Since OA bisects right angle A, 6.DAO and 6.EAO' are isosceles
right triangles. Let EO' = x; then AO' = xy2 (#55a).

Since 0'F = x and OF = 3, OA = 3 + x + xy2.

But in 6.ADO, AO = 3V2 (#55a). It then follows that 3V2 =
30 - 3

3 + x + xV2, and x = y2 + I = 3(3 - 2V2).

54-28

c

54-29

1-"-~-t---"'----1B

4-29 AB is a diameter of circle 0 (Fig. S4-29). Two circles are drawn
with AO and OB as diameters. In the region between the circum­
ferences, a circle D is inscribed tangent to the three previous
circles. If the measure of the radius of circle D is 8, find AB.

Let radius AE = x. Since CD = 8, DE = AE + CD = x + 8.
Thus, by applying the Pythagorean Theorem in 6. DEO,
(EO)2 + (DO)2 = (DE)2, x 2 + (DO)2 = (x + 8)2, and
DO = 4yx + 4.

However, DO + CD = CO = OA = AE + EO.

Substituting, 4yx + 4 + 8 = 2x, and x = 12.

Therefore, AB = 4x = 48.
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4-30 A carpenter wishes to cut four equal circles from a circular piece
of wood whose area is equal to 971'" square feet. He wants these
circles of wood to be the largest that can possibly be cut from this
piece of wood. Find the measure of the radius of each of the four
/lew circles (Fig. S4-30).

Let the length of the radius of the four smaIl circles be x. By
joining the centers of the four smaIl circles, we get a square whose
side equals 2x and whose diagonal equals 2xV2 (#55a). There­
fore, the diameter of circle 0 equals 2x + 2xV2, and its radius
equals x(1 + Y2). Since the area of circle 0 is 971'", the radius is 3.

3 -
Therefore,x(1 + V2) = 3,andx = I +y2 = 3(y2 - I) feet.

Challenge 1 Find the correct radius if the carpenter decides to cut out
three equal circles ofmaximum size.

ANSWER: 3(2y3 - 3)

Challenge 2 Which causes the greater waste of wood, the four circles
or the three circles?

ANSWER: Three circles

54·30 54·31

4-31 A circle is inscribed in a quadrant of a circle of radius 8, as shown
in Fig. S4-3I. What is the measure of the radius of the inscribed
circle?

Draw radii PC and PD to points of tangency with AO and BO.
Then PC 1. AO, PD 1. OB (#32a).

Since LAOB is a right angle, PCOD is a rectangle (a quadrilateral
with three right angles is a rectangle). Moreover, since radius
PC = radius PD, PCOD is a square.

Let PC = PD = 1'; then CO = OD = 1', and OP = rV2 (#55a),
while PT = r. Therefore, OT = I' + rV2, but OT = 8 also;

thus, I' + rV2 = 8, and I' = 8(V2 - I), (approximately 3D·

QUESTION: Explain why OT goes through P.
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Challenge Find the area of the shaded region.

ANSWER: 16[4h /2 - 11") + 3(11"\/2 - 2)]

4-32 Three circles intersect. Each pair of circles has a common chord
(Fig 54-32). Prove that the~e three chords are concurrent.

Let chords A Band CD intersect at P. These are the common
chords for circles 0 and Q, and circles 0 and R, respectively.
Circles Rand Q intersect at points E and F. Draw EP and
extend it.

Assume that EP does not pass through F. It therefore meets
circles Q and R at points X and Y, respectively.

In circle 0, (AP)(PB) = (CP)(PD) (#52).

Similarly, in circle Q, (AP)(PB) = (EP)(PX) (#52).

By transitivity, (CP)(P D) = (EP)(PX).

However, in circle R, (CP)(PD) = (EP)(PY) (#52).

It then follows that X and Y must be the same point and must lie
both on circle Q and circle R.

Thus, EP will meet the intersection of circles Q and R at F.

D""------~

54·32

B

4-33 The bisectors of the angles ofa quadrilateral are drawn. From each
pair of adjacent angles, the two bisectors are extended until they
intersect, as shown in Fig. 54-33. The line segments connecting the
points of intersection form a quadrilateral. Prove that this figure
is cyclic (i.e., can be inscribed in a circle).

mLBAD + mLADC + mLDCB + mLCBA = 360 (#15);
1 1 1

therefore'zmLBAD + zmLADC + zmLDCB +
~ mLCBA = ~ (360) = 180. Substituting,

mLEDC + mLECD + mLGAB + mLABG = 180. (I)
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Consider 6.ABG and 6. DEC.

mLEDC + mLECD + mLGAB + mLABG

+ mLAGB + mLDEC = 2(180) (II)

Now, subtracting (I) from (II), we find that

mLAGB + mLDEC = 180.

Since one pair of opposite angles of quadrilateral EFGH are
supplementary, the other pair must also be supplementary, and
hence quadrilateral EFGH is cyclic (#37).

4-34 1/1 cyclic quadrilateral ABCD, perpendiculars AB and CD are
erected at Band D and extended until they meet sides CD and AB
at B' and D', respectively (Fig. 54-34). Prove AC is parallel to
B'D'.

S

S'

Draw BD. Consider cyclic quadrilateral ABCD.

LACD '" LABD (LDBD') (#36) (I)

Since L D'BB' '" L D' DB' '" right angle, quadrilateral D'BB' D
is also cyclic (#37).

Therefore, L DB' D' '" L DB D' (#36). (II)

Thus, from (I) and (II), LACD '" L DB' D', and AC II B'D' (#7).

4-35 Perpendiculors BD and CE are drawn from vertices Band C of
6.ABC to the interior bisectors of angles C and B, meeting them

at D and E, respectively (Fig. 54-35). Prove that fiE intersects
AB and AC at their respective points of tangency, F and G, with
the circle that is inscribed in 6.ABC.
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A

Let 0, b, and c respresent the measures of angles A, B, and e,
respectively. Draw AO. Since the angle bisectors of a triangle are
concurrent, AO bisects LBAC. Also, FO = GO, and AF = AG
(#34); therefore, AO 1- FG at N (#18).

Now, in right f:::..AFN, mLGFA = 90 - i (#14). (I)

Since eo and BO are angle bisectors, in f:::..BOe,

mLBoe = 180 - ~ (b + c) (#13). (II)

However, b + c = 180 - 0 (#13).
1 a

Therefore, from (II), mLBOe = 180 - "2 (I80 - 0) = 90 + "2 •

Since LBOD is supplementary to LBOe, mLBOD = 90 - ; .

But LDBO is complementary to LBOD (#14); therefore,

mLDBO = ~. Since mLDBF = mLDBO - mLFBO,

a b 1
mL DBF = "2 - "2 = "2 (0 - b). (Ill)

LBFO "-' LBDO "-' right angle; therefore, quadrilateral BDFO

is cyclic (#36fJ.), and LFDO "-' LFBO (#36). Thus, mLFDO = ~.
b

It then follows that mLFDB = 90 + 2' (IV)

Thus, in f:::..DFB, mLDFB = 180 - (mLFDB + mLDBF). (V)

By substituting (III) and (IV) into (V),
b 1 a

mLDFB = 180 - [90 + "2 + "2 (0 - h)] = 90 - "2' (VI)

Since AFB is a straight line, and mLGFA = 90 - ~ = mLDFB

(See (I) and (VI», points D, F, and G must be collinear (# I).

In a similar manner, points E, G, and F are proved collinear.
Thus, points D, F, G, and E are collinear, and DE passes through
Fand G.
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4-36 A line, PQ, parallel to base BC of .6.ABC, cuts AB and AC at P
and Q, respectively (Fig. 54-36). The circle passing through P and
tangent to AC at Q cuts AB again at R. Prove that the points
R, Q, C, and B lie on a circle.

1 ,--.... 1 ,--....
Draw RQ. mL2 = 2 (mPQ) (#36); also mL3 = 2 (mPQ) (#38);

therefore, L3 '" L2, and L3 '" L5 (#7).

By transitivity we find that L2 '" L5. But mL2 + mL4 = 180.
Therefore, mL4 + mL5 = 180. Since one pair of opposite
angles of a quadrilateral are supplementary, the other pair of
opposite angles must also be supplementary, and the quadrilateral
is cyclic. Thus, R, Q, C, and B lie on a circle.

B C

4-37 III equilateral .6.ABC, D is chosen on AC so that AD = j (AC),
- 1 -

alld E is chosen on BC so that CE = :3 (BC) (Fig. 54-37). BD and

AE intersect at F. Prove that LCFB is a right angle.

Draw DE. Since AD = CEand AC = ABand LACB'" LCAB,
.6.ACE '" .6.BAD (S.A.S.), and mLABD = mLCAE = x.

Since mLFAB = 60 - x, mLAFB = 120 (#13).

Then mLDFE = 120 (#1). Since mLACB = 60, quadrilateral
DCEF is cyclic because the opposite angles are supplementary.

In .6.CED, CE = ~ (CD) and mLC = 60; therefore, LCED is

a right angle (#55c).

Since LDFC is inscribed in the same arc as LCED,

LCED '" LDFC '" right angle. Thus, LCFB '" right angle.

4-38 The measure of the sides of square ABCD is x. F is the midpoint
of BC, and AE 1. DF (Fig. 54-38). Find BE.
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Draw AF. Since CF = FB, and DC = AB, right l:lDCF""' right
l:lABF (S.A.S.). Then mLCDF = mLBAF = a.

LAEF""' ABF""' right angle; therefore, quadrilateral AEFB is
cyclic (#37).
It follows that mLBAF = mLBEF = a since both are angles
inscribed in the same arc.

Since LDAE and LCDF are both complementary to LADE,

mLDAE = mLCDF = a.

Both LBEA and LBAE are complementary to an angle of
measure a; therefore, they are congruent. Thus, l:lA BE is
isosceles, and AB = BE = x (#5).

A 1Il:-l1- ---JJ

A

4-39 If equilateral l:lABC is inscribed in a circle, and a point P is chosen,.-....
on minor arc AC, prove that PB = PA + PC (Fig. 54-39).

Choose a point Q on BP such that PQ = QC.
,.-.... ,.-.... ,.-....

Since l:lABC is equilateral, mAB = mBC = mCA = 120.
1 ,.-....

Therefore, mLBPC = 2mBC = 60 (#36).

Since in l:lPQC, PQ = QC, and mLBPC = 60, l:lQPC is
equilateral.

mLPQC = 60, mLBQC = 120, and mLAPC = ~ mABC =
120. Therefore, LAPC ""' LBQC.

PC = QC and LCAP ""' LCBP as both are equal in measure to
1 ,.-....
2mPC (#36).

Thus, l:lBQC ""' l:lAPC (S.A.A.), and BQ = AP. Since BQ +
QP = BP, by substitution, AP + PC = PB.

4-40 From point A, tangents are drawn to circle 0, meeting the circle
at Band C. Chord BF " secant ADE, as in Fig. 54-40. Prove that
FC bisects DE.
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METHOD I: Draw BC, OB, and Oc.
I ~ ----.

mLBAE = 2(mJJFJ:, - mBD) (#40)
,-.. ----. I ----.

Since BD ""' FE (#33), mLBAE = 2mBF.
I ----.

However, mLBCF = 2mBF (#36).

Therefore, LBAE ""' LBCF, or LBAG ""' LBCG.

It is therefore possible to circumscribe a circle about quadrilateral
A BGC since the angles which would be inscribed in the same arc
are congruent. Because the opposite angles of quadrilateral
ABOC are supplementary, it, too, is cyclic.
We know that three points determine a unique circle, and that
points A, B, and C are on both circles; we may therefore conclude
that points A, B, 0, G, and C lie on the same circle. Since LA CO
is a right angle (#32a), AO must be the diameter of the new circle
(#36). LAGO is then inscribed in a semicircle and is a right angle
(#36). As OG -l DE, it follows that DG = EG (#30).

METHOD II: Draw BG and extend it to meet the circle at H; draw
CH.

I ,-.. ----.
mLAGC = 2(mDC + mFE) (#39)

----. ----. I ----. ----. I ----.
Since FE""' BD (#33), mLAGC = 2 (mDC + mBD) = 2 (mBC).

I ,-.. I ----.
mLABC = 2 (mBC) (#38), and mLBFC = 2 (mBC) (#36).

Therefore, LAGC ""' LABC ""' LBFC.

Now we know a circle may be drawn about A, B, G, and C, since
LABC and LAGC are congruent angles that would be inscribed
in the same arc.
It then follows that LCAG ""' LCBG since they are both in­
scribed in arc (CO).

I ----. ----. ----.
In circle 0, mLCAG (LCAE) = 2(mCH + mHE - mCD)
(#40).
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1 ----. ----. ----.
However, mLCBG = 2mCH (#36); therefore, HE '" CD.

Thus, CH /I AE /I BF (#33).

Since fEH '" lfDC, LHBF '" LCFB (#36).

Thus, BG = GF (#5), and BO = Fa.

Therefore, OG is the perpendicular bisector of BF (#18).

Then OG -l DE (#10), and OG must bisect DE (#30).

5. Area Relationships

5-1 As shown in Fig. S5-1, E is on AB and C is on FG. Prove that
parallelogram ABCD is equal in area to parallelogram EFGD.

Draw EC. Since f:::..EDC and OABCD share the same base (DC)
and a common altitude (from E to DC), the area of f:::..EDC is
equal to one-half the area of OABCD.

Similarly, f:::..EDC and OEFGD share the same base (ED), and
the same altitude to that base; thus, the area of f:::..EDC is equal
to one-half the area of OEFDG.

Since the area of f:::..EDC is equal to one-half the area of each
parallelogram, the parallelograms are equal in area.

E

55·1 B

A~'
o G 0 '-----~:_'_--I'---~ C

5-2 The measures of the bases of trapezoid ABCD are 15 and 9, and
the measure of the altitude is 4. Legs DA and CB are extended to
meet at E, as in Fig. S5-2. If F is the midpoint of AD, and G is
the midpoint of BC, find the area of f:::..FGE. (The figure is not
drawn to scale.)

METHOD I: FG is the median of trapezoid ABCD, and

FG = 15 i 9 = 12 (#28).
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Since 6.EFG ~ 6.EDC (#49) _E~ = FG . (I)
'EH DC

t
KH = 4 and HJ = 2 KH = 2 (#24). Therefore,

EJ 12
EJ + 2 = 15 and EJ = 8.

t 1
Hence, the area of 6.EFG = 2 (FG )(EJ) = 2 (12)(8) = 48.

METHOD II: Since 6.EFG ~ 6.EDC (#49),
Area of lJ.EFG (FG)l (2)2 16
Area of lJ.EDC = (DC)2 = (15)l = 2s .

(D(FG)(EJ) G)02)(EJ) 16

Thus, (I) = (I) = 25 (Formula #5a).
2 (DC)(EH) 2 (5)(EJ + 2)

Therefore, EJ = 8, and the area of 6.EFG = 48.

Challenge Draw GL " ED and find the ratio of the area of 6.GLC
to the area of 6.EOC.

ANSWER: I: 25

5-3 The distance from a point A to a line Be is 3. Two lines I and I',
parallel to Be, divide 6.ABC into three parts of equal area, as
shown in Fig. 55-3. Find the distance between I and I'.

Line I meets ABand ACat G and H, and line I' meets ABand AC
at J and K. Let AE = x.

6.AGH ~ 6.AJK ~ 6.ABC (#49)

Since I and I' cut off three equal areas,
t

the area of 6.AGH = 2 the area of 6.AJK,
t

and the area of 6.AGH = 3 the area of 6.ABC.

Since the ratio of the areas is 6.AGH:6.AJK = 1:2,

the ratio of the corresponding altitudes is AE:AF = I :V2.



118 SOLUTIONS

Similarly, another ratio of the areas is 6.AGH:6.ABC = 1:3.

The ratio of the corresponding altitudes is AE:AD = 1:vI
Since AE = x, AD = xvI However, AD = 3, so x0 = 3,
or x = 0.
Similarly. AF = xy'2 = v6. Since EF = AF - AE, EF =
y'6 - vI

5-4 Find the ratio between the area of a square inscribed in a circle,
and an equilateral triangle circumscribed about the same circle
(Fig. S5-4).

E

F<----.....;::,,~"""------" G

In order to compare the areas of the square and the equilateral
triangle we must represent their areas in terms of a common unit,
in this instance, the square of the radius r of circle o.

Since the center of the inscribed circle of an equilateral
triangle is also the point of intersection of the medians, EA =
3r (#29).

(3r)20
The area of 6.EFG = -3- = 3r 20 (Formula #5f).

Since the diagonal of square ABCD is equal to 2r,
1

the area of square ABCD = 2 (2r)2 = 2r2 (Formula #4b).

Therefore, the ratio of the area of square ABCD to the area
of equilateral triangle EFG is

2r 2 2 20 .
3r2V3 = 3y3 = -9-' approxImately 7: 18.

Challenge 1 Using a similar procedure, find the ratio between the area
ofa square circumscribed about a circle, and an equilateral
triangle inscribed in the same circle.

16y3
ANSWER: 9
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Challenge 2 Let D represent the difference in areas between the circum­
scribed triangle and the inscribed square. Let K represent
the area of the circle. Is the ratio D: K greater than one,
equal to one, or less than one?

ANSWER: Slightly greater than one

Challenge 3 Let D represent the difference in areas between the circum­
scribed square and the circle. Let T represent the area of
the inscribed equilateral triangle. Find the ratio D :T.

ANSWER: Approximately 2: 3

5-5 A circle 0 is tangent to the hypotenuse BC of isosceles right
6ABC. AB and AC are extended and are tangent to circle 0 at E
and F, respectively, as shown in Fig. S5-5. The area of the triangle
is X 2. Find the area of the circle.

55·5

OD extended will pass through A (#18).

Since the area of isosceles right 6A BC = X 2
, AB = AC =

XV2 (Formula #5a).

BC = 2X (#55a). Since mLOAF = 45, 6A DC is also an
isosceles right triangle, and AD = DC = X.

DC AC
6ADC ~ 6AFO (#48), and OF = OA·

Let radii OF and OD equal r.

Then -7 = rX~' and r = X(V2 + 1).

Hence, the area of the circle = 1I"X2(3 + 2V2) (Formula #10).

Challenge Find the area of trapezoid EBCF.

ANSWER: X 2
( V2 + D
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5-6 In Fig. S5-6a, PQ is the perpendicular bisector of AD, AB 1. BC,
alld DC 1. Be. If AB = 9, BC = 8, and DC = 7, find the area
ofquadrilateral APQB.

MI:THOD I: To find the area of APQB we must find the sum of
the areas of L:,.A BQ and L:,.PA Q. Let BQ = x.
By the Pythagorean Theorem

9 2 + x 2 = AQ2, and 72 + (8 - X)2 = QD 2.

But AQ = QD (#18);

therefore. 81 + x 2 = 49 + 64 - 16x + x 2
, and x = 2.

Thus. A Q = Y85.
Draw ED 1. AB. Since EDBC is a rectangle, DC = EB = 7,
and AE = 2.
In L:,.AED, (AE)2 + (ED)2 = (AD)2, and AD = 2\/17.

Since AP = VT7 and A Q = V85, we can now find PQ by
applying the Pythagorean Theorem to L:,.APQ.

We may now find the area of quadrilateral APQB by adding.

1
The area of L:,.ABQ = 2 (9)(2) = 9. (Formula #5a)

1
The area of L:,.APQ = 2 (Vl7)(2\;/1 7) = 17.

Therefore, the area of quadrilateral APQB = 26.

A

S5·6b
,/

/
/

/
/

/
,/

,/
,/

8L.L...;::........j~---....LJc

\
\

E r-­
\
\
\
\
\

A

S5·6a

8 L...-~Q~L.I:--_---JC

METHOD II: Draw HPF II BC (Fig. S5-6b). Then L:,.APH""
L:,.DPF. Since HF = 8. HP = PF = 4.

Draw PG 1. Be. Since PG is the median of trapezoid A DCB,

PG = ~(AB + DC) = 8. Thus, AH = FD = I.
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In Method I we found BQ = 2; therefore, since BG = 4,
QG = 2. The area of quadrilateral APQB is area of rectangle
HPGB - area of f::,.PGQ + area of f::,.APH

= (4)(8) - G)(2)(8) + G)(I)(4) = 26.

5-7 A triangle has sides that measure 13, 14, and 15. A line perpen­
dicular to the side ofmeasure 14 divides the interior of the triangle
into two regions of equal area (Fig. S5-7). Find the measure of the
segment of the perpendicular that lies within the triangle.

A

8L...----'-~---~C

In f::,.ABC, AB = 13, AC = 15, and BC = 14; therefore,
AD = 12 (#55e), BD = 5, DC = 9.

- - FE AD 4
Since FE II AD (#9), f::,.FEC ~ f::,.A DC (#49), and EC = DC = 3'

3(FE)
It follows that EC = -4- .

t
Now the area of f::,.ABC = 2 (14)(12) = 84 (Formula #5a).

The area of right f::,.FEC is to be ~ the area of f::,.A BC, or 42.

Therefore, the area of right f::,.FEC = ~ (FE)(EC) = 42.

Substituting for EC,

42 = ~ (FE) C(~E») ,and FE = 4V7.

Challenge Find the area of trapezoid ADEF.

ANSWER: 12

5-8 Given f::,.ABC with AB = 20, AC = 22~, and BC = 27. Points

X and Yare taken on AB and AC, respectively, so that AX = AY

(Fig. S5-8). If the area of f::,.AXY = ~ area of f::,.ABC, find AX.
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The area of !::lABC = ~ (AB)(AC) sin A (Formula #5b)

= ~ (20) ( 22D sin A

= (225) sin A.

However, the area of !::lAXY = ~ (AX)(A Y) sin A.

Since AX = A Y, the area of !::lAXY = ~ (AX)2 sin A.

Since the area of !::lAXY = ~ the area of !::lABC,

~ (AX)2 sin A = ~ [(225) sin A], and AX = 15.

Challenge Find the ratio of the area of !::l BXY to that of !::lCXY.

Area of 6,BXY 5 1
Draw BY and cx. Area of 6,AXY = 15 = 3' since they

share the same altitude (i.e., from Y to AB).

7!
.. area of 6,CXY 2 1

Similarly, area of 6,AXY = is = 2'
. area of 6,BXY 2

Therefore, the ratIO area of 6,CXY = 3'

A

y

BL----------~C BL----------'-'-C

5-9 In !::lABC, AB = 7, AC = 9. On AB, point D is taken so that
BD = 3. DE is drawn cutting AC in E so that quadrilateral BCED

has ~ the area of !::lABe. Find CEo

In Fig. S5-9, AD = 4 while AB = 7.

If two triangles share the same altitude, then the ratio of their
areas equals the ratio of their bases.

Since !::lA DC and !::lA BC share the same altitude (from C to AB),
4

the area of !::lA DC = "7 area of !::lA Be.

Since the area of quadrilateral DECB = ~ area of !::lABC, the
2

area of !::lDAE = "7 area of !::lABC.
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Thus, the ratio of the areas of D. DA E and D.A DC equals I :2.
Both triangles DA E and A DC share the same altitude (from D to
AC); therefore, their bases are also in the ratio 1:2.

AE 1
Thus - = -''AC 2
Since AC = 9, AE = 4~, as does CEo

5-10 An isosceles triangle has a base ofmeasure 4, and sides measuring
3. A line drawn through the base and one side (but not through any
vertex) divides both the perimeter and the area in half, as shown in
Fig. S5-1O. Find the measures of the segments of the base defined
by this line.

A

BL-~~~__-.Q.. ~C

AB = AC = 3, and BC = 4. If DC = x, then BD = 4 - X.

Since the perimeter of ABC = 10, EC + DC must be one-half
the perimeter, or 5. Thus, EC = 5 - X.

Now the area of D.EDC = ~ (x)(5 - x) sin C (Formula #5b),

and the area of D.ABC = ~ (4)(3) sin C.

Since the area of D.EDC is one-half the area of D.ABC,

~ (x)(5 - x) sin C = ~ [~ (4)(3) sin CJ ' and

5x - x 2 = 6.

Solving the quadratic equation x 2
- 5x + 6 = 0, we find its

roots to be x = 2 and x = 3.
If x = 2, then EC = 3 = AC, but this cannot be since DE may
not pass through a vertex.
Therefore, x = 3. Thus, BC is divided so that BD = I, and
DC = 3.

Challenge Find the measure of DE.

ANSWER: v5
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5-11 Through 0, a point on base BC of .6.ABC, DE and OF are drawn
parallel to sides AB and AC, respectively, meeting AC at E and
AB at F (Fig. S5-11). If the area of .6.EDC isfour times the area
of .6.BFD, what is the ratio of the area of .6.AFE to the area of
.6.ABC?

BL.--~:--------~C

Area of l:::,FDB 1
METHOD I: -------- = - . .6.FDB ~ .6.ECD (#48), and the

Area of l:::,ECD 4 JD 1
ratio of the corresponding altitudes is CG = 2' (The ratio of the

corresponding linear parts of two similar polygons equals the
square root of the ratio of their areas.)

JD HG 1
J D = HG (#20); therefore, GC = GC = 2'

d HG + GC _ 1 + 2 HC _ ~.
an GC - 2 ,or GC - 2

. area of l:::,ABC 9 .
Thus, the ratIo of area of l:::,EDC = 4' (The square of the ratIO of

corresponding linear parts of two similar polygons equals the
ratio of the areas.)
The ratio of area of .6.ABCto area of .6.EDCto area of .6.FBD =
9:4: l.
Area of OAEDF = area of .6.EDC, and the ratio of area of
OAEDF to area of .6.ABC = 4:9.

But since area of .6.AFE = ~ area of OAEDF, area of .6.AFE:
area of .6.ABC = 2:9.

METHOD II: Since FD II AC, .6.BFD ~ .6.BAC (#49), and

since ED" AB, .6. DEC ~ .6.BAC (#49).

Therefore, .6.BFD ~ .6.DEC.

Since the ratio of the areas of .6.BFD to .6. DEC is I :4, the ratio
of the corresponding sides is I :2.
Let BF = x, and FD = y; then ED = 2x and EC = 2y.
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Since AEDF is a parallelogram (#2Ia),

FD = AE = y, and ED = AF = 2x.

Now, area of 6.AFE = ~ (2x)(y) sin A, (I)

and area of 6.ABC = ~ (3x)(3y) sin A (Formula #5b). (II)

Thus, the ratio of the area of 6.AFE to the area of 6.ABC = ~
(from (I) and (II».

The problem may easily be solved by designating triangle ABC
as an equilateral triangle. This approach is left to the student.

5-12 Two circles, each of which passes through the center of the other,
intersect at points M and N. A linefrom M intersects the circles at
K and L, as illustrated in Fig. S5-12. IfKL = 6 compute the area
of 6.KLN.

c

Draw the line of centers OQ. Then draw ON, OM, QN, and QM.
Since ON = OQ = QN = OM = QM, 6.NOQ and 6.MOQ
are each equilateral.

mLNQO = mLMQO = 60, so mLNQM = 120.
Therefore, we know that in circle 0, mLNLM = 60 (#36).

Since mNCM = 240, in circle Q, mLNKM = 120 (#36).
Since LNKL is supplementary to LNKM, mLNKL = 60.

Thus, 6.LKN is equilateral (#6).
(KL)20

The area of 6.KLN = 4 = 90 (Formula #5e).

Challenge If r is the measure of the radius ofeach circle, find the least
value and the greatest value of the area of 6.KLN.

ANSWER: The least value is zero, and the greatest value is
3r20.

4

5-13 Find the area of a triangle whose medians have measures 39, 42,
45 (Fig. S5-13).
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Let AD = 39, CE = 42, BF = 45; then CG = 28, GE = 14,
AG = 26, GD = 13, BG = 30, and GF = 15 (#29). Now extend
A D to K so that GD = DK. Quadrilateral CGBK is a paral­
lelogram (#21f).
CK = BG = 30 (#2Ib). GD = DK = 13; therefore, GK = 26.
We may now find the area of D.GCK by applying Hero's formula
(Formula #5c), or by noting that the altitude to side GC must
equal 24 (#55e).
In either case, the area of D.GCK = 336.

Consider the area of D.GCD which equals j the area of
1

D.ACD (#29). However, the area of D.ACD = 2 the area of
1

D.A Be. Therefore, the area of D.GCD equals 6 the area of

D.ABe. But the area of D.GCK is twice the area of D.GCD, and

thus the area of D.GCK = 3the area of D.ABe. Then, since the

area of D.CGK = 336, the area of D.ABC = 3(336) = 1008.

A
A

S~B
C __ \ ......

-- - -~"",,,,,,,,,,,

K

5-14

S5·14a

8 4E--~DI...-F-+\---,'::::''''~C

........_- \ ,.",""'"'
....... ,1... ....

H

The measures of the sides ofa triangle are 13, 14, and 15. A second
triangle is formed in which the measures of the three sides are the
same as the measures of the medians of the first triangle (Fig.
S5-14a). What is the area of the second triangle?

Let AB = 13, AC = 15, and BC = 14.
In D.ABC, the altitude to side BC equals 12 (#55e).

1
Therefore, the area of D.ABC = 2 (BC)(AD)

1= 2(14)(12) = 84.

Another possible method to find the area of D.A BC would be to
apply Hero's formula (Formula #5c) to obtain ,/(21)(6)(7)(8j.

Breaking the expression down into prime factors we have
,/7 . 3 . 3 . 2 . 7 . 2 . 2 . 2 = 7· 3 . 2 . 2 = 84.
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Let us now consider f::,ABC and its medians, AF, BJ, and CK.
Extend GF its own length to H.

GCHB is a parallelogram (F,21f).

Now consider f::,GHC. HC = BG = j (BJ) (*2Ib, #29).

GC = ~ CK, and GF = j AF (*29); but GH = j AF.

Since the measure of each side of f::,GHC = j times the measure

of each side of the triangle formed by the lengths of the medians,
f::,GHC ~ f::, of medians. The ratio of their areas is the square

of their ratio of similitude, or ~ .

We must now find the area of f::,GHC.

Since AF is a median, area of f::,AFC = ~ area of f::,ABC = 42.
I

The area of f::,GCF = 3area of f::,AFC = 14.

However, the area of f::,GHC = twice the area of f::,GCF = 28.

Since the ratio of area of 6,GHC . 4
area of tnangle of medians 9 '

28 4
area of triangle of medians 9 '

and the area of triangle of medians = 63.

3
Challenge I Show that K(m) = 4K where K represents the area of

f::,ABC, and K(m) represents the area of a triangle with
sides rna, mb, me, the medians of f::,ABC. (See Fig. S5-14b.)

8L- --+. ~L

Let KG m) represent the area of f::,BGH.

We have already shown that KG m) = j K.

Kem) m. 2 _ ~

KGm) Gm.f - 4

Therefore, K(m) = ~ KG m) = (DO K) = ~ K.
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5-15 Find the area of a triangle formed by joining the midpoints of the
sides of a triangle whose medians have measures 15, 15, and 18
(Fig. S5-15).

METHOD I: AE = 18, BD = CF = 15

In !::lABC, FD II BC (#26), and in !::lAEC, AH = HE (*25).

Since AE = 18, HE = 9. Since GE = 6 (#29), GH = 3. GD =

5 (#29). Since ED = CF, !::lABC is isosceles, and median
AE 1- BC, so AE 1- FD (#10).

Thus, in right !::lHGD, HD = 4 (#55).

Since FH = HD = 4, FD = 8.
1

Hence, the area of !::lFDE = i (FD)(HE)

1
= 2(8)(9) = 36.

METHOD II: Since the area of the triangle formed by the three

medians is ~ the area of !::lABC (see Problem 5-14), and the area

of the triangle formed by the three medians is equal to 108, the

area of !::lABC is ~ (108) = 144.

Since the area of !::lAFD = area of !::lBFE = area of !::lCDE =
1

area of !::lFDE, area of !::lFDE = 4(144) = 36.

Challenge Express the required area in terms of K(m), where K(m)
is the area of the triangle formed from the medians.

1
ANSWER: "3 K(m)

B~-----~----~C

5-16 In !::lABC, E is the midpoint of BC, while F is the midpoint of

AE, and BF meets AC at 0: as shown in Fig. S5-16. If the area
of !::lABC = 48, find the area of !::lAFO.
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t
The area of D.ABE = 2 the area of D.ABC (#56).

Similarly, the area of D.ABF = ~ the area of D.ABE (#56).

Therefore, since the area of D.ABC = 48,

the area of D.ABF = 12.

Draw EG /I BD. In D.EAG, AD = DG (#25).

Similarly, in D.BCD, DG = GC (#25).
1

Therefore, AD = DG = GC, or AD = "3 (AC).

Since D.ABD and D.ABC share the same altitude (from B to AC)
and their bases are in the ratio I: 3,

1
the area of D.ABD = "3 area of D.ABC = 16.

Thus, the area of D.AFD = area of D.ABD - area of D.ABF = 4.

1 1
Challenge 2 Change AF = 2AE to AF = "3 AE, and find a general

solution.
1

ANSWER: The area of D.AFD = 30 the area of D.ABC.

5-17 In D.ABC, D is the midpoint of side BC, E is the midpoint of AD,
F is the midpoint of BE, and G is the midpoint of Fe. (See Fig.
S5-17.) What part of the area of D.ABC is the area of D.EFG?

A

B'-----*-~--=·C

Draw EC.

Since the altitude of D.BEC is ~ the altitude of D.BA C, and both

triangles share the same base, the area of D.BEC = ~ area of
D.BAC.

1
Now, area of D.EFC = 2area of D.BEC,

1
and area of D.EGF = 2area of D.EFC (#56);

1
therefore area of D.EGF = 4 area of D.BEC.
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Thus, since area of 6.BEC = ~ area of 6.ABC,
1

we find that area of 6.EGF = 8 area of 6.ABC.

Challenge Solve the problem ifBD = ~ BC, AE = ~ AD, BF = ~ BE,
I

andGC = "3 FC.

8
ANSWER: The area of 6.EGF = 27 the area of 6.BAC.

5-18 In trapezoid ABCD with upper base AD, lower base BC, and
legs AB and CD, E is the midpoint of CD (Fig. S5-18). A per­
pendicular, EF, is drawn to BA (extend BA if necessary). If
EF = 24 and AB = 30, find the area of the trapezoid. (Note that
the diagram is not drawn to scale.)

Draw AE and BE. Through E, draw a line parallel to AB meeting
BC at Hand A D, extended at G.

Since DE= EC and LDEGro.J LHEC (#1) and LDGEro.J
LCHE (#8), 6.DEG ro.J 6.CEH (A.S.A.).
Since congruent triangles are equal in area, the area of parallelo­
gram AGHB = the area of trapezoid ABCD. The area of 6.AEB
is one-half the area of parallelogram AGHB, since they share the

- - I
same altitude (EF) and base (AB). Thus, the area of 6.AEB = 2
area of trapezoid ABCD. The area of 6.AEB = ~ (30)(24) = 360.
Therefore, the area of trapezoid ABCD = 720.

Challenge Establish a relationship between points F, A, and B such
that the area of trapezoid ABCD is equal to the area of
6.FBH.

ANSWER: A is the midpoint of BF.

~----"""T"---~:::oJI"B

0.-::;;..-----------
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5-19 In OABCD, a line from C cuts diagonal BD in E and AB in F,
as shown in Fig. S5-t9. If F is the midpoint of AB, and the area
of~BEC is tOO, find the area ofquadrilateral AFED.

Draw AC meeting DB at G. In ~ABC, BG and CF are medians;
1

therefore, FE = 2 (EC) (#29).

If the area of ~BEC = 100, then the area of ~EFB = 50, since
they share the same altitude.

~ABD and ~FBC have equal altitudes (#20), but AB = 2(FB)

Therefore, the area of ~ABD is twice the area of ~FBC. Since
the area of ~FBC = ISO, the area of ~ABD = 300. But the
area of quadrilateral AFED = the area of ~ABD - the area of
~FBE; therefore, the area of quadrilateral AFED = 300 ­
50 = 250.

Challenge Find the area of ~GEC.

ANSWER: 50

5-20 P is any point on side AB of OABCD. CP is drawn through P
meeting DA extended at Q, as illustrated in Fig. S5-20. Prove
that the area of~DPA is equal to the area of ~QPB.

Since ~DPC and OABCD have the same altitude and share
- 1

the same base, DC, the area of~DPC = 2area of parallelogram
ABCD.

The remaining half of the area of the parallelogram is equal to
the sum of the areas of ~DAP and ~PBC.

However, the area of ~DBC is also one-half of the area of the
parallelogram.

The area of ~CQB = the area of ~CDB. (They share the same
base, CB, and have equal altitudes since DQ " CB.)

Thus, the area of ~CQBequalsone-half the area of the parallelo­
gram.
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Therefore, the area of 6.DAP + the area of 6.PBC = the area
of 6.CQB.

Subtracting the area of 6.PBC from both sides, we find the area
of 6. DAP = the area of 6.PQB.

5-21 RS is the diameter of a semicircle. Two smaller semicircles, RT
---. - -

and TS, are drawn on RS, and their common internal tangent AT
intersects the large semicircle at A, as shown in Fig. S5-21. Find
the ratio of the area of a semicircle with radius AT to the area of
the shaded region.

Draw RA and SA. In right 6.RAS (#36), AT 1. RS (#32a).
RT AT

Therefore, AT = ST' or (AT)2 = (RT)(ST) (#51a).

The area of the semicircle, radius

AT = ~ (AT)2 = ~ (RT)(ST).

The area of the shaded region

= ~[GRSr - GRTr - GSTYJ
= i [(RS)2 - (RT)2 - (ST)2)

= i [(RT + ST)2 - (RT)2 - (ST)2)

= ~ [(RT)(ST»).

Therefore, the ratio of the area of the semicircle of radius AT to
the area of the shaded region is

~ (RT)(ST) 2

= I'
~ (RT)(ST)
4

A
A

B~--+-:!:---~C
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5-22 Prove that from any point inside an equilateral triangle, the sum of
the measures of the distances to the sides of the triangle is constant.
(See Fig. S5-22a.)

METHOD I: In equilateral ~ABC, PR l- AC, PQ l- BC, PS l- AB,
and AD l- Be.

Draw a line through P parallel to BC meeting AD, AB, and AC
at G, E, and F, respectively.

PQ = GD (#20)

Draw ET l- Ae. Since ~AEF is equilateral, AG = ET (all the
altitudes of an equilateral triangle are congruent).

Draw PH II AC meeting ET at N. NT = PR (#20)

Since ~EHP is equilateral, altitudes PS and EN are congruent.

Therefore, we have shown that PS + PR = ET = AG.

Since PQ = GD, PS + PR + PQ = AG + GD = AD,

a constant for the given triangle.

A

B""-_",,,,--,-__=.oA C

METHOD II: In equilateral ~ABC, PR l- AC, PQ l- BC, PS l­
AB, and AD l- BC.

Draw PA, PB, and PC (Fig. S5-22b).

The area of ~ABC

= area of ~APB+ area of ~BPC+ area of ~CPA

= ~ (AB)(PS) + ~ (BC)(PQ) + ~ (AC)(PR). (Formula #5a)

Since AB = BC = AC,
1

the area of ~ABC = 2 (BC)[PS + PQ.+ PRJ.
1

However, the area of ~ABC = 2 (BC)(AD);

therefore, PS + PQ + PR = AD,
a constant for the given triangle.



134 SOLUTIONS

Challenge In equilateral ~ABC, legs AB and BC are extended through
B so that an angle is formed that is vertical to LABC.
Point P lies within this vertical angle. From P, perpendiculars
are drawn to sides BC, AC, and AB at points Q, R, and S,
respectively. See Fig. S5-22c. Prove that PR - (PQ + PS)
equals a constant for ~ABC.

F

Draw EPF II AC thereby making ~EBF equilateral. Then
draw GBH II PRo Since PGHR is a rectangle, GH = PRo
A special case of the previous problem shows that in
~EBF, PQ + PS = GB. Since GH - GB = BH, then
PR - (PQ + PS) = BH, a constant for ~ABC.
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6. A Geometric Potpourri

6-1 Heron's Formula is used to find the area of any triangle, given
only the measures of the sides of the triangle. Derive this famous
formula. The area of any triangle = vs(s - a)(s - b)(s - c),
where a, b, c are measures of the sides of the triangle and s is the
semiperimeter.

First inscribe a circle in 6.ABC and draw the radii OD, OE, and
OF to the points of contact. Then draw OB, OC, and OA. Let a
line perpendicular to BO at 0 meet, at point P, the perpendicular
to BC at C. Extend BC to K so that CK = AD (Fig. S6-1).

A

~-"""'::~.l.4,-',"-----.......::~c- K

,,,,
\,,

\,,,,

Since 6.BOP and 6.BCP are right triangles with BP as
hypotenuse, it may be said that LBOP and LBCP are inscribed
angles in a circle whose diameter is BP. Thus, quadrilateral BOCP
is cyclic (i.e., may be inscribed in a circle). It follows that LBPC
is supplementary to LBOC (#37).

If we now consider the angles with 0 as vertex, we note that
LDOA '" LAOE, LCOE '" LFOC, and LBOD '" LBOF.
(This may be proved using congruent triangles.) Therefore,

1
mLBOF + mLFOC + mLDOA = 2(360), or L DOA is
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supplementary to LBOC. Thus, LDOA '" LBPC because both
are supplementary to the same angle. It then follows that right
6.DOA ~ right 6.CPB (#48) and that

BC PC
AD = DO· (I)

Since LOGF '" LPGC, right 6.0GF ~ right 6.PGC (#48) and
GC PC
FG = O-F· (II)

However OF = DO. Therefore, from (I) and (II) it follows that

BC GC
AD = FG· (III)

BC GC
Since AD = CK, it follows from (III) that eX. = FG·

U sing a theorem on proportions we get

BC + CK GC + FG BK FC
--CK = - -FG---' or CK = FG·

Thus, (BK)(FG) = (CK)(FC). (IV)

By multiplying both sides of (IV) by BK, we get

(BK)2(FG) = (BK)(CK)(FC). (V)

From (VI)

From (V)

In right 6.BOG, OF is the altitude drawn to the hypotenuse.
Thus by (#51a), (OF)2 = (FG)(BF). (VI)

We are now ready to consider the area of 6.ABC. We may
think of the area of 6.ABC as the sum of the areas of 6.AOB,

1
6.BOC, and 6.AOC. Thus, the area of 6.ABC = 2 (OD)(AB) +
~ (OE)(AC) + ~ (OF)(BC). Since OD = OE = OF (the radii

of circle 0),

~ (OF)(AB + AC + BC) = (OF)· (semiperimeter of 6.ABC).

Since BF = BD, FC = EC, and AD = AE, BF + FC + AD =
half the perimeter of 6.ABC. Since AD = CK, BF + FC +
CK = BK which equals the semiperimeter of 6.ABC. Hence, the
area of !:::,ABC = (BK)(OF).

(Area of 6.ABC)2 = (BK)2(OF)2.

(Area of 6.ABC)2 = (BK)2(FG)(BF).

(Area of 6.ABC)2 = (BK)(CK)(FC)(BF).

Area of 6.ABC = Y(BK)(CK)(BF)(FC).
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Let s = semiperimeter = BK, a = BC, b = AC, and c = AB.
Then s - a = CK, s - b = BF, and s - c = Fe. We can now
express Heron's Formula for the area of 6.ABC, as it is usually
given.

Area 6.ABC = ys(s - a)(s - b)(s - c)

Challenge Find the area ofa triangle whose sides measure 6, y2, v'sO.
s = 6 + y2 + 5y2 = 3 + 3y2

2

K = y(3 + 3y2)(3y2 - 3)(3 + 2y2)(3 - 2y2)

K = y[9(2) - 9][9 - 4(2)]

K = y9 = 3

6·2 An interesting extension of Heron's Formula to the cyclic quadri­
lateral is credited to Brahmagupta, an Indian mathematician who
lived in the early part of the seventh century. Although Brah­
magupta's Formula was once thought to hold for all quadrilaterals,
it has been proved to be valid only for cyclic quadrilaterals.

The formula for the area of a cyclic quadrilateral with side
measures a, b, c, and d is

K = y(s - a)(s - b)(s - c)(s - d),

where s is the semiperimeter. Derive this formula. (Fig. S6-2.)

D

pL- *""_~_~

First consider the case where quadrilateral ABCD is a rect­
angle with a = c and b = d. Assuming Brahmagupta's Formula,
we have

area of rectangle ABCD
= y-=-(s---a"--;)(-s---b-;-:-)--;-(s----,c)(~

= y(a + b - a)(a + b - b)(a + b - a)(a + b - b)

= ya 2b 2

= ab, which is the area of the rectangle as found by the
usual methods.
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Now consider any non-rectangular cyclic quadrilateral ABCD.
Extend DA and CB to meet at P, forming 6.DCP. Let PC = x
and PD = y. By Heron's Formula, area of 6.DCP

1
= 4v(x + y + c)(y - x + c)(x + y - c)(x - y + c) (I)

Since LCDA is supplementary to LCBA (#37), and LABP is
also supplementary to LCBA, LCDA '" LABP. Then by #48,

6.BAP ~ 6.DCP. (II)

area I:.BAP a2

From (II) we get area I:. DCP = c2 '

area I:.DCP
area I:.DCP

area I:.BAP c2 a2

= ---,
area I:.DCP c2 c 2

area I:.DCP - area I:.BAP area ABCD c 2 - a2

area I:.DCP area I:.DCP = -c-2-. (III)

From (II) we also get

~=y-d
c a

and ,!' = x - b.
c a

(IV) (V)

By adding (IV) and (V),

x+y=x+y-b-d,
c a

c
X + y = - (b + d),c-a

c
X + y + c = c _ a (b + c + d - 0). (VI)

The following relationships are found by using similar methods.

c
y - x + c = c + a (0 + c + d - b) (VII)

c
x + y - c = c _ a (0 + b + d - c) (VIII)

c
X - Y + c = c + a (0 + b + c - 0) (IX)

Substitute (VI), (VII), (VIII), and (IX) into (I). Then

the area of 6. DCP =

c2

4(c2 _ a2) V(b + c + d - 0)(0 + c + d - b) X

V(o + b + d - c)(o + b + c - 0).
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Since (III) may be read

c 2

area of 6.DCP = -2--2 (area ABCD),
c - a

the area of cyclic quadrilateral ABCD =
y .....(s---a::-;)(-s------:b,..,.-)(.,.-s--------,-c)-:-(s-------=-d).

Challenge 1 Find the area ofa cyclic quadrilateral whose sides measure
9, 10, 10, and 21.

ANSWER: 120

Challenge 2 Find the area Of a cyclic quadrilateral whose sides measure
15, 24, 7, and 20.

ANSWER: 234

6·3 Sides BA and CA Of 6.ABC are extended through A to form
rhombuses BATR and CAKN. (See Fig. S6-3.) BN and RC,
intersecting at P, meet AB at Sand AC at M. Draw MQ parallel
to AB. (a) Prove AMQS is a rhombus and (b) prove that the area
Of 6.BPC is equal to the area Ofquadrilateral ASPM.

K

N

METHOD I: (a) Let a side of rhombus ATRB = a and let a side of
rhombus AKNC = b. Since AS II RT, 6.CAS ,.., 6.CTR (#49) and
RT TC .
AS = AC' Smce TC = TA + AC, we get

.!!...- = a + b. AS = ....!!'!..-. (I)
AS b' a + b

Similarly, since AM II KN, 6.BAM,.., 6.BKN (#49) and ;z =

~:. Since KB = KA + AB, we get

--'!.- = a + b. AM = ....!!'!..-. (II)
AM a' a + b

From (I) and (II) it follows that AS = AM.
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Since QM II CN, 6.BMQ,.., 6.BNC (#49) and

CN BN
QM = BM'

Since 6.BAM ,.., 6.BKN (see above),

KN BN
AM = BM'

Then by transitivity from (III) and (IV),

CN KN
QM= AM'

(III)

(IV)

However, since CN = KN, it follows that QM = AM. Now
since AS = AM = QM and AS II QM, ASQM is a parallelo­
gram with adjacent sides AS and AM congruent. It is, therefore, a
rhombus.

METHOD II: Draw AQ. Since MQ II AB II NC, 6.MBQ,.., 6.NBC
MQ MB

(#49) and - = - .
NC NB

- - AM MB
Since AM II KN, 6.ABM,.., 6.KBN (#49) and KN = NB'

Therefore by transitivity, ~~ = ~~ . But KN "-' NC (#21-1), and

therefore KN = NC. Thus, AM = MQ and LI "-' L2 (#5).
However, since MQ II AS, LI "-' L3 (#8). Thus, L2 "-' L3 and
AQ is a bisector of LBAC. Hence, by #47,

AB _ BQ.
AC - QC (I)

BSRB --
Since 6.RSB ,.., 6.CSA (#48), SA = AC' But RB "-' AB (#21-1)

and therefore RB = AB. By substitution,

BS AB
SA = AC' (II)

BQ BS --
From (I) and (II), QC = SA' It follows that SQ II Ac. Thus,

SQMA is a parallelogram (#2Ia). However, since AM = MQ
(previously proved), SQMA is a rhombus.
(b) The area of 6.BMQ equals the area of 6.AMQ since they
both share the same base M Q, and their vertices lie on a line
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parallel to base MQ. Similarly, the area of 6.CSQ equals the
area of 6.ASQ, since both triangles share base SQ, and A and C
lie on AC which is parallel to SQ. Therefore, by addition,

area of 6.BMQ + area of 6.CSQ = area of AMQS.

By subtracting the area of SPMQ (6.SPQ + 6.MPQ) from both
of the above, we get,

area of 6.BPC = area of ASPM.

6-4 Two circles with centers A and B intersect at points M and N.
Radii AP and BQ are parallel (on opposide sides of AB). If the
common external tangents meet AB at D, and PQ meets AB at
C, prove that LCND is a right angle.

Draw AE and BF, where E and F are the points of tangency of the
common external tangent of circles A and B, respectively. Then
draw BN and extend AN through N to K. (See Fig. S6-4.)

56-4

CA AP
6.APC "" 6.BQC (#48) and CB = BQ. However, AP = AN and
BQ = BN.

Therefore, ~~ = ~Z and, in 6.ANB, NC bisects LANB (#47).

In 6.ADE, BF II AE (#9). Therefore, 6.DAE"" 6.DBF (#49)
DA AE

and DB = BF· However AE = AN and BF = BN. Therefore
DA AN .
DB = BN and, In 6.ANB,

N D bisects the exterior angle at N (LBNK) (#47).

Since NC and N D are the bisectors of a pair of supplementary
adjacent angles, they are perpendicular, and thus L CND is a
right angle.

6-5 In a triangle whose sides measure 5",6", and 7", point Pis 2" from
the 5" side and 3" from the 6" side. How far is P from the 7" side?



142 SOLUTIONS

There are four cases to be considered here, depending upon the
position of Point P which can be within any of the four angles
formed at Vertex A. (See Figs. S6-5, a-d.) In each case the area
of b.ABC = 6V6 (by Heron's Formula), and,

AB = 5

AC = 6

BC = 7

PF = 2

PO = 3

PE = x.

56-5c

56·5b

A

E E C

CASE I: In Fig. S6-5a,

area b.ABC = area b.APC + area b.APB + area b.BPC.

(6y6) = ~ (3)(6) + ~ (2)(5) + ~ (7)(x)

2(6y6) = 18 + 10 + 7x
12y6 - 28

x = --- 7- - -

5-6-5a

CASE II: In Fig. S6-5b,

area b.ABC = area b.APB + area b.BPC - area b.APC.

6V6 = ~ (2)(5) + ~ (x)(7) - ~ (3)(6)

12y6 = 10 + 7x - 18
12y6 + 8

x = - 7---

CASE III: In Fig. S6-5c,

area b.ABC = area b.BPC + area b.APC - area b.APB.

6-./6 = ~ (x)(7) + ~ (3)(6) - ~ (2)(5)

12~/6 = 7x + 18 - 10
12y6 - 8x = -------

7
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x=

CASE IV: In Fig. S6-5d,

area 6.ABC = area 6.BPC - area 6.APC - area 6.APB.
111

6V6 = 2 (x)(7) - 2 (3)(6) - 2 (2)(5)

12v6 = 7x - 18 - 10
12V6 + 28

7
c

A~~----=-=~

BL---~'------"'C

6·6 Prove that if the measures of the interior bisectors of two angles
ofa triangle are equal, then the triangle is isosceles.

METHOD I (DIRECT): AE and BD are angle bisectors, and AE =

BD. Draw L DBF "-' LAEB so that BF"-' BE; draw DF. Also
draw FG.l AC, and AH .1 FH. (See Fig. S6-6a.) By hypothesis,
AE"-' DB, FB"-' EB, and L8 "-' L7. Therefore 6.AEB ~
6.DBF(#2), DF = AB, and mLI = mL4.

mLx = mL2 + mL3 (#12)
mLx = mL 1 + mL3 (substitution)

mLx = mL4 + mL3 (substitution)

mLx = mL7 + mL6 (#12)
mLx = mL7 + mL5 (substitution)

mLx = mL8 + mL5 (substitution)

Therefore, mL4 + mL3 = mL8 + mL5 (transitivity).
Thus mLz = mLy.

Right 6.FDG "-' right 6.ABH (#16), DG = BH, and FG = AH.
Right 6.AFG "-' right 6.FAH (#17), and AG = FH.
Therefore, GFHA is a parallelogram (#21 b).

mL9 = mLIO (from 6.ABH and 6.FDG)
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mLDAB = mLDFB (subtraction)
mLDFB = mLEBA (from 6.DBF and 6.AEB)
Therefore, mLDAB = mLEBA (transitivity), and 6.ABC is
isosceles.

METHOD II (INDIRECT): Assume 6.ABC is not isosceles. Let
mLABC > mLACB. (See Fig. S6-6b.)
BF"-' CE (hypothesis) BC"-' BC

mLABC > mLACB (assumption) CF> BE
Through F, construct GF parallel to EB.

Through E, construct GE parallel to BF.
BFGE is a parallelogram.
BF"-' EG, EG"-' CE, 6.GEC is isosceles.

mL(g + g') = mL(c + c') but mLg = mLb
mL(b + g') = mL(c + c') Therefore, mLg' < mLc', since
mLb> mLc.
In 6.GFC, we have CF < GF. But GF = BE. Thus CF < BE.

The assumption of the inequality of mLABC and mLACB
leads to two contradictory results, CF > BE and CF < BE.
Therefore 6.ABC is isosceles.

B"'----"-------~

S6-6b A S6-6c

B C
............ :,'

............... :,'
....... ~ ,,'

......... I,
-YH

METHOD III (INDIRECT): In 6.ABC, assume mLB> mLC.
BE and DC are the bisectors of LB and LC respectively, and
BE = DC. Draw BH II DC and CH II DB; then draw EH, as in
Fig. S6-6c. DCHB is a parallelogram (#2Ia).
Therefore, BH"-' DC"-' BE, making 6.BHE isosceles so that,
by #5, mLBEH = mLBHE. (I)
From our assumption that mLB > mLC,
mLCBE > mLBCD and CE > DB. Since CH = DB,
CE> CH which, by #42, leads to mLCHE > mLCEH. (II)
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In tJ.CEH, by adding (I) and (II), mLBHC > mLBEC.
Since DCHB is a parallelogram, mLBHC = mLBDC.

Thus, by substitution, mLBDC > mLBEC.
In tJ.DBI and tJ.ECI, mLDIB = mLEIC.

Since mLBDC > mLBEC, mLDBI < mLECI.
By doubling this inequality we get mLB < mLC, thereby
contradicting the assumption that mLB > mLC.

Since a similar argument, starting with the assumption that
mLB < mLC, will also lead to a contradiction, we must con­
clude that mLB = mLC and that tJ.ABC is isosceles.

METHOD IV (INDIRECT): In tJ.ABC, the bisectors of angles ABC and
ACB have equal measures (i.e. BE = DC). Assume that
mLABC < mLACB; then mLABE < mLACD.
We then draw LFCD congruent to LABE. (See Fig. S6-6d.)
Note that we may take F between B and A without loss of
generality.

In tJ.FBC, FB > FC (#42). Choose a point G so that BG "-'
FC. Then draw GH II Fe. Therefore, LBGH "-' LBFC (#7) and
tJ.BGH "-' tJ.CFD (#3). It then follows that BH = De.

Since BH < BE, this contradicts the hypothesis that the angle
bisectors are equal. A similar argument will show that it is im­
possible to have mLACB < mLABC. It then follows that
mLACB = mLABC and that tJ.ABC is isosceles.

B~----_-OlC

56·7a

F

N

6-7 In circle 0, draw any chord AD, with midpoint M. Through M two
other chords, FE and CD, are drawn. CE and FD intersect AD at
Q and P, respectively. Prove that MP = MQ. This problem is
often referred to as the butterfly problem.
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METHOD I: With M the midpoint of AB and chords FME and
CMD drawn, we now draw DH II AB, MN.l DH, and lines MH,
QH, and EH. (See Fig. S6-7a.) Since MN.l DH and DH II AB,
MN .1 AB (#10).
MN, the perpendicular bisector of AB, must pass through the
center of the circle. Therefore MN is the perpendicular bisector
of DH, since a line through the center of the circle and per­
pendicular to a chord, bisects it.

Thus MD = MH (#18), and 6.MND "-' 6.MNH (#17).

mLDMN = mLHMN, so mLx = mLy (they are the com­
plements of equal angles). Since AB II DH, mAD = mBH.

1;--.. ;--..
mLx = :2 (mAD + mCB) (#39)

1;--.. ;--..
mLx = :2 (mBH + mCB) (substitution)

1;--.. ;--..
Therefore, mLy = :2 (mBH + mCB).

But mLCEH = ~ (mWI) (#36). Thus, by addition,

1;--.. ;--.. ----
mLy + mLCEH = :2 (mBH + mCB + mCAH).

SincemBH + mCB + mCAH = 360,mLy + mLCEH = 180.
It then follows that quadrilateral MQEH is inscriptible, that is,
a circle may be circumscribed about it.

Imagine this circle drawn. L wand Lz are measured by the same

----arc, MQ (#36), and thus mLw = mLz.
Now consider our original circle mLv = mLz, since they are

measured by the same arc, Fe (#36).
Therefore, by transitivity, mLv = mLw, and 6.MPD "-'
6.MQH (A.S.A.). Thus, MP = MQ.

METHOD II: Extend EF through F.
Draw KPL Ii CE, as in Fig. S6-7b.

mLPLC = mLECL (#8),
PL MP

therefore 6.PML ~ 6.QMC (#48), and cQ = MQ'

mLK = mLE (#8),
KP MP

therefore 6.KMP ~ 6.EMQ (#48), and QE = MQ'

(PL)(KP) (MP)l
By multiplication, (CQ)(QE) = (MQil ' (I)
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Since mL D = mLE (#36), and mLK = mLE (#8), mL D =
mLK.

Also mLKPF = mLDPL (#1). Therefore, 6.KFP ~ 6.DLP
PL FP

(#48), and DP = KP; and so

(PL)(KP) = (DP)(FP). (II)

. (MP)2 (PL)(KP) . .
In equation (I), (MQ)2 = (CQ)(QE) ; we substItute from equatIon

(MP)2 (DP)(FP)
(II) to get (MQ)l = (CQ)(QE)·

Since (DP)(FP) = (AP)(PB) and (CQ)(QE) = (BQ)(QA) (#52),

(MP)2 (AP)(PB) (MA - MP)(MA + MP) (MA)2 - (MP)2

(MQ)2 = (BQ)(QA) (MB - MQ)(MB + MQ) (MB)2 - (MQ)2

Then (MP)2(MB)2 = (MQ)2(MA)2.

But MB = MA. Therefore (MP)2 = (MQ)2, or MP = MQ.

S6·7b 56·7c

METHOD III: Draw a line through E parallel to AB meeting the
circle at G, and draw MN .1 GE. Then draw PG, MG, and DG,
as in Fig. S6-7c.

mLGDP(LGDF) = mLGEF (#36). (I)

mLPMG = mLMGE (#8). (II)

Since the perpendicular bisector of A B is also the perpendicular
bisector of GE (# 10, #30),

then GM = ME (#18), and mLGEF = mLMGE (#5). (III)

From (I), (II), and (III), mLGDP = mLPMG. (IV)

Therefore, points P, M, D, and G are concyclic (#36a).

Hence, mLPGM = mLPDM (#36 in the new circle). (V)

However, mLCEF = mLPDM (LFDM) (#36). (VI)

From (V) and (VI), mLPGM = mLQEM (LCEF).
From (II), we know that mLPMG = mLMGE.
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Thus, mLQME = mLMEG (#8), and mLMGE = mLMEG
(#5).
Therefore, mLPMG = mLQME and 6.PMG "-' 6.QME
(A.S.A.). It follows that PM = QM.

METHOD IV: A reflection in a line is defined as the replacement of
each point by another point (its image), symmetric to the first
point with respect to the line of reflection.

S6·7d

Let D'F' be the image of DF by reflection in the diameter
through M. D'F' meets AB at P'. (See Fig. S6-7d.)

1...-.- ...-.-
mLFMA = 2 (mFA + mBE) (#39) (I)

mLFMA = mLF'MB (reflection and AB 1.. MO)
......... ...-.-

mF'B = mLFA (reflection)

Therefore, by substitution in (I),
1 ...-.- ...-.- 1"'-'-

mLF'M B = 2 (mF' B + mBE) = 2mF'E. (II)

1 ...-.-
However, mLF'CE = 2mF'E (#36). (III)

Therefore, from (II) and (III), mLF'MB = mLF'CE.
Thus quadrilateral F'CMQ is cyclic (i.e. may be inscribed in a
circle), since if one of two equal angles intercepting the same arc
is inscribed in the circle, the other is also inscribed in the circle.

mLMF'Q(mLMF'D') = mLMCQ (LMCE) (#36) (IV)

mLMCE = mLDFE (#36) (V)

mLDFE = mLD'F'M (reflection) (VI)

mL D'F'M = mLP'F'M (VII)

By transitivity from (IV) through (VII), mLMF'Q =
mLMF'P'. Therefore P', the image of P, coincides with Q; and
MP = MQ, since MO must be the perpendicular bisector of PQ,
as dictated by a reflection.
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METHOD V (PROJECTIVE GEOMETRY): In Fig. S6-7e, let K be the
intersection of i5F and R.
Let I be the intersection of Fe and DE.
Let N be the intersection of AiJ and Ki (not shown).

Ki is the polar of M with respect to the conic (circle, in this
case). Therefore, M, A, B, N form a harmonic range.

Thus, Z~ = ~~ ; and since MB = MA, N is at infinity.

Hence AiJ II Ki. Now, IT, KM, KD, Ki is a harmonic pencil.

Therefore Q, M, P, N is a harmonic range, and ~~ = ~;.

Since N is at infinity, MQ = MP.

Note that this method proves that the theorem is true for any
conic.

56·78

K,,--------------- to f

f\
I '
\ '\
\ " \0'
I' _ ..........

\ '\ -----\ ,c~_-~

F' -~---
M

AL-----.....B A"------~B

6-8 6ABC is isosceles, with CA = CB. mLABD = 60, mLBAE =
50, and mLC = 20. Find the measure of LEDB.

METHOD I: In isosceles 6ABC, draw DG II AB, and AG meeting
DB at F. Then draw EF. (See Fig. S6-8a.)
By hypothesis, mLABD = 60, and by theorem #8, mLAG D =
mLBAG = 60. Thus mLAFB is also 60, and 6AFB is equi­
lateral. AB = FB (equilateral triangle), AB = EB, and EB = FB
(#5). 6EFB is therefore isosceles.
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Since mLEBF = 20, mLBEF = mLBFE = 80. As
mLDFG = 60, mLGFE = 40. GE = EF (equal sides of isos­
celes triangle), and DF = DG (sides of an equilateral triangle).
Thus DGEF is a kite, i.e., two isosceles triangles externally sharing
a common base. DE bisects LG DF (property of a kite), therefore
mLEDB = 30.

METHOD II: In isosceles b.ABC, mLACB = 20, mLCAB = 80,
mLABD = 60, and mLEAB = 50.

Draw BF so that mLABF = 20; then draw FE, Fig. S6-8b.

In b.ABE, mLAEB = 50 (#13);

therefore, b.ABE is isosceles and AB = EB (#5). (I)

Similarly, b.FAB is isosceles, since mLAFB = mLFAB = 80.

Thus, AB = FB. (lJ)

From (I) and (II), EB = FB. Since mLFBE = 60, b.FBE is
equilateral and EB = FB = FE. (III)
Now, in b.DFB, mLFDB = 40 (#13), and mLFBD =

mLABD - mLABF = 60 - 20 = 40.

Thus, b.DFB is isosceles, and FD = FB. (IV)

It then follows from (III) and (IV) that FE = FD,
making b.FDE isosceles, and mLFDE = mLFED (#5).

Since mLAFB = 80 and mLEFB = 60, then mLAFE, the
exterior angle of isosceles b.FDE, equals 140, by addition.
It follows that mLA DE = 70. Therefore, mLEDB =

mLADE - mLFDB = 70 - 40 = 30.

METHOD III: In isosceles b.ABC, mLCAB = 80, mLDBA = 60,
mLACB = 20, and mLEAB = 50.

Extend BA to G so that AG = AC.

Draw DF I: A B. (See Fig. S6-8c.)
/

/
/

/
/

/
/

//

S6-8c //
/

/
/

/
,/

/
/

/
/

/
/

/
/

/

//

GL'---------------- A B
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In f:::,EAB, mLAEB = 50; therefore AB = EB (#5).

Since mLCAB, the exterior angle of f:::,AGC, is 80, mLCGA =
mLGCA = 40 (#5). The angles of f:::,BCG and f:::,ABD measure
80,60, and 40 respectively; therefore they are similar, and

AD BG
AB = BC'

However, AD = FB, AB = EB, and BC = AC = AG.

B b · . FB BG A I' h .y su StltutlOn, EB = AG' pp ymg a t eorem on proportIOns,
FB - EB BG - AG FE AB

EB AG; or EB = AG'

. - -. DF AB
SlOce DFII AB, 10 f:::,ABC, DC = AC'

Since AG = AC FE = DF.
'EB DC

In f:::,CDB, mLDCB = mLDBC = 20. Therefore DC = DB.
FE DF

It follows that EB = DB'

Consider f:::,FDB. It can now be established, as a result of the
above proportion, that DE bisects LFDB.

Yet mLFDB = mLABD = 60 (#8).

Therefore, mLEDB = 30.

+---..... 8

METHOD IV: With B as center, and BD as radius, draw a circle
meeting BA at F and BC at G, as in Fig. S6-8d.

mLFAD = 100, mLADB = 40, and mLAEB = 50 (#13).

Thus, 6FBD is equilateral, since it is an isosceles triangle with a
60° angle.
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mLF = 60, and mLFDA = 20. BD = CD (isosceles triangle),
BD = DF (equilateral triangle), and so CD = DF. BA = BE
(isosceles triangle), BF = BG (radii), and so FA = GE (sub­
traction). !:::,DBG is isosceles and mLDGB = mLBDG = 80.
mLDGC = 100. Thus we have !:::,DCG "-' !:::'FDA (S.A.A.), and
FA = DG, since they are corresponding sides. Therefore
DG = GE, and mLGDE = mLGED = 50.

But we have ascertained earlier that mLBDG = 80.

Therefore, by subtraction, mLEDB = 30.

A B

METHOD v: Let ABA 3A 4 ••• A I8 be a regular 18-gon with center
C. (See Fig. S6-8e.) Draw A 3A 15. By symmetry A 3A 15 and AA7

- 1 ..............
intersect on CB at E. mLEAB = 50 = 2mA 7B. Consider the

circumcircle about the 18-gon.

1 ,.--,.
mLA 3A I5A 6 = i (mA 3A 6 ) = 30 (#36),

,.--,.
and mLA 15CA 18 = mA 15A 18 = 60 (#35).

Therefore mLA 15FC = 90 (#13).

However CA 15 = CA III ; therefore !:::,A 15CA III is equilateral and
CF = FA I8 . Thus A 3A I5 is the perpendicular bisector of CA I8 .
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Since CA 18 = CB, and A 18A = AB, CA is the perpendicular
bisector of A I8B (#18), and DA I8 = DB (#18). As mLC =
mLDBC = 20, CD = DB.

It then follows that DA 18 = CD, and thus D must lie on the
perpendicular bisector of CA 18' In other words, A aA 15 passes
through D; and A 15, D, E, A a, are collinear.

Once more, consider the circumcircle of the 18-gon.
1 .---.... .

mLA I5A aB = 2. (mA I5B) = 50 (#36), while

mLCBA a = 80, and mLDBC = 20.

Thus in f:::.DBA a, mLEDB = 30 (#13).

METHOD VI (TRIGONOMETRIC SOLUTION I): In isosceles f:::.ABC,
mLCAB = 80, mLDBA = 60, mLACB = 20 and mLEAB =
50. Let AC = a, EB = b, BD = c. (See Fig. S6-8f.)

. . CA sin LCEA a
In f:::.AEC the law of slOes yIelds CE = sin L CAE or a _ b =
sin 130 _ sin (180 - 130) _ 2 . 50 - 2 40 (I)
sin 30 - I - Stn - COS •

2

Since mLAEB = 50 (#13), f:::.ABE is isosceles and AB = AE.
. . DB sin LDAB c sin 80

In f:::.ABD the law of slOes yields AB = sin LADB or b = sin 40 =

sin 2(40) _ 2 sin 40 cos 40 _ 2 40 (II)
sin 40 - sin 40 - cos .

Therefore, from (I) and (II), a ~ b = ~ (transitivity).

mLDBE = mLC = 20. Thus, f:::.AEC,..., f:::.DEB, (#50) and
mLBDE = mLEAC = 30.

56-8f 56-8g

A"---~B
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METHOD VII (TRIGONOMETRIC SOLUTION II): In isosceles .6.ABC,
mLABD = 60, mLBAE = 50, and mLC = 20.

Draw AF II BC, take AG = BE, and extend BG to intersect AF
at H. (See Fig. S6-8g.)

Since mLBAE = 50, it follows that mLABG = 50.

Since AF II BC, mLCAF = mLC = 20; thus mLBAF = 100
and mLAHB = 30.

We know also that mLADB = 40. Since mLABD = 60, and
mLABC = 80, mLDBC = 20. Therefore LGAH ~ LDBC.

B I · h If' . AA B BD sin L BAD
yappymgt e awo smeSlnLJ. D 'AB = sin LADB,orBD =

AB(s~n80) = (AB).sin2(4O) = (AB)(2).sin 40 cos 40 = 2(AB) cos 40
SIO 40 SIO 40 SIO 40

(I)

N ·d AAB A . b h If' AH sin L ABHow conSl er LJ. H. gam, y t e aw 0 smes AB = sin L AHB'

or AH = AB G:~~) = ABcIOS4O = 2ABcos4O. (II)

2

From (I) and (II), BD = AH and .6.BDE "" .6.AHG (S.A.S)
It thus follows that mLBDE = mLGHA = 30.

6-9 Find the area of an equilateral triangle containing in its interior a
point P, whose distances from the vertices of the triangle are 3, 4,
and 5.

METHOD I: Let BP = 3, CP = 4, and AP = 5. Rotate .6.ABC in
its plane about point A through a counterclockwise angle of 60°.
Thus, since the triangle is equilateral and mLBAC = 60 (#6),
A B falls on AC, AP' = 5, C'P' = 4, and CP' = 3 (Fig. S6-9a).
Since .6.APB "" .6.AP'C and mLa = mLb, mLPAP' = 60.

Draw PP', forming isosceles .6.PAP'. Since mLPAP' = 60,
.6.PA P' is equilateral and PP' = 5. Since PB = P'C = 3, and
PC = 4, .6.PCP' is a right triangle (#55).

The area of .6.APB + .6.APC equals the area of .6.AP'C +
.6.APC, or quadrilateral APCP'.
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The area of quadrilateral APCP' = the area of equilateral
f:::,APP' + the area of right f:::,PCP'.

. 25~3
The area of eqUilateral !i.APP' = 4- (Formula #5e),

and the area of right f:::,PCP' = ~ (3)(4) = 6 (Formula #5d).
. 25~j

Thus the area of quadrIlateral APCP' = -4- + 6.

We now find the area of f:::,BPC. Since mLBCC' = 2(60) =
120 and mLPCP' = 90, mLPCB + mLP'CC' = 30.

Since mLP'CC' = mLPBC, then mLPBC + mLPCB = 30
(by substitution), and mLBPC = 150.

The proof may be completed in two ways. In the first one, we

find that the area of f:::,BPC = ~ (3)(4) sin 1500 = 3 (Formula

#5b), and the area of f:::,ABC = area of (quadrilateral APCP' +

f:::,BPC) =

Alternatively, we may apply the law of cosines to f:::,BPC. There­
fore, (BC)2 = 32 + 4 2

- 2·3· 4 cos 1500 = 25 + 12Y3.
1 2_ r 1 . MThus, the area of f:::,ABC = 4(BC) v 3 = :4' 25v 3 + 9.

METHOD II: Rotate AP through 600 to position AP'; then draw
CP'. This is equivalent to rotating f:::,ABP into position f:::,ACP'.
In a similar manner, rotate f:::,BCP into position f:::,BAP"', and
rotate f:::,CAP into position f:::,CBP". (See Fig. S6-9b.)

Consider hexagon AP'CP"BP'" as consisting of f:::,ABC, f:::,AP'C,
f:::,BP"C, and f:::,AP'" B. From the congruence relations,

area f:::,ABC = area f:::,AP'C + area f:::,BP"C + area f:::,AP'" B.
1

Therefore area f:::,ABC = 2area of hexagon AP'CP"BP"'.

Now consider the hexagon as consisting of three quadrilaterals,
PAP'C, PCP"B, and PBP'" A, each of which consists of a 3-4-5
right triangle and an equilateral triangle.

Therefore, using formula #5d and #5e, the area of the hexagon =

(
I ) I 2 - 1 2 - 1 2 -3 -. 3 . 4 + -. 5 y3 + -.4 y3 + - .3 y3
2 4 4 4 1-

18 + 2' 25Y3.

1 -
Therefore, the area of f:::,A BC = 9 + 4. 25Y3.
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cl- -J

56·10

D~---~

A56-9b

, \ ,t!"'" /',\ ,,,\ '
...~ ....'
p'

Find the area of a square ABCD containing a point P such that
PA = 3, PB = 7, and PO = 5.

6-10

Rotate!:::'DAP in its plane 900 about A, so that AD falls on AB
(Fig. S6-10).

!:::,APD""" !:::,AP'B and AP' = 3 and BP' = 5. mLPAP' = 90.

Thus, !:::'PAP' is an isosceles right triangle, and PP' = 3Y2.
The area of !:::'PP'B by Heron's Formula (Formula #5c) is

Also, the area of !:::'PP'B = ~ (PB)(PP') sin LBPP' (Formula
#5b).

Therefore, 22
1 = ~ (3y2)(7) sin LBPP', J2 = sin LBPP', and

mLBPP' = 45.
In isosceles right !:::,APP', mLAPP' = 45,

therefore mLAPB = 90. By applying the Pythagorean Theorem

to right !:::,APB we get (AB)2 = 58.

Thus the area of square ABCD is 58 (Formula #4a).

Challenge 1 Find the measure of Pc.

ANSWER; V65
Challenge 2 Express PC in terms ofPA, PB, and PD.

ANSWER: (PC)2 = (PD)2 + (PB)2 - (PA)2.

6-11 If, on each side of a given triangle, an equilateral triangle is con­
structed externally, prove that the line segments formed by joining
a vertex of the given triangle with the remote vertex of the equi­
lateral triangle drawn on the side opposite it are congruent.



A Geometric Potpourri 157

In b.ADC, AD = AC, and in b.AFB, AB = AF (equilateral
triangles). Also, mLDAC = mLFAB (Fig. SI-l1). mLCAB =
mLCAB, and therefore, mLCAF = mLDAB (addition). By
S.A.S., then, b.CAF~ b.DAB, and thus, DB = CF.

Similarly, it can be proved that b.CAE~ b.CDB, thus yielding
AE = DB.
Therefore AE = DB = CF.

Challenge 1 Prove that these lines are concurrent.

Circles K and L meet at point 0 and A. (Fig. 56-11).
. .---....

Smce mA DC = 240, and we know that mLAOC =

~ (mADe) (#36), mLAOC = 120. Similarly, mLAOB =
1 .---....
2. (mAFB) = 120.

Therefore mLCOB = 120, since a complete revolu­
tion = 360°.

Since mCEB = 240, LCOB is an inscribed angle and
point 0 must lie on circle M. Therefore, we can see that
the three circles are concurrent, intersecting at point O.

Now join point 0 with points A, B, C, D, E, and F.
mLDOA = mLAOF = mLFOB = 60, and therefore
DOiJ. Similarly, Ci5F and AOE.
Thus it has been proved that AE, CF, and DB are
concurrent, intersecting at point 0 (which is also the point
of intersection of circles K, L, and M).

Challenge 2 Prove that the circumcenters of the three equilateral
triangles determine another equilateral triangle.

Consider equilateral b.DAC.

Since AK is ~ of the altitude (or median) (#29), we obtain

the proportion AC:AK = v!): I.

Similarly, in equilateral b.AFB, AF:AL = v!): I.
Therefore, AC:AK = AF:AL.

mLKAC = mLLAF = 30, mLCAL = mLCAL
(reflexivity), and mLKAL = mLCAF (addition).

Therefore, b.KAL ~ b.CAF (#50).

Thus, CF:KL = CA :AK = V3:1.

Similarly, we may prove DB:KM = v!): 1, and
AE:ML = v!3: 1.
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Therefore, DB:KM = AE:ML = CF:KL. But since
DB = AE = CF, as proved in the solution of Problem
6-11, we obtain KM = ML = KL. Therefore, !:::,KML is
equilateral.

56·11 56-128

Aa:::::...-"-------~-----=:SllB

'0

E

6-12 Prove that if the angles ofa triangle are trisected, the intersections
of the pairs of trisectors adjacent to the same side determine an
equilateral triangle. (This theorem was first derived by F. Morley
about 1900.)

METHOD I: We begin with the lower part of !:::'ABC, with base
AB and angles 3a, 3b, and 3c, as shown. Let AP, ART, BQ,
and BRS be angle-trisectors. Point P is determined by making
mLARP = 60 + b and point Q is determined by making
mLBRQ = 60 + a. (See Fig. S6-12a.) mLARB = 180 ­
b - a (#13)

Therefore mLPRQ = 360 - (180 - b - a) - (60 + b) ­
(60 + a) = 60.

mLAPR = 180 - a - (60 + b) (#13)

mLAPR = 180 - 60 - a - b = 120 - (a + b)

However, since 3a + 3b + 3c = 180, then a + b + c = 60,
and a + b = 60 - c.
Thus mLAPR = 120 - (60 - c) = 60 + c.

Similarly, it can be shown that mLBQR = 60 + c.

Now, drop perpendiculars from R to AP, BQ, and AB,
meeting these sides at points G, H, and J, respectively.

RG = RJ, since any point on the bisector of an angle is equi­
distant from the rays of the angle.

Similarly, RH = RJ. Therefore, RG = RH (transitivity).
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LRGP and LRHQ are right angles and are congruent.

From the previous discussion mLAPR = mLRQB, since they
are both equal to 60 + c.
Thus 6.GPR ......., 6.HQR (S.A.A.), and RP = RQ.
This makes 6.PRQ an equilateral triangle, since it is an isosceles
triangle with a 60° vertex angle.

mLARP = 60 + b (it was so drawn at the start). LSRA is an
exterior angle of 6.ARB and its measure is equal to a + h.
Therefore, by subtraction, we obtain mL3 = 60 + b ­
(a + b) = 60 - a. Similarly, mL I = 60 - b.

Through point P, draw line I, making mL4 = mL3, and
through point Q, draw line m making mL2 = mL I. Since

mLAPR = 60 + c; and mL4 = 60 - a, we now obtain,
by subtraction, mL5 = 60 + c - (60 - a) = a + c.

By subtracting the measure of one remote interior angle of a
triangle from the measure of the exterior angle of the triangle, we
obtain the measure of the other remote interior angle. Thus, the
measure of the angle formed by lines k and I = (a + c) - a = c.
Similarly, the measure of the angle formed by lines m and
n = (h + c) - b = e, while the angle formed by the lines k and
n = 180 - 3a - 3b = 3e.

If we can now show that lines k, I, m, and n are concurrent,
then we have been working properly with 6.A BC. (See Fig.
S6-12b.) Since 6.QTR and 6.RPQ are each isosceles, it can easily
be proved that PT bisects L QTR. Since P is the point of inter­
section of two of the angle bisectors of 6.kATm, we know that
the bisector of Lkm (the angle formed by lines k and m) must
travel through P, since the interior angle bisectors of a triangle
are concurrent. Consider Fig. S6-12b. Since g is one of the tri­
sectors of LC, mLkg = e. g must also pass through P, since all
the bisectors of 6.kATm must pass through P.

It was previously shown that Lkl = c. Therefore, I is parallel
to g, and both pass through point P. Thus, I and g are actually the
same line. This proves lines k, I, and m to be concurrent.

Similarly, in 6.nBSI, the bisector of LIn and m are parallel and
pass through point Q.
Thus, n is concurrent with I and 111. Since we have proved that
lines k, I, m, and n concurrent, it follows that we have properly
worked with 6.ABC.

This proof is based upon that given in an article by H. D.
Grossman, American Mathematical Monthly, 1943, p. 552.
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S6·12c

A B

S6·12b C

METHOD II: Let a = ~, b = q, and c = ~ . In Fig. S6-12c, tri­

sectors of LA and LB of !:::,.ABC meet at Rand F.

Construct mLARP = 60 + b,

and mLBRQ = 60 + a,

(I)

(II)

where P and Q lie on AF and BF, respectively.

mLAPR = 180 - (60 + b) - a = 60 + c (#13) (III)

Similarly, mLBQR = 180 - (60 + a) - b = 60 + c (#13).
(IV)

Draw HR .1 AF at H, and JR .1 BF at J. Since R is the point of
intersection of the interior angle bisectors of !:::"AFB, R is the
center of the inscribed circle, and HR = JR. From (III) and (IV),
mLAPR = mLBQR. Therefore, !:::,.PHR rov !:::"QJR (S.A.A.),
and PR = QR. (V)

mLARB = 180 - (a + b) (#13) (VI)

From (I), (II), and (VI), mLPRQ = 360 - mLARP ­
mLBRQ - mLARB,

or mLPRQ = 360 - (60 + b) - (60 + a) - [180 - (a + b)] =

60. Therefore, !:::"PQR is equilateral. (VII)

We must now show that PC and QC are the trisectors of LC.
Choose points D and E of sides AC and BC respectively, so that
AD = AR and BE = BR. It then follows that !:::,.DAP rov !:::,.RAP
and !:::"EBQ rov !:::"RBQ (S.A.S.).
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Thus, DP = PR = PQ = RQ = QE, (VIII)

(II)

(III)

and mLDPQ = 360 - mLDPA - mLAPR - mLRPQ,
or mLDPQ = 360 - (60 + c) - (60 + c) - 60 [from (III)
and (VII)]. Therefore mLDPQ = 180 - 2c. (IX)
In a like fashion, we may find mLEQP = 180 - 2c. (X)
Thus, mLDPQ = mLEQP. It is easily proved that quadrilateral
DPQE is an isosceles trapezoid and is thus inscriptible.

In the circle passing through D, P, Q, and E, from (VIII) we
know that mDP = mPQ = mQE. So from any point N on the
circle, mLPNQ = mLQNE (#36).

Since from (IX), mLDPQ = 180 - 2c, mLDNQ = 2c
(#37). Also, since, from (X), mLEQP = 180 - 2c, mLENP =
2c (#37). Therefore, mLPNQ = c, as does mLDNP and
mLENQ. Thus, from any point on the circle, line segments issued
to points D and E form an angle with measure equal to 3c.
C lies on the circle, and PC and QC are the trisectors of Le.
We have thus proven that the intersections of angle trisectors
adjacent to the same side of a triangle determine an equilateral
triangle.

6-13 Prove that, in any triangle, the centroid trisects the line segment
joining the center of the circumcircle and the orthocenter (i.e. the
point of intersection of the altitudes). This theorem was first
published by Leonhard Euler in 1765.

Let M be the midpoint of Be. (See Fig. 56-13.) G, the centroid,
--- AG 2

lies on AM so that GM = i (#29). (I)

The center of the circumcircle,
point 0, lies on the perpendicular bisector of BC (#44).

- HG 2
Extend OG to point H so that GO = I·

AG HG
From (I) and (III), GM = GO·

Therefore, f:::.AHG ,...., f:::.MOG (#50), and mLHAG = mLOMG.

Thus, AH II MO, and since MO.l BC and Ali.l BC, AH
extended to BC is an altitude.

The same argument will hold if we use a side other than Be.
Each time the point H obtained will lie on an altitude, thus
making it the orthocenter of f:::.ABC, because, by definition, the
point of concurrence of the three altitudes of a triangle is the
orthocenter.
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B'------'I..I..--~f:----~C

Challenge 1 (Vector Geometry)
The result of this theorem leads to an interesting problem
first published by James Joseph Sylvester (1814-1897).

The problem is to find the resultant of the three vectors M,
OB, and OC, acting on the center of the circumcircle 0 of
.6A BC.

OM is one-half the resultant of vectors OB and OC.
AH AG 2

Since .6AHG ~ .6MOG, then OM = GM = l' or

Ali = 2(OM). Thus Ali represents the whole resultant of
vectors OB and OC.
Since OH is the resultant of vectors OA and Ali, OH is the
resultant of vectors OA, 08, and OC.

- 1- -- --
COMMENT: It follows that OG = 3 (OA + OB + OC).

S6-13 S6.148 A

A

E

6-14 Prove that if a point is chosen on each side of a triangle, then the
circles determined by each vertex and the points on the adjacent
sides, pass through a common point (Figs. 6-14aard 6-14b). This
theorem was first published by A. Miquel in 1838.

CASE I: Consider the problem when M is inside .6ABC, as shown
in Fig. S6-14a. Points D, E, and F are any points on sides AC,
BC, and AB, respectively, of .6ABC. Let circles Q and R, de­
termined by points F, B, E and D, C, E, respectively, meet at M.

Draw FM, ME, and MD. In cyclic quadrilateral BFME,
mLFME = 180 - mLB (#37). Similarly, in cyclic quadrilateral
CDME, mLDME = 180 - mLC.

By addition, mLFME + mLDME = 360 - (mLB + mLC).
Therefore, mLFMD = mLB + mLC.
However, in .6ABC, mLB + mLC = 180 - mLA.
Therefore, mLFMD = 180 - mLA and quadri'lateral AFMD
is cyclic. Thus, point M lies on all three circles.
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CASE II: Fig. S6-14b illustrates the problem when M is outside
t:.ABC.

Again let circles Q and R meet at M. Since quadrilateral BFME
is cyclic, mLFME = 180 - mLB (#37).

Similarly, since quadrilateral CDME is cyclic, mLDME =
180 - mLDCE (#37).

By subtraction,

mLFMD = mLFME - mLDME = mLDCE - mLB. (I)

However, mLDCE = mLBAC + mLB (#12). (II)

By substituting (II) into (I),

mLFMD = mLBAC = 180 - mLFAD.

Therefore, quadrilateral ADMF is also cyclic and point M lies
on all three circles.

F

'f----~=*-G

S6·14b

6-15 Prove that the centers of the circles in Problem 6-14 determine a
triangle similar to the original triangle.

Draw common chords FM, EM, and DM. PQ meets circle Qat
Nand RQ meets circle Qat L. (See Fig. S6-15.) Since the line of
centers of two circles is the perpendicular bisector of their
common chord, PQ is the perpendicular bisector of FM, and

therefore PQ also bisects fM (#30), so that mFN = mNM.
Similarly, QR bisects EM so that mML = mLE.

,..-.... ,..-.... 1 ,..-....
Now mLNQL = (mNM + mML) = 2 (mFE) (#35), and

I ,..-....
mLFBE = 2(mFE) (#36).

Therefore, mLNQL = mLFBE.

In a similar fashion it may be proved that mLQPR = mLBAC.

Thus, t:.PQR ~ t:.ABC (#48).
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7. Ptolemy and the Cyclic Quadrilateral

7-1 Prove that in a cyUc quadrilateral the product of the diagonals is
equal to the sum of the products of the pairs of opposite sides
(Ptolemy's Theorem).

57·18

~-------="",=-_--'>.p

METHOD I: In Fig. 57-la, quadrilateral ABCD is inscribed in
circle O. A line is drawn through A to meet CD at P, so that

mLBAC = mLDAP. (I)

Since quadrilateral ABCD is cyclic, LABC is supplementary
to LADC (#37). However, LADP is also supplementary to
LADe.

Therefore, mLA BC = mLA DP.

Thus, b.BAC - b.DAP (#48),

d AB _ BC DP _ (AD)(BC).
an AD - DP' or - AB

(II)

(III)

(IV)

(V)

(VI)

AB AC
From (I), mLBAD = mLCAP, and from (III), AD = AP'

BD AB
Therefore, b.ABD - b.ACP (#50), and CP = AC'

or CP = (AC)(BD).
AB

CP = CD + DP.

Substituting (IV) and (V) into (VI),

(AC)(BD) = CD + (AD)(BC) .
AB AB

Thus, (AC)(BD) = (AB)(CD) + (AD)(BC).
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METHOD II: In quadrilateral ABCD (Fig. S7-lb), draw !:::,.DAP
on side AD similar to !:::"CAB.

AB AC BC
Thus, AP = AD = PD '

and (AC)(PD) = (AD)(BC). (II)

(III)

Since mLBAC = mLPAD, then mLBAP = mLCAD. There-
AB BP

fore, from (I), !:::,.BAP ~ !:::,.CAD (#50), and AC = CD'

or (AC)(BP) = (AB)(CD).

Adding (II) and (III), we have

(AC)(BP + PD) = (AD)(BC) + (AB)(CD). (IV)

Now BP + PD > BD (#41), unless P is on BD.

However, P will be on BD if and only if mLADP = mLADB·
But we already know that mLADP = mLACB (similar tri­
angles). And if ABCD were cyclic, then mLADB would equal
mLACB (#36a), and mLADB would equal mLADP. Therefore,
we can state that if and only if ABCD is cyclic, P lies on BD.
This tells us that BP + PD = BD. (V)

Substituting (V) into (lV),(AC)(BD) = (AD)(BC) + (AB)(CD).

Notice we have proved both Ptolemy's Theorem and its converse.
For a statement of the converse alone and its proof, see Challenge I.

Challenge 1 Prove that if the product of the diagonals ofa quadrilateral
equals the sum of the products ofthe pairs ofopposite sides,
then the quadrilateral is cyclic. This is the converse of
Ptolemy's Theorem.

Assume quadrilateral ABCD is not cyclic.
If CDP, then mLADP,e. mLABC.

If C, D, and P are not collinear then it is possible to have
mLADP = mLABC. However, then CP < CD + DP
(#41) and from steps (IV) and (V), Method I, above.

(AC)(BD) < (AB)(CD) + (AD)(BC).

But this contradicts the given information that
(AC)(BD) = (AB)(CD) + (AD)(BC). Therefore, quad­
rilateral ABCD is cyclic.
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Challenge 2 To what familiar result does Ptolemy's Theorem lead when
the cyclic quadrilateral is a rectangle?

By Ptolemy's Theorem applied to Fig. S7-Ic

(AC)(BD) = (AD)(BC) + (AB)(DC).

However, since ABCD is a rectangle,

AC = BD, AD = BC, and AB = DC (#2Ig).

Therefore, (AC)2 = (AD)2 + (DC)2, which is the
Pythagorean Theorem, as applied to any of the right
triangles of the given rectangle.

Challenge 3 Find the diagonal d of the trapezoid with bases a and b,
and equal legs c.

ANSWER: d = yab + c2

S7-1b

c"-------......;:ao

S7-1c S7-2

7-2 E is a point on side AD of rectangle ABCD, so that DE = 6,
while DA = 8, and DC = 6. If CE extended meets the circum­
circle of the rectangle at F, find the measure of chord DF.

Draw AF and diagonal AC. (See Fig. S7-2.) Since LB is a right
angle, AC is a diameter (#36).

Applying the Pythagorean Theorem to right !:::"ABC, we obtain
AC = 10.

Similarly, in isosceles right !:::"CDE, CE = 6y2 (#55a), and in
isosceles right !:::"EFA, EF = FA = V2 (#55b). Now let us apply
Ptolemy's Theorem to quadrilateral AFDC.

(FC)(DA) = (DF)(AC) + (AF)(DC)

Substituting, (6V2 + V2)(6 + 2) = DF(IO) + (y2)(6),
56V2 = IO(DF) + 6V2,
5y2 = DF.

Challenge Find the measure ofFB.

ANSWER: 5V2
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7-3 On side AB of square ABCD, a right .6ABF, with hypotenuse
AB, is drawn externally to the square. If AF = 6 and BF = 8,
jind EF, where E is the point of intersection of the diagonals of the
square.

In right .6AFB, AF = 6, BF = 8, and AB = to (#55). (See
Fig. S7-3.)
In isosceles right .6AEB, AE = BE = 5V2 (#55a).
Since mLAFB = mLAEB = 90, quadrilateral AFBE is cyclic
(#37).

Therefore, by Ptolemy's Theorem applied to quadrilateral
AFBE, (AF)(BE) + (AE)(BF) = (AB)(EF).

By substitution, (6)(5V2) + (5V2)(8) = (lO)(EF)

and EF = 7V2.

Challenge Find EF when F is inside square ABCD.

ANSWER: V2

$7-4
C

\
\

\
\

\
\

\
\

"\

"\

B""'---~~------>o.A

7-4 Point P on side AB ofright .6ABC is placed so that BP = PA = 2.
Point Q is on hypotenuse AC so that PQ is perpendicular to AC.
IfCB = 3,jind the measure ofBQ, using Ptolemy's Theorem.

Draw Pc. (See Fig. S7-4.)
In right .6PBC, PC = VTI, and in right .6ABC, AC = 5 (#55).

. PQ PA PQ 2
Smce .6A QP ~ .6ABC (#48), then CB = AC' and 3 = "5' or

PQ = ~. Now in right .6PQC, (PQ)2 + (CQ)2 = (CP)2.
17

Therefore CQ = 5"'
Since mLCBP rov mLCQP rov 90, quadrilateral BPQC is cyclic
(#37), and thus we may apply Ptolemy's Theorem to it.

(BQ)(CP) = (PQ)(BC) + (BP)(QC)
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Substituting,

(BQ)(VTI) = 0)(3) + (2)(¥) .
4~11­

Thus, BQ = "5 v 13.

Challenge 1 Find the area ofquadrilateral CBPQ.

ANSWER: 5.04

Challenge 2 As P is translated from B to A along BA, find the range of
values of BQ where PQ remains perpendicular to CA.

ANSWER: minimum value, 2.4; maximum value, 4

!----------=rc

7-5 If any circle passing through vertex A of parallelogram ABCD
intersects sides AB and AD at points P and R, respectively, and
diagonal AC at point Q, prove that (AQ)(AC) = (AP)(AB) +
(AR)(AD).

Draw RQ, QP, and RP, as in Fig. $7-5.

mL4 = mL2 (#36).

Similarly, mLI = mL3 (#36).

Since mL5 = mL3 (#8), mL 1 = mL5.

Therefore, f:::.RQP ~ f:::.ABC (#48), and since f:::.ABC rv f:::.CDA,
f:::.RQP ~ f:::.ABC ~ f:::.CDA.

Then AC = AB = AD . (I)
RP RQ PQ

Now by Ptolemy's Theorem, in quadrilateral RQPA

(A Q)(RP) = (RQ)(AP) + (PQ)(AR). (II)

By multiplying each of the three equal ratios in (I) by each
member of (11),

(AQ)(RP)(~~) = (RQ)(AP)(~~) + (PQ)(AR)(~~) .

Thus, (AQ)(AC) = (AP)(AB) + (AR)(AD).
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7-6 Diagonals AC and BD of quadrilateral ABCD meet at E. If
15

AE = 2, BE = 5, CE = 10, DE = 4, and BC = 2"' find AB.

I F" 57-6 " BE CE 5 I)n 19. , since AE = DE = 2' (

(II)

15
5 2

or 2 = AD·
BE BC

!:::,.AED ~ !:::,.BEC (#50). Therefore, AE = AD'

Thus, AD = 3.

Similarly, from (I), !:::"AEB ~ !:::,.DEC (#50).
AE AB 1 AB

Therefore, DE = DC' or 2 = DC· Thus, DC = 2(AB).

Also, from (II), mLBAC = mLBDC. Therefore, quadrilateral
ABCD is cyclic (#36a).

Now, applying Ptolemy's Theorem to cyclic quadrilateral ABCD,

(AB)(DC) + (AD)(BC) = (AC)(BD).

Substituting, we find that AB = ~ ym.

'0

S7~ B---,
" " ,

",\
\
\
\
\

~--------------"''''''''C
I,
I
I
I
I
I
I

I
I

I
I,

/,
,/

..... """,,'"
---------

Challenge Find the radius of the circumcircle of ABCD if the measure

of the distance from DC to the center 0 is 2~ .

ANSWER: 7
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7-7 If isosceles .6ABC (AB = AC) is inscribed in a circle, and a
. p. B"-"'C ha PA AC fi hpomt IS on , prove t t PB + PC = BC' a constant or t e

given triangle.

Applying Ptolemy's Theorem in cyclic quadrilateral ABPC
(Fig. S7-7), (PA)(BC) = (PB)(AC) + (PC)(AB).

Since AB = AC, (PA)(BC) = AC(PB + PC),
PA AC

and PB + PC = BC·

S7·7 A SNI A

c

7-8 If equilateral .6ABC is inscribed in a circle, and a point P is on
..-...
BC, prove that PA = PB + PC.

Since quadrilateral ABPC is cyclic (Fig. S7-8), we may apply
Ptolemy's Theorem. (PA)(BC) = (PB)(AC) + (PC)(AB) (I)

However, since .6ABC is equilateral, BC = AC = AB.

Therefore, from (I), PA = PB + PC.
An alternate solution can be obtained by using the results of

Problem 7-7.

7-9 If square ABCD is inscribed in a circle, and a point P is on Be,
PA + PC PO

prove that PB + PO = PA .

In Fig. S7-9, consider isosceles .6ABD (AB = AD). Using the
PA AD

results of Problem 7-7, we have PB + PD = DB' (I)

Similarly, in isosceles .6ADC, PAP':PC = ~~. (II)

Since AD = DC and DB = AC, ~~ = ~~. (III)

From (I), (II) and (III),
PA PD PA + PC PD

PB + PD = PA + PC' or PB + PD = PA·
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7-10 If regular pentagon ABCDE is inscribed in a circle, and point P
is on Be, prove that PA + PD = PB + PC + PE.

In quadrilateral ABPC, (PA)(BC) = (BA)(PC) + (PB)(AC), (I)
by Ptolemy's Theorem. (See Fig. S7-1O.)
In quadrilateral BPCD, (PD)(BC) = (CD)(PB) + (PC)(BD). (II)

Since BA = CD and AC = BD, by adding (I) and (II) we obtain

BC(PA + PD) = BA(PB + PC) + AC(PB + PC). (III)

However, since 6BEC is isosceles, based upon Problem 7-7,

CE PE (PE)(BC)
BC - PB + PC' or (PB + PC) = CE = AC. (IV)

Substituting (IV) into (III),

BC(PA + PD) = BA(PB + PC) + (PE)(BC) (PB + PC)
(PB + PC) •

But BC = BA. Therefore PA + PD = PB + PC + PE.

S7·10 A
S7·11 A

7-11 If reguJar hexagon ABCDEF is inscribed in a circle, and point P
is on Be, prove that PE + PF = PA + PB + PC + PD.

Lines are drawn between points A, E, and C to make equilateral
6AEC (Fig. S7-11). Using the results of Problem 7-8, we have

PE = PA + PC. (I)

In the same way, in equilateral 6BFD, PF = PB + PD. (II)

Adding (I) and (II), PE + PF = PA + PB + PC + PD.

7-12 Equilateral 6ADC is drawn externally on side AC of 6ABC.
Point P is taken on BD. Find mLAPC such that BD = PA +
PB + PC.



172 SOLUTIONS

Point P must be the intersection of BD with the circumcircle of
L;:,.ADC. Then mLAPC = 120 (#36). (See Fig. S7-12.)
Since APCD is a cyclic quadrilateral, then by Ptolemy's Theorem,

(PD)(AC) = (PA)(CD) + (PC)(AD). (I)

Since l:::.ADC is equilateral, from (I), PD = PA + Pc. (II)

However, BD = PB + PD. (III)

Therefore by substituting (II) into (III), BD = PA + PB + pc.

S7·12 S7·13 A

7-13 A line drawn from vertex A of equilateral L;:,.ABC, meets BC at D

and the circumcircle at P. Prove that p~ = ~B + ~.

As shown in Fig. S7-13, mLPAC = mLPBC (#36). Since

L;:,.ABC is equilateral, mLBPA = i (mAR) = 60, and mLCPA =
1 ,.........
2 (mAC) = 60 (#36). Therefore, mLBPA = mLCPA.

PA PC
Thus, L;:,.APC - L;:,.BPD, and PB = PD'

or (PA)(PD) = (PB)(PC). (I)

Now, PA = PB + PC (see Solution 7-8). (II)
Substituting (II) into (I),

(PB)(PC) = PD(PB + PC) = (PD)(PB) + (PD)(PC). (III)

Now, dividing each term of (III) by (PB)(PD)(PC), we obtain
1 1 1

PD = PC+ PB·

Challenge 1 If BP = 5 and PC = 20, find AD.

ANSWER: 21

Challenge 2 If mBP:mPC = 1:3, find the radius of the circle in
challenge [.

ANSWER: IOV2
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7-14 Express in terms of the sides of a cylic quadrilateral the ratio of
the diagonals.

On the circumcircle of quadrilateral ABCD, choose points P and
Q so that PA = DC, and QD = AB, as in Fig. S7-14.
Applying Ptolemy's Theorem to quadrilateral ABCP,

(AC)(PB) = (AB)(PC) + (BC)(PA). (I)

Similarly, by applying Ptolemy's Theorem to quadrilateral
BCDQ, (BD)(QC) = (DC)(QB) + (BC)(QD). (II)
. .....- .....-

Smce PA + AB = DC + QD, mPAB = mQDC, and PB =
QC.

Similarly, since mPBC = mDBA, PC = AD, and since mQCB =
.....-

mACD, QB = AD.

Finally, dividing (I) by (II), and substituting for all terms con-
. . AC (AB)(AD) + (BC)(DC)

tammg Q and P, BD = (DC)(AD) + (BC)(AB)

S7-14 S7-15 p

-=---------D
7·15 A point P is chosen inside parallelogram ABCD such that LAPB

is supplementary to LCPD.
Prove that (AB)(AD) = (BP)(DP) + (AP)(CP). (Fig. S7-15)

On side AB of parallelogram ABCD, draw 6AP'B '" 6DPC,
so that DP = AP', CP = BP'. (I)
Since LAPB is supplementary to L CPD, and mL BP'A =
mLCPD, LAPB is supplementary to LBP'A. Therefore, quadri­
lateral BP'AP is cyclic. (#37).

Now, applying Ptolemy's Theorem to cyclic quadrilateral
BP'AP, (AB)(P'P) = (BP)(AP') + (AP)(BP').
From (I), (AB)(P'P) = (BP)(DP) + (AP)(CP). (II)
Since mLBAP' = mLCDP, and CD II AB, (#2Ia), PD II P'A.
Therefore PDAP' is a parallelogram (#22), and P'P = AD (#2Ib).
Thus, from (II), (AB)(AD) = (BP)(DP) + (AP)(CP).
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c

A

I,
I,
I, /, ,
I '
",'o

c
c

A

D

7-16 A triangle inscribed in a circle of radius 5, has two sides measuring
5 and 6. Find the measure of the third side of the triangle.

METHOD I: In Fig.S7-16a, we notice that there are two possibilities
to consider in this problem. Both f:::,ABC, and f:::,ABC' are in­
scribed in circle 0, with AB = 5, and AC = AC' = 6. We are
to find BC and BC'.

Draw diameter AOD, which measures 10, and draw DC, DB,
and DC'. mLAC'D = mLACD = mLABD = 90 (#36).

Consider the case where LA in f:::,ABC is acute.
In right f:::,ACD, DC = 8, and in right f:::,ABD, BD = 5y3 (#55).
By Ptolemy's Theorem applied to quadrilateral ABCD,

(AC)(BD) = (AB)(DC) + (AD)(BC),

or (6)(5y3) = (5)(8) + (1O)(BC), and BC = 3y3 - 4.

Now consider the case where LA is obtuse, as in f:::,ABC'.
In right f:::,AC'D, DC' = 8 (#55).

By Ptolemy's Theorem applied to quadrilateral ABDC',

(AC')(BD) + (AB)(DC') = (AD)(BC'),

(6)(5y3) + (5)(8) = (1O)(BC'), and BC' = 3y3 + 4.

METHOD II: In Figs. 57-16b and 57-16c, draw radii OA and OB.
Also, draw a line from A perpendicular to CB(C'B) at D.

Since AB = AO = BO = 5, mLAOB = 60 (#6), so mAR = 60
(&35). Therefore, mLACB (LAC'B) = 30 (#36).
In right f:::,ADC, (right f:::,ADC'), since AC(AC') = 6,
CD(C'D) = 3y3, and AD = 3 (#55c).

In right f:::,ADB, BD = 4 (&55).

Since BC = CD - BD, then BC = 3v/3 - 4 (in Fig. S7-16b).

In Fig. 57-16c, since BC' = C'D + BD, then BC' = 3\-/3 + 4.
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Challenge Generalize the result of this problem for any triangle.

by4Rl-_- c2 ± cy4R2 - b2 .
ANSWER: a = 2R ' where R IS the

radius of the circumcircle, and the sides band c are known.

8. Menelaus and Ceva:

Collinearity and Concurrency

8-1 Points P, Q, and R are taken on sides AC, AB, and BC (extended
if necessary) of .6ABC. Prove that if these points are collinear,

AQ BR CP
then QB . RC . PA = -I.

This theorem, together with its converse, which is given in the
Challenge that follows, constitutes the classic theorem known as
Menelaus' Theorem.

(II)

(I)

I.

METHOD I: In Fig. S8-1a and Fig. S8-1b, points P, Q, and Rare
collinear. Draw a line through C, parallel to AB, meeting line
segment PQR at D.

DC RC
.6DCR ~ .6QBR (#49), therefore QB = BR' or
DC = ~QB)(RC) .

BR
DC CP

.6PDC ~ .6PQA (#49 or #48), therefore AQ = PA' or
DC = (AQl(CP).

PA

From (I) and (II), (QB~~Rc:l = (AO)~CP)

I
AQ BR CPIand (QB)(RC)(PA) = (AQ)(CP)(BR), or QB' RC' PA

58·1a SS-1b A

'~/~,
B C R
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k· d· o. . F· S8 1 AQ BR dTa Ing uectlon Into account In Ig. - a, QB' RC' an

~~ are each negative ratios, and in Fig. S8-1b ~~ is a negative
° h·1 AQ d CP . . .ratio, w Ie QB an PA are posItive ratios.

Th fi AQ BR CP I ° • h h· ddere ore, QB . RC· PA = - ,Since In eac case t ere IS an 0

number of negative ratios.

p S8-1c S8-1d

~
MQ~
i N P L,

I

8 C R
I£.--------""Jl------=::!.... R

METHOD II: In Fig. S8-1c and Fig. S8-1d, PQR is a straight line.
Draw BM 1- PR, AN 1- PR, and CL 1- PR.

. AQ AN
Smce L;:,.BMQ - L;:,.ANQ (#48), QB = BM· (I)

CP LC
Also L;:,.LCP - L;:,.NAP (#48), and PA = AN· (II)

BR BM
L;:,.MRB - L;:,.LRC (#49), and RC = LC' (III)

By multiplying (I), (II), and (III), we get, numerically,

AQ CP BR AN LC BM
QB· PA . RC = BM· AN' LC = 1.

I F o S8 1 AQ ° 0 CP 0 ° d BR. .n Ig. - c, QB IS negative, PA IS negative, an RCIS negative.

AQ CP BR
Therefore, QB· PA . RC = -1.

I F O S8 Id AQ ° 0 0 CP . 0 ° d BR ° •n Ig. - 'QB IS pOSItive, PA IS pOSItive, an RC IS negative.

AQ CP BR
Therefore, QB· PA . RC = -1.

TRIGONOMETRIC FORM OF MENELAUS' THEOREM: In Figs. S8-1a
and S8-1b, L;:,.ABC is cut by a transversal at points Q, P, and R.
AQ area .6.QCA ° °

BQ = area .6.QCB' since they share the same altitude.

area .6.QCA (QC)(AC) sin L QCA
By Formula #5b, area .6.QCB = (QC)(BC) sin L QCB



Menelaus and Ceva: Collinearity and Concurrency

AQ ACsin LQCA
Therefore, BQ = BC sin L QCB •

.. BR ABsin LBAR
Slmtlarly, CR = ACsin LCAR'

d
PC _ BCsin LPBC.

an PA - ABsin LPBA

177

(I)

(II)

(III)

Multiplying (I), (II), and (III),

AQ BR PC (AC)(AB)(BC)(sin LQCA)(sin LBAR)(sin LPBC)
BQ • CR' PA = (BC)(AC)(AB)(sin L QCB)(sin L CAR)(sin LPBA)

AQ BR PC ,
However, BQ . CR' PA = -I (Menelaus Theorem).

Th (sin L QCA)(sin L BAR)(sin LPBC) = -I
us, (sin LQCB)(sin LCAR)(sin LPBA) .

Challenge In .6.ABC points P, Q, and R are situated respectively on
sides AC, AB, and BC (extended when necessary). Prove
that if

AQ BR CP
QB . RC' PA = -I,

then P, Q, and R are collinear. This is part of Menelaus'
Theorem.

In Fig. S8-1a and Fig. S8-1b, let the line through Rand Q
meet AC at P'.

Then, by the theorem just proved in Problem 8-1,

AQ BR cpt
QB' RC' pIA = - 1.

However, from our hypothesis,

AQ BR CP
QB' RC' PA = -1.

Therefore, ~: = ~;, and P and P' must coincide.

8-2 Prove that three lines drawn from the vertices A, B, and C of
.6.ABC meeting the opposite sides in points L, M, and N, respec­
tively, are concurrent ifand only if

AN BL CM
NB . LC • MA = I.

This is known as Ceva's Theorem.
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METHOD I: In Fig. S8-2a and Fig. S8-2b, AL, BM, and CN meet
in point P.
BL area6A& "
LC = area 6ACL ' (share same altitude) (I)

"" BL area 6PBL
SImIlarly, LC = area 6PCL (II)

area 6ABL area 6PBL
Therefore from (I) and (II), area 6ACL = area 6PCL .

Thus !!!:. = area 6ABL - area 6PBL = ~rea 6ABP . (III)
'LC area 6ACL - area 6PCL area 6ACP

S
" "I I CM area 6BMC area 6PMC
Iml ar y, MA = area 6BMA = area 6PMA .

Therefore CM = area 6~~c; - area 6PM.~ = a!~~~!!c;~ .
'MA area 6BMA - area 6PMA area 6ABP (IV)

Also AN = area 6ACN = area 6APN .
'NB area 6BCN area 6BPN

Therefore AN = area f.::._ACN ~rea 6APN = area 6ACP . (V)
'NB area 6BCN - area 6BPN area 6BCP

By multiplying (III), (IV), and (V) we get
BL CM AN
LC' MA' NB = I. (VI)

Since in Fig. S8-2a, all the ratios are positive, (VI) is positive.

I F· S8 2b BL d AN "h"l CM" " .n Ig. -, LC an NB are negative, w Ie MA IS pOSItive.

Therefore, again, (VI) is positive.
Since Ceva's Theorem is an equivalence, it is necessary to

prove the converse of the implication we have just proved. Let
BM and AL meet at P. Join PC and extend it to meet AB at N'.
Since AL, BM, and CN' are concurrent by the part of Ceva's
Theorem we have already proved,

BL CM AN'
LC' M A. N'B = I.

H h h
," BL CM AN I

owever, our ypot eSls IS LC' MA . NB = .

Therefore, ~~ = ~~, so that Nand N' must coincide.
N

58·2a A

B------+--.....;;~
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METHOD II: In Fig. S8-2c and Fig. S8-2d, draw a line through A,
parallel to BC meeting CP at S and liP at R.

AM AR
L;:,.AMR ~ L;:,.CMB (#48), therefore MC = CB' (I)

BN CB
L;:,.BNC ~ L;:,.ANS (#48), therefore NA = SA • (II)

CL LP
L;:,.CLP ~ L;:,.SAP (#48), therefore SA = AP' (III)

BL LP
L;:,.BLP ~ L;:,.RAP (#48), therefore RA = AP' (IV)

CL BL CL SA
From (III) and (IV), SA = RA' or BL = RA . (V)

By multiplying (I), (II), and (V),
AM BN CL AR CB SA AN BL CM
Me' NA 'lii = CB' SA' RA = I, or NB' LC' MA = I.

For a discussion about the sign of the resulting product, see
Method I. The converse is proved as in Method I.

S8·2c SB.2d N

METHOD III: In Fig. S8-2e and Fig. S8-2f, draw a line through A
and a line through C parallel to BP meeting CP and AP at Sand
R, respectively.

AN AS
L;:,.ASN ~ L;:,.BPN (#48 or #49), and NB = BP' (I)

BL BP
L;:,.BPL ~ L;:,.CRL (#48 or 49), and LC = CR' (II)

L;:,.PAM ~ L;:,.RAC, ~~ = :~(#49), and CA = (R;'C:A). (III)

L;:,.PCM ~ L;:,.SCA cN! = PM (#49) d CA = (AS)(CM). (IV)
, CA AS ,an PM

F (III) d (IV) (RC)(MA) = (AS)(CM) CM = RC. (V)
rom an 'PM (PM)' or MA AS

By multiplying (I), (II), and (V),
AN BL C M AS BP RC
NB' LC' MA = BP' CR' AS = I.
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N

B...----....;;~--.....;;:..L

s

This proves that if the lines are concurrent, the ratio holds.
The converse is proved as in Method I.

58-2. A 58-2'

I, then lines AL, BM, and

R

METHOD IV: In Figs. S8-2a and S8-2b, BPM is a transversal of
~ACL.

A I' M I ' Th AP LB CM Ipp ymg ene aus eorem, PL' BC' MA = - .

Similarly in ~ALB, CPN may be considered a transversal.
AN BC LP

Thus, NB' CL . PA = -1.

B I , I' . AN BL CM I
y mu tIp IcatIon, NB' CL . MA = .

The converse is proved as in Method I.

TRIGONOMETRIC FORM OF CEVA'S THEOREM: As shown in Fig. S8-2a
and Fig. S8-2b, ~ABC has concurrent lines AL, BM, and CN.
BL area b.BAL
LC = area b.LAC (Problem 8-2, Method I)

! (AL)(AB) sin L BAL .
-:-2 = ABs~n LBAL (Formula #5b)
! (AL)(AC) sin LLAC ACsm LLAC
2
.. CM CB sin L CBM AN AC sin L ACN

Similarly, MA = ABsin LABM and NB BCsin LBCN

B I , I' BL CM AN
Y mu tIp ymg, LC' MA . NB =

(AB)(BC)(AC)(sin L BAL)(sin L CBM)(sin L ACN)
(AC)(AB)(BC)(sin LLAC)(sin LABM)(sin LBCN)

H . be' Th BL CM AN Iowever, smce y eva s eorem LC' MA . NB = ,
(sin L BAL)(sin L CBM)(sin L ACN) = 1.
(sin LLAC)(sin LABM)(sin LBCN)

The converse is also true, that if
(sin L BAL)(sin L CBM)(sin L ACN)
(sin LLAC)(sin LABM)(sin LBCN)

CN are concurrent.
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8-3 Prove that the medians ofany triangle are concurrent.

In f::,.ABC, AL, BM, and CN are medians, as in Fig. S8-3.
Therefore, AN = NB, BL = LC, and CM = MA.

So (AN)(BL)(MC) = (NB)(LC)(MA),
(AN)(BL)(CM)

or (NB)(LC)(MA) = 1.

Thus, by Ceva's Theorem, AL, BM, and CN are concurrent.

&
B L C

8-4 Prove that the altitudes ofany triangle are concurrent.

In f::,.ABC, AL, BM, and CN are altitudes. (See Fig. S8-4a and
Fig. S8-4b.)

AN AC
f::,.ANC ~ f::,.AMB (#48), and MA = AB' (I)

BL AB
f::,.BLA ~ f::,.BNC (#48), and NB = BC' (II)

CM BC
f::,.CMB ~ f::,.CLA (#48), and LC = AC' (III)

By multiplying (I), (II), and (Ill),
AN BL CM AC AB BC
MA . NB' LC = AB' BC' AC = I.

Thus, by Ceva's Theorem, altitudes AL, BM, and CN are con­
current.

A

B.a;..--~---~

SS-4b

8-S Prove that the interior angle bisectors ofa triangle are concurrent.
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In 6.ABC, AL, BM, and CN are interior angle bisectors, as in
Fig.58-5.

AN AC BL AB CM BC
Therefore, NB = BC (#47), LC = AC (#47), and MA = AB (#47).

Thus, by multiplying,

AN BL CM AC AB BC
NB' LC' MA = BC' AC' AB = l.

Then, by Ceva's Theorem, AL, BM, and CN are concurrent.

SS-5

8-6 Prove that the interior angle bisectors of two angles of a non­
isosceles triangle and the exterior angle bisector of the third angle
meet the opposite sides in three collinear points.

In 6.ABC, BM and CN are the interior angle bisectors, while
AL bisects the exterior angle at A. (see Fig. 58-6.)
AM AB BN BC CL AC
MC = BC (#47), NA = AC (#47), and BL = AB (#47).

Therefore, by multiplication,

AM BN CL AB BC AC
MC' NA' BL = BC' AC' AB = I.

CL -CL AM BN CL
However, BL = LB- therefore Me' NA . LB = -I.

Thus, by Menelaus' Theorem, N, M, and L must be collinear.

58-6

- ------------
BeL

8-7 Prove that the exterior angle bisectors ofany non-isosceles triangle
meet the opposite sides in three collinear points.
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In f::,.ABC, the bisectors of the exterior angles at A, B, and C meet
the opposite sides (extended) at points N, L, and M respectively
(Fig. 58-7).
CL BC AM AC BN AB
AL = AB (#47), BM = BC (#47), and CN = AC (#47).

CL AM BN BC AC AB .
Therefore, Ai· BM· CN = AB' BC' AC = - I, since all three

ratios are negative.

Thus, by Menelaus' Theorem, L, M, and N are collinear.

58·7

-..........

....... ....................

B'__.....::::::;; ~:....-----~:;;;; ....a....!.N
c

8·8 In right f::,.ABC, P and Q are on BC and AC, respectively, such
that CP = CQ = 2. Through the point of intersection, R, of AP
and BQ, a line is drawn also passing through C and meeting AB

at S. PQ extended meets AS at T. If hypotenuse AB = 10 and
AC = 8, find TS. (See Fig. S8-8.)

In right f::,.ABC, hypotenuse AB = 10, and AC = 8, so BC = 6
(#55).
In f::,.ABC, since AP, BQ, and CS are concurrent,

AQ CP BS ,
QC· PB . SA = I, by Ceva s Theorem.

Substituting, ~. i.10 ~SBS = I, and BS = 4.

Now consider f::,.ABC with transversal QPT.

AQ CP BT •
QC· PB· fA = -I (Menelaus Theorem).

Since we are not dealing with directed line segments, this may be
restated as (AQ)(CP)(BT) = (QC)(PB)(AT).

Substituting, (6)(2)(BT) = (2)(4)(BT + 10).

Then BT = 20, and TS = 24.

Challenge 1 By how much is TS decreased if P is taken at the midpoint
ofBC?

1 1
ANSWER: 24 - 72 = 16

2
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Challenge 2 What is the minimum value of TS?

ANSWER: TS = 0

58-8

QL-_----;;\- ~

(I)

(II)

8-9

8-10

A circle through vertices Band C of .6.ABC meets AB at P and
- +-----> +-----> QC (RC)(AC)
AC at R. If PR meets BC at Q, prove that QB = (PB)(AB)'

Consider .6.ABC with transversal QPR. (See Fig. S8-9.)
RC AP QB ,

- -. 0 - • - = -I (Menelaus Theorem)
AR PB CQ

Th °d 0 b I I QC RC APen, conSl enng a so ute va ues, QB = AR . PB .

AP AC
However, (AP)(AB) = (AR)(AC) (#54), or AR = AB'

B b OO (II) 0 (I) QC (RC)(AC)
Y su stltutmg m , we get QB = (PB)(AB) •

In quadrilateral ABCD, AS and CD meet at P; while AD and Be
meet at Qo Diagonals AC and if0 meet PQ at X andY, respectively.

PX PY .
Prove that XQ = - YQ . (See FIg. S8-1O.)

Consider .6.PQC with PB, QD, and CX concurrent. By Ceva's
PX QB CD

Theorem, XQ 0 BC' DP = I. (I)

Now consider .6.PQC with DB Y as a transversal. By Menelaus'

Theorem P~ . QB . ~I! = -I (II)
, YQ BC DP .

Therefore, from (I) and (II), ~~ = - f~ .

~~
p X Q Y
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~
B K C

8-11 Prove that a line drawn through the centroid, G, of .6.ABC, cuts
sides AB and AC at points M and N, respectively, so that
(AM)(NC) + (AN)(MB) = (AM)(AN).

In Fig. S8-II, line MGN cuts JiC at P. G is the centroid of .6.ABC.
Consider NGP as a transversal of .6.AKC.

NC AG PK ,
AN' GK' CP = -I, by Menelaus Theorem.

. AG 2 NC 2PK NC PC
Smce GK = I (#29), AN' CP = I, or AN = 2PK' (I)

Now taking GMP as a transversal of .6.AKB,

MB AG PK ,
AM' GK' BP = -I (Menelaus Theorem).

. AG 2 MB 2PK MB PB
Smce GK = I (#29), AM' PB = I or AM = 2PK' (II)

. NC MB PC+PB
By addmg (I) and (II), AN + AM = 2PK .

SincePC = PB + 2BK, then PC + PB = 2(PB + BK) = 2PK.
(AM)(NC) + (AN)(MB) = I

Thus, (AM)(AN) ,

and (AM)(NC) + (AN)(MB) = (AM)(AN).

8-12 In .6.ABC, points L, M, and N lie on BC, AC, and AB, respectively,
and AL, BM, and CN are concurrent. (See Fig. S8-12.)

(a) Find the numerical value of ~~ + :~ + ~~.

(b) Find the numerical value of ~~ + :~ + ~~ .

(a) Consider .6.PBC and .6.ABC. Draw altitudes PE and AD
of .6.PBC and .6.ABC, respectively. Since PE II AD (#9),

PE PL
.6.PEL,..., .6.ADL (#49), and AD = AL'
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Therefore the ratio of the altitudes of D.PBC and D.ABC is ~~ .

The ratio of the areas of two triangles which share the same
base is equal to the ratio of their altitudes.

PL area b.PBC
AL - area b.ABC

Similarly,
PM area b.CPA
BM - area b.ABC

and PN = area b.APB.
CN area b.ABC

(II)

(III)

. PL PM PN
By addmg (I), (II), and (III), AL + BM + CN

= area b.PBC + area b.CPA + area b.APB =
area b.ABC area b.ABC area b.ABC I. (IV)

(b) AP = AL - PL = I _ PL.
AL AL AL

BP = !JM - BP = I _ BP
BM BM BM

CP = CN - PN = I PN
CN CN - CN

(V)

(VI)

(VII)

By adding (V), (VI), and (VII),

AP BP CP [PL BP PN]
AL + BM + CN = 3 - Ai + BM + CN .

PL BP PN
However, from (IV), AL + BM + CN = l.

AP BP CP
Substituting into (VIII), AL + BM + CN = 2.

SS·12

(VIII)

8-13 Congruent line segments AE and AF are taken on sides AB and AC,
respectively, of D.ABC. The median AM intersects EF at point Q.

Prove that QE = AC.
QF AB
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SS-13

p
--=-------~~-~---->.c

For AB = AC, the proof is trivial. Consider AB ¢ Ae.

Extend FE to meet Be (extended) at P. FE meets median AM
at Q, as in Fig. S8-13.
Consider A M as a transversal of D.PFe.

PQ FA CM ,
OF' AC' MP = -I, by Menelaus Theorem. (I)

Taking AM as a transversal of D.PEB, we have
QE AB MP
PQ . EA . BM = - l. (II)

By multiplying (I) and (II), we obtain ~~ . ~~ . ~~ . ~Z = l.

However, since FA = EA and BM = eM, ~~ = ~~.

8-14 In D.ABC, AI, SM, and CN are concurrent at P. Express the

ratio ~~ in term~ of segments made by the concurrent lines on the

sides of 6.ABe.

In the proof of Ceva's Theorem (problem 8-2, Method I), it was
established that

(III)

(IV)

(V)

(VI)

(VII)

BL area b.ABP
LC - area b.ACP

CM area b.BCP
M A area b.ABP

and AN = area b.ACP •
N B area b.BCP
AP area b.ABP
PL - area b.LBP

and AP = area b.ACP .
PL area b.LCP

Therefore from (VI) and (VII),
AP area b.ABP area b.ACP
PL - area b.LBP area b.LCP

= area b.ABP + area b.ACP = area b.ABP + area b.ACP •
area b.BCP area b.BCP area b.BCP

AP MA AN .
From (IV) and (V), PL = CM + NB' for Fig. S8-14a;

AP MA AN .
and PL = CM - NB' for Fig. S8-14b.
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58·148
A

B""""::"'---~---=""'C Bt..:::::....----~--....:::::...L

Thus, we have established the ratio into which the point of con­
currency divides any cevian (i.e. the line segment from any vertex
to the opposite side).

8-15 Side AB of square ABCD is extended to P so that BP = 2(AB).
With M the midpoint of DC, BM is drawn meeting AC at Q. PQ

meets BC at R. Using Menelaus' Theorem, find the ratio ~: .

~'
D M C

(I)

(V)

(II)

(IV)

(III)

Applying Menelaus'

transversal PRQ,

Theorem to f::,.ABC (Fig. 58-15) with
CR AQ BP
RB . QC' PA = - I.

Since mLBAC = mLMCA (#8), and mLMQC = mLAQB

AQ AB
(#1), f::,.MQC,.., f::,.BQA (#48), and QC = MC'

But 2(MC) = DC = AB, or ~~ = i·
AQ 2

From (II) and (III), QC = i .

Since BP = 2(AB) BP = ~ or PB = -2.
'AP 3 PA 3

Substituting (IV) and (V) into (I) CR. ~ . -2 = - I or CR = ~ .
'RB 1 3 'RB 4

ChaIIenge 1 Find ~: when BP = AB.

ANSWER: I

ChaIIenge 2 Find ~: when BP = k(AB).

k + I
ANSWER:~
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8-16 Sides AB, Be, CD, and i5A ofquadrilateral ABCD are cut by a
straight line at points K, L, M, and N respectively. Prove that
BL . A~ . ON . eM = I
LC KB NA MO .

Draw diagonal AC meeting KLNM at P. (See Fig. S8-16.)

Consider KLP as a transversal of ~ABC.
BL AK CP ,
LC' KB' PA = -I (Menelaus Theorem) (I)

Now consider MNP as a transversal of ~ADC.
DN CM PA DN CM CP
N A . MD' CP = - I Then, N A . M D "'" - PA . (II)

S b · . (II' (I BL AK DN CMu stltutmg ) mto ), we get LC' KB' NA • MD = I.

58-16
A

K

L..------±---""""'....M

8-17 Tangents to the circumcircle of ~ABC, at points A, B, and C,
meet sides Be, XC, and AB at points P, Q, and R respectively.
Prove that points P, Q, and R are collinear.

In Fig. S8-17, since both LBAC and L QBC are equal in measure.---..
to one-half mBC (#36, #38), mLBAC = mLQBC. Therefore,

AQ BA (AQ)2 (BA)2
~ABQ ~ ~BCQ (#48), and BQ = BC' or (BQ)2 = (BCP' (I)

However, (BQ)2 = (AQ)(CQ) (#53). (II)

By substituting (II) into (I), we get ~~ = ~;~~: . (III)

Similarly, since LBCR and LBAC are equal in measure to
one-half mBC (#36, #38), mLBCR = mLBA C. Therefore,

CR BC (CR)2 (BC)2
~CRB ~ ~ARC (#48), and AR = AC' or (AR)2 = (AC)2' (IV)

However, (CR)2 = (AR)(RB) (#53). (V)

By substituting (V) into (IV), ~: = ~~~~: . (VI)

Also, since LCAP and LABC are equal in measure to one-half

mAC (#36, #38), mLCAP = mLABC. Therefore,



(VII)

(VIII)

(IX)
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AP AC (AP)2 (AC)2
L::.CAP - L::.ABP and BP = BA' or (BPF = (BA)2 •

However, (AP)2 = (BP)(PC) (#53).

By substituting (VIII) into (VII), ~~ = ~~~::.

Now multiplying (III), (VI), and (IX),

I
AQI IRBI IPCI (BAF (BCF (AC)2
CQ . AR • BP = (BCP' (AC)2' (BAF = 1-11·

Therefore, ~~ . ~; . ~~ = - 1, since all the ratios on the left side

are negative. Thus, by Menelaus' Theorem, P, Q, and Rare
collinear.

8-18 A circle is tangent to side BC of 6ABC at M, its midpoint, and
cuts AB and AC at points R, R', and S, S', respectively. If RS and
R'S' are each extended to meet Be at points P and P' respectively,
prove that (BP)(BP') = (CP)(CP').

Consider RSP as a transversal of 6ABC (Fig. S8-18).
BP AR CS •
CP' BR . AS = -1, (Menelaus Theorem)

BP BR AS
or CP = - AR' cs' (I)

Now consider R'S'P' as a transversal of 6ABC.
CP' BR' AS' CP' - AR' CS'
BP' . AR' . CS' = -I, or BP' = BR' . AS' • (II)

AR' AS
However, (AS')(AS) = (AR')(AR) (#52), or AS' = AR' (III)

Also, (BM)2 = (BR)(BR') and (MC)2 = (CS)(CS') (#53).

But BM = MC; therefore (BR)(BR') = (CS)(CS')
CS' BR

or HR' = CS· (IV)

By substituting (III) and (IV) into (II), we get from (I),
CP' BR AS BP
BP' = - Cs' A-i? = cP'

Therefore, (BP)(BP') = (CP)(CP').
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8-19 In 6ABC, P, Q, and R are the midpoints of the sides AB, BC, and
AC. Lines AN, Bt, and eM are concurrent, meeting the opposite
sides in N, L, and M, respectively. If PI: meets Be at J, MQ meets
XC at I, and RN meets AB at H, prove that H, I, and J are
collinear.

H

Since RNH is a transversal of 6ABC, as shown in Fig. S8-19,
AH CR BN •
HB' RA' NC = -I, by Menelaus Theorem.

However, RA = CR.
AH NC

Therefore - = - - . (I), HB BN

Consider PU as a transversal of 6ABC.

CL . AP . BJ = -I (Menelaus' Theorem)
LA PB JC

BJ LA
However AP = PB, therefore JC = - CL' (II)

Now consider MQI as a transversal of 6ABC
Cf BQ AM ,
fA . QC' MB = -I (by Menelaus Theorem)

Since BQ = QC 0. = _ MB • (III)
, fA AM

By multiplying (I), (II), and (III), we get

AH BJ Cf NC LA MB
HB' JC '/A = - BN' CL' AM'

However, since AN, BL, and CM are concurrent,

NC LA MB •
BN' CL . AM = I (Ceva s Theorem).

AH BJ Cf
Therefore, HB' JC '/A = -1, and by Menelaus' Theorem, H,

I, and J are collinear.
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8·20 .6.ABC cuts a circle at points E, E', D, D', F, F', as in Fig. S8-20.
Prove that if AD, BF, and CE are concurrent, then AD', 8F',
and CE' are also concurrent.

Since AD, BF, and CE are concurrent, then

AE BD CF ,
EB' DC' FA = I (Ceva s Theorem). (I)

AE AF'
(AE)(AE') = (AF)(AF') (#54), or AF = AE" (II)

BD BE'
(BE')(BE) = (BD)(BD') (#54), or BE = BD" (III)

(CD')(CD) = (CF')(CF) (#54),
CF CD'

or CD = CF" (IV)

By multiplying (II), ,!II), and (IV), we get

AE BD CF AF' BE' CD'
AF' BE' CD = AE" BD' • CF' •

AE BD CF
But from (I) we know that AF' BE . CD = I.

AF' BE' CD'
Therefore, AE" BD' . CF' = I, and by Ceva's Theorem, AD',

BF', and CE' are concurrent.

8-21 Prove that the three pairs of common external tangents to three
circles, taken two at a time, meet in three collinear points.



58·21
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o

In Fig. S8-21, common external tangents to circles A and B meet
at R, and intersect the circles at points D, E, F, and G.

Common external tangents to circles A and C meet at Q, and
intersect the circles at points H, I, J, and K.
Common external tangents to circles Band C meet at P, and
intersect the circles at points L, M, N, and S.

Draw AD, AH, BE, BL, CK, and CM. AD.l DR, BE.l DR
(#32a), so AD" BE (#9), ~RAD '" ~RBE (#49),

AR ADand - =-.
RB BE

(I)

Similarly, BL.l PL, CM .1 PL and BL" CM, so that
BP BL

~PBL '" ~PCM (#49), and PC = CM' (II)

Also AH .1 QH, and CK .1 QH, and AH " CK, so that
QC CK

~QAH '" ~QCK, (#49), and AQ = AH· (III)

By multiplying (I), (II), and (III), we get

AR BP QC AD BL CK
RB . PC • AQ = BE· CM· AH· (IV)

Since AH = AD, CK = CM, and BL = BE,

~~ . ;~. ~~ = -I. (Note that they are all negative ratios.)

Thus, by Menelaus' Theorem, P, Q, and R are collinear.



(V)
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8-22 AM is a median of .6.ABC, and point G on AM is the centroid.
AM is extended through M to point P so that GM = MP.
Through P, a line parallel to AC cuts AB at Q, and BC at PI;
through P, a line parallel to AB cuts CB at Nand AC at P 2 ;

and a line through P and parallel to CB cuts AS at Pa. Prove that
points Ph P 2, and Pa are collinear.

In Fig.S8-22, since PP I Q II AC, 6.CMA ~ 6.P I MP (#48), and
CM AM 3
MP

I
= MP = "I (#29). (I)

Similarly, 6.AMB ~ 6.PMN, and
MB AM 3
MN = MP = "I' (II)

CM MB
From (I) and (II), MP

I
= MN' (III)

However, since CM = MB, from (III), MP I = MN,

and CN = P I B. (IV)

Thus, PNGP I is a parallelogram (#21f).
. - -. CN AG 2

Smce NG II AC, m 6.CMA, NM = GM = "I (#46).

Therefore CN = ~.
'NB 1

In 6.ABC, where P2N II AB, CP
z = CN = ! (#46)

PzA NB 2 .

S· '1 I BPI CN I
Iml ar y, PIC = NB = :2 •

Also in 6.APPa, since MB II PPa, ~:; = ::; = ~ (#46). (VII)

Multiplying (V), (VI), and (VII), we get

CPz . BPI. AP3 = (!)(!)(4) = -I
PzA PI C P 3 B 2 2 '

taking direction into account. Thus, by Menelaus' Theorem,
points Ph P2 , and P a are collinear.



(I)

(II)

(III)
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8-23 If 6A 1B1C 1 and 6A 2B2C 2 are situated so that the lines joining

the corresponding vertices, A;A 2, BJi 2, and C";C2' are concurrent,
then the pairs of corresponding sides intersect in three collinear
points. (Desargues' Theorem)

In Fig. S8-23, lines A";A 2, B;B 2, ~2 all meet at P, by the
hypothesis.

Lines 'ii;C2 and B;C 1 meet at A'; lines A;C 2 and A;C 1 meet
at B'; and lines B2A 2 and BlA 1 meet at C'.

Consider A'C1B1 to be a transversal of 6PB 2C 2 • Therefore,
PB. B2A' C2C, , h
B,B2 . A'C2 . --c:P = -1 (Menelaus T eorem).

Similarly, considering C'B1A 1 as a transversal of 6PB 2A 2,

PAl A 2C' BlB. , h
A.A2 . C'B2 ' B.P = - I. (Menelaus T eorem)

And taking B'Al C 1 as a transversal of 6PA 2C2,
PC, C2B' A 2A, ,
C

1
C

2
• B'A 2 . A.P = - I. (Menelaus Theorem)

By multiplying (I), (II), and (III), we get

::::::....--~---.l....--.::lIo.B,
8,

58·23

B2A' A 2C' C2B'
A'C2 ' C'B2 ' B'A2 = -I.

Thus, by Menelaus' Theorem, applied to 6A 2B2C2, we have
points A', B', and C' collinear.

c
58·24

p......==:::=---------~:-~:::...s~-----=~c

8-24 A circle inscribed in 6ABC is tangent to sides BC, CA, and AB at
points L, M, and N, respectively. If MN extended meets Be at P,

BL BP
(a) prove that LC = - pc'

(b) prove that ifNI meets AC at Q and ML meets AB at R, then
P, Q, and R are collinear.

(a) By Menelaus' Theorem applied to 6ABC with transversal
-- AN BP MC .
PNM, NB' PC' AM = -I (FIg. 58-24).
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However, AN = AM, NB = BL, and MC = LC (#34). (I)
. . AN BP LC BL BP

By substitution, BL . PC' AN = -I, so LC = - PC' (II)

(b) Similarly AN = _ AR, and MC = _ QC. (III), (IV)
, NB RB AM AQ

By multiplication of (II), (III) and (IV), we get
BL AN MC -BP -AR -QC
LC' NB . AM = PC • RB . AQ .

BL AN MC
However from (I), LC' NB' AM = 1.

BP AR QC .
Therefore, PC' RB' AQ = -I, and pomts P, Q, and Rare

collinear, by Menelaus' Theorem.
Another method of proof following equation (II) reasons in

this fashion. From (I), :;. :~. ~~ = 1. Therefore, by Ceva's

Theorem, Ai, liM, and eN are concurrent. Since these are the
lines joining the corresponding vertices of 6.ABC and 6.LMN,
by Desargues' Theorem (Problem 8-23), the intersections of the
corresponding sides are collinear; therefore P, Q, and Rare
collinear.

G C H----,-- -,--
I I, ,

R' I......... :
" Q

58·25

8-25 In 6.ABC, where CD is the altitude to AB and P is any point on
DC, AP meets CB at Q, and BP meets CA at R. Prove that
mLRDC = mLQDC, using Ceva's Theorem.

Extend DR and DQ through Rand Q, respectively, to meet a
line through C, parallel to AB, at points G and H, respectively
(Fig. S8-25).

(I)

(II)

AL-----D~-~B

CR GC
6.CGR", 6.ADR (#48), and RA = AD'

Similarly, 6.BDQ '" 6.CHQ, and ~~ = ~;.
. CR AD BQ

However, m 6.ABC RA' DB' QC = I (Ceva's Theorem). (III)
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By substituting (I) and (II) into (III), we get
GC AD DB GC
AD . DB . CH = I, or eH = I. Thus, GC = CH.

Since CD is the perpendicular bisector of GH (#10),

6.GCD '" 6.HCD, and mLGDC = mLHDC,

or mLRDC = mLQDC.
A

<I'F-----;f--~---"'o.c B~--------"'-----=- C

8-26 In 6.ABC, points F, E, and 0 are the feet of the altitudes drawn
from the vertices A, B, and C, respectively. The sides of the pedal
6.FEO, EF, OF, and DE, when extended, meet the sides of
6.ABC, AB, AC, and Be at points M, N, and L, respectively.
Prove that M, N, and L are collinear. (See Fig. S8-26.)

METHOD I: In Problem 8-25, it was proved that the altitude of a
triangle bisects the corresponding angle of the pedal triangle.
Therefore, BE bisects LDEF, and mLDEB = mLBEF. (I)
LDEB is complementary to LNED. (II)

Therefore since MEF is a straight line,
LNEM is complementary to LBEF. (III)

Therefore from (I), (II), and (III), mLNED = mLNEM, or
NE is an exterior angle bisector of 6.FED. It then follows that

NF EF
ND = DE (#47). (IV)

Similarly, FL is an exterior angle bisector of 6.FED and
LD DF
LE = EF' (V)

Also, DM is an exterior angle bisector of 6.FED and so

~~ = ~~ (#47) . (VI)

By multiplying (IV), (V), and (VI), we get
NF LD ME EF DF DE
ND . LE' MF = DE' EF' DF = -I,

taking direction into account.
Thus, by Menelaus' Theorem, M, N, and L are collinear.



(I)
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METHOD II: Let D, E, F and C, B, A be corresponding vertices of
6.DEF and 6.CBA, respectively. Since AF, CD, and BE are
concurrent (problem 8-4), the intersections of the corresponding
sides DE and BC, FE and BA, and FD and CA, are collinear by
Desargues' Theorem (problem 8-23).

8-27 In 6.ABC, L, M, and N are the feet of the altitudes from vertices
A, B, and C. Prove that the perpendiculars from A, B, and C to
MN, LN, and LM, respectively, are concurrent.

As shown in Fig. S8-27, AL, BM, and CN are altitudes of 6.ABC.
AP.l NM, BQ.l NL, and CR.l ML.

In right 6.NAP, sin LNAP = Z~ = cos LANP.

Since mLBNC = mLBMC = 90, quadrilateral BNMC is
cyclic (#36a).

Therefore, LMCB is supplementary to LBNM.
But LANP is also supplementary to LBNM. Thus, mLMCB =
mLANP, and cos LMCB = cos LANP. (II)

From (I) and (II), by transitivity,

sin LNAP = cos LMCB. (Ill)

Now, in right 6.AMP, sin LMAP = ~~ = cos LAMP. (IV)

Since quadrilateral BNMC is cyclic, LNBC is supplementary to
LNMC, while LAMP is supplementary to LNMC. Therefore,
mLNBC = mLAMP and cos LNBC = cos LAMP. (V)

From (IV) and (V), it follows that sin LMAP = cos LNBC. (VI)
sin LNAP cos LMCB

From (III) and (VI), sin L MAP = cos L NBC' (VII)

In a similar fashion we are able to gel the following proportions:
sin L CBQ cos L BAC
sin L ABQ cos L ACB

and sin L ACR = cos L 1_BC .
sin L BCR cos L BAC

By multiplying (VII), (VIII), and (IX), we get
sin LNAP sin LCBQ sin LACR
sin L MAP' sin L ABQ . sin L BCR

cos LACB cos LBAC cos LABC
cos L ABC' cos L ACB . cos L BAC 1.

Thus, by Ceva's Theorem (trigonometric form) AP, BQ, and CR
are concurrent.
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8-28 Prove that the perpendicular bisectors of the interior angle bisectors
of any triangle meet the sides opposite the angles being bisected
in three collinear points.

Let AA', BB', and CC' be the bisectors of angles A, B, and C,
respectively, terminating at the opposite side. The perpendicular
bisector of AA' meets XC, AB, and CiJ at points M, M', and Ph
respectively; the perpendicular bisector of BB' meets CiJ, AB,
and XC at points L, L', and P2, respectively; and the perpendic­
ular bisector of CC' meets AC, CiJ, and AD at points N, N',
and Pa, respectively. (See Fig. S8-28.)

Draw B'L. Since B'L = LB (#18), mLLB'B = mLLBB' (#5).
However, mLABB' = mLLBB'; therefore mLLB'B =
mLABB', and B'L II AB (#8).

CB' a CL
Then AB' = ~ = LB (#46). (I)

However, mLB'P2L' = mLBP2L', and ~~: = ~~ (#47). (II)

Thus, multiplying (III) and (IV), we get

CB' a CP2Therefore - = - = - .
'AB' C BP2

Similarly, since B'L'I/ CB,
CB' a L'B BP2
AB' = ~ = AL' = AP2 .

(III)

(IV)

(V)

CP2 a 2
---.
AP2 - c 2

S· A'M' II AC CA' b AM' API
mce , BA' = ~ = M' B = BP

l
•

And since A'M II AB CA' = ~ = CM = CPl.
'BA' c MA AP l

Now, multiplying (VI) and (VII), we get

CP I c2

BPI = b2.

I ··1 ~ h· b . AP3 b
2

n a simi ar las IOn we 0 tam BP
3

= ~ .

By multiplying (V), (VIII), and (IX), we get

CP2 BPI AP3 a 2 c 2 b2
-0-0- - -.-.- - -I,
AP2 CPI BP3 - c' b2 a2 -

(VI)

(VII)

(VIII)

(IX)

taking direction into account. Therefore, by Menelaus' Theorem,
Ph P2, and Pa are concurrent.
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P,

E

F

c

N

8-29 Figure 8-29a shows a hexagon ABCDEF whose pairs of opposite
sides are: [AB, DE], [CB, EF], and [CD, AF]. If we place points
A, B, C, D, E, and F in any order on a circle, the above pairs of
opposite sides intersect at points L, M, and N. Prove that L, M,
and N are collinear.

Pairs of opposite sides (see Fig. S8-29a) AB and DE meet at L,
CB and EF meet at M, and CD and AF meet at N. (See Fig.
S8-29b.) Also AB meets CN at X, EF meets CN at Y, and EF
meets AB at Z. Consider BC to be a transversal of 6XYZ. Then

ZB xc YM ,
BX' CY' MZ = -1, by Menelaus Theorem. (I)

Now taking AF to be a transversal of 6XYZ,
ZA YF XN
AX' FZ' NY = -1. (II)

Also since DE is a transversal of 6XYZ,
XD YE ZL
D Y' EZ' LX = - 1. (III)

By multiplying (I), (II), and (III), we get
YM. XN. ZL. (ZB)(ZA) . (XD)(XC) . (YE)( YF) -1. (IV)
MZ NY LX (EZ)(FZ) (AX)(BX) (D Y)(CY)
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(V)

(VI)

(V11)

1,

1,
(ZB)(ZA)

However, (EZ)(FZ)

(XD)(XC)
(AX)(BX)

(YE)(YF)
and (DY)(CY) 1 (#52).

By substituting (V), (VI), and (V11) into (IV), we get
YM XN ZL
MZ' NY' LX = -1.

Thus, by Menelaus' Theorem, points M, N, and L must be
collinear.

58·30 C'

(111)

8-30 Points A, B, and C are on one line and points A', B', and C' are
on another line (in any order). If AB' and A'B meet at C", while
AC' and A'C meet at B", and BC' and B'C meet at A", prove
that points A", B", and C" are collinear.

(This theorem was first published by Pappus of Alexandria about
300 A.D.)

In Fig. 58-30. B'C meets A'Bat Y, AC' meets A'B at X, and B'C
meets AC' at Z.
Consider C"AB' as a transversal of 6XYZ.

ZB' XA YC"
YB' . ZA . XC" = -1 (Menelaus' Theorem) (I)

Now taking A'B"C as a transversal of 6XYZ,
YA' XB" ZC
XA' . ZB" . YC = -1. (11)

BA"C' is also a transversal of 6XYZ, so that
YB ZA" XC'
XB· YA" . ZC' = - 1.
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Multiplying (I), (II), and (III) gives us equation (IV),
YC" XB" ZA" ZB' YA' XC' XA ZC YB
XC'" ZB'" YA'" YB" XA" ze' ZA' YC' XB = -I.

Since points A, B, C and A', B' , C' are collinear, we obtain the
following two relationships by Menelaus' Theorem when we con­
sider each line a transversal of 6XYZ.

XA ZC YB
ZA . YC' XB = -1

Substituting (V) and (VI) into (IV), we get

YC" XB" ZA"
XC''' ZB'" YA" = -I.

(V)

(VI)

Thus, points A", B", and C" are collinear, by Menelaus' Theorem.

9. The Simson Line

9-1 Prove that the feet of the perpendiculars drawn from any point on
the circumcircle of a given triangle to the sides of the triangle are
collinear (Simson's Theorem).

METHOD I: From any point P, on the circumcircle of 6ABC
perpendiculars PX, PY, and PZ are drawn to sides BC, AC, and
AB, respectively (Fig. S9-la). Since LPYA is supplementary to
LPZA, quadrilateral PZA Y is cyclic (#37). Draw PA, PB, and PC.

Therefore, mLPYZ = mLPAZ (#36). (I)

Similarly, since LPYC is supplementary to LPXC, quadrilateral
PXC Y is cyclic, and mLP YX = mLPCB. (II)

However, quadrilateral PACB is also cyclic, since it is inscribed
in the given circumcircle, and therefore

mLPAZ(mLPAB) = mLPCB (#36). (III)

From (I), (II), and (III), mLPYZ = mLPYX, and thus points
X, Y, and Z are collinear. The line through X, Y, and Z is called
the Simson Line of 6ABC with respect to point P.
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S9·1c

·~I,I"-------'lc

METHOD II: From any point P on the circumcircle of !:lABC
(inside LACB), perpendiculars PX, PY, and PZ are drawn to
sides BC, AC, and AB, respectively. (See Fig. S9-lb.) Draw
circles with PA and PB as diameters. Since mLPYA =
mLPXB = mLPZA = 90, points Yand Z lie on the circle with
PA as diameter (#37). Also points X and Z lie on the circle with
PB as diameter (#36a).
Since mLPXC = mLPYC = 90, in quadrilateral XPYC, LC
is supplementary to LXPY (#15).
However LC is also supplementary to LAPB (#37).

Therefore, mLXPY = mLAPB. (I)

By subtracting each member of (I) from mLBPY,

we get mLBPX = mLAPY. (II)

Now mLBPX = mLBZX (#36),

and mLAPY = mLAZY (#36). (III)

Substituting (III) into (II), mLBZX = mLAZY.

Since m is a straight line, points X, Y, and Z must be collinear,
making LBZX and LAZY vertical angles.

METHOD III: From any point, P, on the circumcircle of !:lABC,
PX, PY, and PZ are drawn to the sides BC, AC, and AB, re­
spectively. PZ extended meets the circle at K. Draw cr, as shown
in Fig. S9-le.
Since mLPZB rv mLPXB rv 90, quadrilateral PZXB is cyclic
(#36a), and so LPBC is supplementary to LPZX (#37).

However LKZX is supplementary to LPZX;

therefore, mLPBC = mLKZX. (I)

But mLPBC = mLPKC (#36). (II)
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Thus from (I) and (II) mLKZX = mLPKC, and XZ" KC (#8).
Since quadrilateral PACK is cyclic, LPKC is supplementary

to LPAC (#37). However, LPAY is also supplementary to
LPAC. Therefore, mLPKC = mLPAY. (III)
Since mLPYA rv mLPZA rv 90, quadrilateral PYAZ is cyclic
(#37), and mLPZY = mLPAY. (IV)
From (III) and (IV), mLPKC = mLPZYand zy II iCC (#7).
Since both XZ and zy are parallel to iCC, X, Y, and Z must be
collinear, by Euclid's parallel postulate.

Challenge 1 State and prove the converse ofSimson's Theorem.
If the feet of the perpendiculars from a point to the sides
of a given triangle are collinear, then the point must lie
on the circumcircle of the triangle.
Collinear points X, Y, and Z, are the feet of perpen­
diculars PX, PY, and PZ to sides BC, AC, and AB,
respectively, of !:lABC (Fig. S9-ld). Draw PA, PB, and
Pc.

Since mLPZB rv mLPXB rv 90, quadrilateral
PZXB is cyclic (#36a), and LPBX is supplementary to
LPZX (#37). However, LPZX is supplementary to
LPZ Y, since X, Z, and Yare collinear.
Therefore, mLPBX = mLPZY. (I)

Since LPZA is supplementary to LPYA, quadri­
lateral PZA Y is also cyclic (#37), and
mLPAY = mLPZY (#36). (II)
From (I) and (II), mLPBX = mLPAY or mLPBC=
mLPAY.
Therefore LPBC is supplementary to LPAC and
quadrilateral PACB is cyclic (#37); in other words point
P lies on the circumcircle of !:lABC.
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Another proof of the converse of Simson's Theorem
can be obtained by simply reversing the steps shown in
the proof of the theorem itself, Method II.

Challenge 2 Which points on the circumcircle of a given triangle lie
on their own Simson Lines with respect to the given
triangle?

ANSWER: The three vertices of the triangle are the only
points which lie on their own Simson Lines.

9-2 Altitude AD of~ABCmeets the circumcircle at P. Prove that the
Simson Line of P with respect to ~ABC is parallel to the line
tangent to the circle at A.

Since PX, and PZ are perpendicular respectively to sides AC, and
AS of ~ABC, points X, D, and Z determine the Simson Line of
P with respect to ~ABC.

Draw PB (Fig. S9-2).

Consider quadrilateral PDBZ, where mLPDB "" mLPZB ""
90, thus making PDBZ a cyclic quadrilateral (#37).

In PDBZ, mLDZB = mLDPB (#36). (I)

However, in the circumcircle of ~ABC, mLGAB = ~ (mAE)
1 ,.-...

(#38), and mLDPB (LAPB) = 2 (mAB)(#36).

Therefore, mLGAB = mLDPB. (II)

From (I) and (II), by transitivity, mLDZB = mLGAB, and
thus Simson Line Xi5Z II tangent GA (#8).
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9-3 From point P on the circumcircle of ~ABC, perpendiculars PX,
PY, and PZ are drawn to sides AC, AB, and Be, respectively.
Prove that (PA)(PZ) = (PB)(PX). (See Fig. S9-3.)

Since mLPYB""'" mLPZB""'" 90, quadrilateral PYZB is cyclic
(#36a), and mLPBY = mLPZY (#36). (I)

Since mLPXA ......, mLP YA ......, 90, quadrilateral PXA Y is cyclic
(#37), and mLPXY = mLPAY. (II)

Since X, Y, and Z are collinear (the Simson Line),
PA PB

~PAB~ ~PXZ (#48), and PX = PZ' or (PA)(PZ) = (PB)(PX).

9-4 Sides AB, Be, and CA of ~ABC are cut by a transversal at points
Q, R, and S, respectively. The circumcircles of ~ABC and ~SCR
intersect at P. Prove that quadrilateral APSQ is cyclic.

Draw perpendiculars PX, P Y, PZ, and PW to AB, AC, QR" and
Be, respectively, as in Fig. S9-4.

Since point P is on the circumcircle of ~ABC, points X, Y,
and Ware collinear (Simson's Theorem).

Similarly, since point P is on the circumcircle of ~SCR, points Y,
Z, and Ware collinear.

It then follows that points X, Y, and Z are collinear.

Thus, P must lie on the circumcircle of ~AQS (converse of
Simson's Theorem), or quadrilateral APSQ is cyclic.

9-5 In Fig. S9-5, ~ABC, with right angle at A, is inscribed in circle O.
The Simson Line ofpoint P, with respect to ~ABC meets PA at M.
Prove that MO is perpendicular to PA.
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In Fig. S9-5, PZ, P Y, and PX are perpendicular to lines AB, R,
and Be, respectively. XYZ is the Simson Line of !:lABC and
point P, and meets PA at M. Since LBAC is a right angle,
AZPY is a rectangle (it has three right angles). Therefore, Mis
the midpoint of PA (#21f). It then follows that MO is perpendic­
ular to PA (#31).

9-6 From a point P on the circumference of circle 0, three chords are
drawn meeting the circle in points A, B, and C. Prove that the three
points of intersection of the three circles with PA, PB, and PC
as diameters, are collinear.

In Fig. S9-6, the circle on PA meets the circle on PB at X, and the
circle on PC at Y, while the circle on PB meets the circle on PC
at Z.
Draw AB, BC, and AC, also PX, PY, and PZ. In the circle on
PA, LPXA is a right angle (#36). Similarly, LPYC and LPZC
are right angles. Since PX, P Y, and PZ are drawn from a point
on the circumcircle of 6.ABC perpendicular to the sides of
!:lABC, X, Y, and Z determine a Simson Line and are therefore
collinear.

9-7 P is any point on the circumcircle of cyclic quadrilateral ABCD.
If PK, PL, PM, and PN are the perpendiculars from P to sides
AB, Be, CD, and OX, respectively, prove that (PK)(PM) =
(PL)(PN).

Draw DB, AP, and CP, as shown in Fig. S9-7. Draw PS .1 BD.

Since mLANP rv mLAKP rv 90, quadrilateral AKPN is cyclic
(#37), and mLNAP = mLNKP (#36). (I)
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NSK is the Simson Line of l:lABD with respect to point P.
Also mLNAP (LDAP) = mLPCM (LPCD) (#36). (II)
Since mLPLC rv mLPMC rv 90, quadrilateral PLCM is cyclic
(#37), mLPCM = mLPLM (#36), (III)
and LMS is the Simson Line of l:lDBC with respect to point P.

From (I), (II), and (III), mLPLM = mLNKP. (IV)

Since LLCM is supplementary to LBCD, and LBAD is sup­
plementary to LBCD (#37), mLLCM = mLBAD. (V)

However, LLPM is supplementary to LLCM, therefore, from
(V), LLPM is supplementary to LBAD. (VI)

Since quadrilateral AKPN is cyclic,

LNPK is supplementary to LBAD. (VII)

From (VI) and (VII), mLLPM = mLNPK.
PL PM

Thus, l:lLPM ~ l:lKPN (#48), and PK = PN' or (PK)(PM) =
(PL)(PN).

9-8 Line segments AB, BC, EC, and ED form triangles ABC, FBD,
EFA, and EDC. Prove that the four circumcircles ofthese triangles
meet at a common point.

Consider the circumcircles of l:lABC and l:lFBD, which meet at
Band P.

From point P draw perpendiculars PX, P Y, PZ, and PW to
BC, AB, ED, and Ee, respectively (Fig. S9-8). Since P is on the
circumcircle of l:lFBD, X, Y, and Z are collinear (Simson Line).
Similarly, since P is on the circumcircle of l:lABC, X, Y, and W
are collinear. Therefore X, Y, Z, and Ware collinear.
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Since Y, Z, and Ware collinear, P must lie on the circum­
circle of 6.EFA (converse of Simson's Theorem). By the same
reasoning, since X, Z, and Ware collinear, P lies on the circum­
circle of 6.EDe. Thus all four circles pass through point P.

9·9 The line joining the orthocenter Of a given triangle with a point on
the circumcircle of the triangle is bisected by the Simson Line, (with
respect to that point).

METHOD I: As in Fig. S9-9a, point P is on the circumcircle of
6.ABe. PX, PY, and PZ are perpendicular to Be, AC, and AB,
respectively. Points X, Y, and Z are therefore collinear and define
the Simson Line. Let J be the orthocenter of 6.A Be. PG meets the
Simson Line at Q and Be at H. PJ meets the Simson Line at M.
Draw HJ.

Since mLPZB""" mLPXB""" 90, quadrilateral PZXB is
cyclic (#36a),

and mLPXQ (LPXZ) = mLPBZ (#36). (I)

In the circumcircle, mLPBZ = mLPGA (#36). (II)

Since PX" AG (#9), mLPGA = mL QPX (#8). (III)

From (I), (II), and (III),

mLPXQ = mLQPX.

Therefore, PQ = XQ (#5). Since LQXH is complementary to
LPXQ, and LQHX is complementary to LQPX (#14),
mLQXH = mLQHX, and XQ = HQ (#5). Thus Q is the
midpoint of hypotenuse PH of right 6.PXH.
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Consider a circle passing through points B, J, and C. BC, the
common chord of the new circle and the original circle, is the
perpendicular bisector of line segment JG. To prove this last
statement, it is necessary to set up an auxiliary proof (called a
Lemma), before we continue with the main proof.

89·9b

LEMMA: Draw altitudes BE, and CF; also draw BG, CJ, and CG.
(See Fig. S9-9b.)
JD.l BC, therefore mLJDB = mLGDB = 90 (V)

LJBC (LEBC) is complementary to LC (#14). (VI)

mLGBC = mLGAC (LDAC) (#36). Therefore, since LGAC
(LDAC) is complementary to LC (#14),

LGBC is complementary to LC. (Vll)

Thus, from (VI), and (VII), mLJBC = mLGBC. Hence,
/::;.BJD""'" /::;'BGD; therefore JD = GD, and BC is the per­
pendicular bisector of JG.

Continuing with the main proof, we can now say that HJ = HG
(#18), and mLHJG = mLHGJ (#5). (VIII)

LJHD is complementary to LHJD.

ButmLHJD = mLHGD (lX), and mLHGD = mLQPX(III),
and mLQPX = mLPXQ (IV).

Therefore, LJHD is complementary to LQXP.

However, LQXH is complementary to LQXP; therefore

mLJHD = mLQXH.

Thus JH is parallel to the Simson Line xrz (#7).
Therefore, in /::;'PJH, since Q is the midpoint of PH, and QM is
parallel to JH, M is the midpoint of PJ, (#46).

Thus the Simson Line bisects PJ at M.
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METHOD II: In Fig. S9-9c, point P is on the circumcircle of 6.ABC.
PX, P Y, and PZ are perpendicular to sides Be, AC, and AB,
respectively. Therefore points X, Y, and Z are collinear and define
the Simson Line. P Y extended meets the circle at K. Let J be the
orthocenter of 6.ABC. The altitude from B meets AC at E and
the circle at N. PJ meets the Sim~on line at M. Draw a line parallel
to KB, and through the orthocenter, J, meeting P YK at L.

Since PK II NB (#9), KBJL is a parallelogram, and U = KB
(#2Ib). Also PN ,....", KB (#33), and PN = KB. Therefore U =
PN and trapezoid PNJL is isosceles.

Consider a circle passing through points A, J, and C. The
common chord AC is then the perpendicular bisector of IN. (See
Method I Lemma.) Thus E is the midpoint of IN. Since AC is
perpendicular to both bases of isosceles trapezoid PNJL, it may
easily be shown that Y is the midpoint of PL.

Since quadrilateral A YPZ is cyclic (#37), mLKBA =
mLKPA = mL YPA = mL YZA (#36), and KB is parallel to
Simson Line m (#8). Now, in 6.PU, M, the point of inter­
section of PJ with the Simson Line, is the midpoint of PJ (#25).

\
\

9·10 The measure of the angle determined by the Simson Lines of two
given points on the circumcircle of a given triangle is equal to
one-half the measure of the arc determined by the two points.

In Fig. S9-1O, m is the Simson Line for point P, and 'i7VW is
the Simson Line for point Q. Extend P X and QW to meet the
circle at M and N, respectively. Then draw AM and AN.
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Since mLPZB""'" mLPXB""'" 90, quadrilateral PZXB is cyclic
(#36a), and mLZXP = mLZBP (#36). (I)
Also mLABP = mLAMP (#36), or mLZBP = mLAMP. (II)
From (I) and (II), mLZXP = mLAMP, and XYZ II AM. (III)
In a similar fashion it may be shown that VVW " AN.
Hence, if T is the point of intersection of the two Simson Lines,
then mLXTW = mLMAN, since their corresponding sides are

1"'--'- - -
parallel. Now, mLMAN = 2 (mMN), but since PM II QN (#9),

...--.- ----- 1 -----mMN = mPQ (#33), and therefore mLMAN = 2 (mPQ). Thus,

1 -----mLXTW = 2 (mPQ).

89-11 A

9-11 If two triangles are inscribed in the same circle, a single point on
the circumcircle determines a Simson Line for each triangle. Prove
that the angle formed by these two Simson Lines is constant, regard­
less of the position of the point.

Triangles ABC and A'B'C' are inscribed in the same circle. (See
Fig. S9-11.) From point P, perpendiculars are drawn to AB and
A'B', meeting the circle at M and M', respectively. From Solu­
tion 9-10 (III), we know that the Simson Lines of point P with
respect to 6.ABC and 6.A'B'C' are parallel to MC and M'C',
respectively. We may now consider the angle formed by MC
and M'C', since it is congruent to the angle formed by the two
Simson Lines. The angle a formed by MC and M'C' =
1"'--'- -----2(mMM' - mCC')(#40). In Fig. S9-11, 6.PFD '" 6.EJD (#48),

1 ...--.-
and mLM'PM = mLB'EB. Now, mLM'PM = 2 (mMM')

1 ----- -----(#36), while mLB'EB = 2 (mBB' + mAA') (#39). Therefore,
...--.- ----- ----- 1 ----- -----mMM' = mBB' + mAA'. Thus, mLa = 2 (mBB' + mAA'-
~ ~......-... ......-...

mCC'). Since CC', BB', and AA' are independent of the position
of point P, the theorem is proved.
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9-12 In the circumcircle of ~ABC, chord PQ is drawn parallel to side
BC. Prove that the Simson Lines of~ABC, with respect to points
P and Q, are concurrent with the altitude AD of~ABC.

As illustrated in Fig. S9-12, M1M2M ~ is the Simson Line of
point P, and Iv IN2N~ is the Simson Line of point Q.
Extend PM2 and QN2 to meet the circle at points M and N,
respectively. In Solution 9-10 (III), it was proved that AM II Sim­
son Line MIM2M~ and AN II Simson Line NIN2N~.

Draw altitude A D, cutting M1M2M~ and Iv IN2N~, at points
Tand S.

Since M M 2 II A D II NN 2 (#9), quadrilaterals ATM2M, and
ASN2N are parallelograms, (#2Ia). Therefore, MM2 = AT

and NN 2 = AS (#2Ib). (I)

However, since PM II QN, mMN = mPQ, and MN = PQ. As
MP -l PQ (#10), then quadrilaterals MNQP and M 2N 2QP are
rectangles,

(II)

From (I) and (II), AT = AS.

Therefore, altitude A D crosses Simson Lines M1M2M~ and
Iv IN2N3at the same point. Thus, the Simson Lines are concurrent
with the altitude AD.
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10. The Theorem of Stewart

10-1 A classic theorem, known as Stewart's Theorem, is very useful as a
means offinding the measure of any line segment from the vertex
of a triangle to the opposite side. Using the letter designations in
Fig. SI0-1, the theorem states the following relationship:

a 2n + b 2m = c(d 2 + mn).

Prove the validity of the theorem.
c

810-1

In 6.ABC, let BC = a, AC = b, AB = c, CD = d. Point D
divides AB into two segments; BD = m and DA = n. Draw
altitude CE = h and let ED = p.

In order to proceed with the proof of Stewart's Theorem we
first derive two necessary formulas. The first one is applicable to
6.CBD. We apply the Pythagorean Theorem to 6.CEB to obtain

(CB)2 = (CE)2 + (BE)2.

Since BE = m - p, a 2 = h2 + (m _ p)2. (I)

However, by applying the Pythagorean Theorem to 6.CED, we
have (CD)2 = (CE)2 + (ED)2, or h2 = d 2 _ p2.

Replacing h 2 in equation (I), we obtain
a 2 = d 2 _ p2 + (m _ p)2,

a 2 = d 2 _ p2 + m 2 _ 2mp + p2.

Thus, a 2 = d 2 + m 2 - 2mp. (11)

A similar argument is applicable to 6.CDA.

Applying the Pythagorean Theorem to 6.CEA, we find that
(CA)2 = (CE)2 + (EA)2.

Since EA = (n + p), b2 = h2 + (n + p)2. (111)

However, h2 = d 2 - p2, substitute for h2 in (1Il) as follows:

b2 = d 2 _ p2 + (n + p)2,

b2 = d 2 _ p2 + n 2 + 2np + p2.
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Thus, b2 = d 2 + n2 + 2np.

Equations (II) and (IV) give us the formulas we need.

Now multiply equation (II) by n to get

and multiply equation (IV) by m to get

b2m = d 2m + n 2m + 2mnp.

(IV)

(V)

(VI)

Adding (V) and (VI), we have

a2n + b2m = d 2n + d 2m + m 2n + n 2m + 2mnp - 2mnp.

Therefore, a2n + b2m = d 2(n + m) + mn(m + n).

Since m + n = c, we have a2n + b2m = d 2c + mnc, or
a2n + b2m = c(d2 + mn).

A

B

10-2 In an isosceles triangle with two sides ofmeasure 17, a line measur­
ing 16 is drawn from the vertex to the base. If one segment of the
base, as cut by this line, exceeds the other by 8, find the measures
of the two segments.

In Fig. SlO-2, AB = AC = 17, and AD = 16. Let BD = x so
that DC = x + 8.

By Stewart's Theorem,

(AB)2(DC) + (AC)2(BD) = BC[(AD)2 + (BD)(DC)].

Therefore,

(l7)2(X + 8) + (17)2(X) = (2x + 8)[(16)2 + x(x + 8)],

and x = 3. Therefore, BD = 3 and DC = II.
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810-3 C

L
A E B

10-3 In ~ABC, point E is on AB, so that AE = ~ EB. Find CE if
AC = 4, CB = 5, and AB = 6.

METHOD I: By applying Stewart's Theorem to ~ABC (Fig. 810-3),
we get

(AC)2(EB) + (CB)2(AE) = AB[(CE)2 + (AE)(EB)].

Therefore, (4)2(4) + (5)2(2) = 6[(CE)2 + (2)(4)],

114 = 6(CE)2 + 48, and CE = vn.
METHOD ll: Since ~ACE and ~ACB share the same altitude, and

I I
AE = :3 AB, the area of ~ACE = 3 the area of ~ACB.

By Heron's Formula,

I I 115 (7)(5)(3) 5 -
3 the area ~ACB = 3 'J2" :2 :2 2 = 4V7.

Let CE = x. Then the area of ~ACE

= ~(6 ~ X)(6_-~~ipT(X ~ 2)
= ~ V-=-'-(x 2-=-36)(x 2 - 4). (11)

Let y = x 2
• From (I) and (11),

~ V? = ~ V-(Y2 - 40y + 144).

Therefore, y2 - 40y + 319 = 0, and y = 11 or, y = 29
(reject). Therefore, CE = Vii.
COMMENT: Compare the efficiency of Method II with that of
Method I.

Challenge Find the measure of the segment from E to the midpoint of
CB.

I
ANSWER: :2 v29

10-4 Prove that the sum of the squares of the distances from the vertex
of the right angle, in a right triangle, to the trisection points along

the hypotenuse is equal to ~ the square of the measure of the

hypotenuse.
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Applying Stewart's Theorem to Fig. S10-4,
using p as the internal line segment,

2a 2n + b 2n = C(p2 + 2n 2); (I)

using q as the internal line segment,

a 2n + 2b 2n = C(q2 + 2n 2). (II)
By adding (I) and (II), we get

3a2n + 3b 2n = c(4n2 + p2 + q2).

Since a 2 + b 2 = c 2, 3n(c 2) = c(4n 2 + p2 + q2).

Since 3n = c, c 2 = (2n)2 + p2 + q2.

But 2n = ~ c; therefore, p2 + q2 = c 2 - Gc) 2 = ~ c 2.

810-4 c' 810-5 B C

B~'
\ J

r
c D

10-5 Prove that the sum of the squares of the measures of the sides ofa
parallelogram equals the sum of the squares of the measures of the
diagonals.

In Fig.SI0-5, consider 6.ABE.
Draw altitude BF.

(AB)2 = (BE)2 + (AE)2 - 2(AE)(FE), (I)
and (BC)2 = (BE)2 + (EC)2 + 2(EC)(FE). (II)
[See the proof of Stewart's Theorem, Solution 10-1, equations (II)
and (IV).]
Since the diagonals of ABCD bisect each other, AE = EC.
Therefore, by adding equations (I) and (II), we get

(AB)2 + (BC)2 = 2(BE)2 + 2(AE)2. (III)

Similarly, in 6.CA D,
(CD)2 + (DA)2 = 2(DE)2 + 2(CE)2. (IV)

By adding lines (III) and (IV), we get
(AB)2 + (BC)2 + (CD)2 + (DA)2

= 2(BE)2 + 2(AE)2 + 2(DE)2 + 2(CE)2.

Since AE = EC and BE = ED,
(AB)2 + (BC)2 + (CD)2 + (DA)2 = 4(BE)2 + 4(AE)2,
(AB)2 + (BC)2 + (CD)2 + (DA)2 = (2BE)2 + (2AE)2,
(AB)2 + (BC)2 + (CD)2 + (DA)2 = (BD)2 + (AC)2.
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Challenge A given parallelogram has sides measuring 7 and 9, and a
shorter diagonal measuring 8. Find the measure of the
longer diagonal.

ANSWER: 14

E

10-6 Using Stewart's Theorem, prove that in any triangle the square of
the measure of the internal bisector of any angle is equal to the
product of the measures of the sides forming the bisected angle
decreased by the product of the measures of the segments of the
side to which this bisector is drawn.

By Stewart's Theorem we obtain the following relationship:
c2n + b2m

c2n + b2m = a(ta
2 + mn), or ta

2 + mn = ,a

as illustrated by Fig. S10-6.
c m

But, b = ;; (#47), therefore cn = bm.

Substituting in the above equation,

t
a

2 + mn = cbm + cbn = cb(m + n) = cb.
m+n m+n

Hence, ta 2 = cb - mn.

Challenge 1 Can you also prove the theorem in Problem 10-6 without
using Stewart's Theorem?

As in Fig.S1Q-6, extend A D, the bisector of LBAC, to
meet the circumcircle of 6.ABC at E. Then draw BE.
Since mLBAD = mLCAD, and mLE = mLC (#36),

AC AE
6.ABE ~ 6.ADC, and AD = AB' or

(AC)(AB) = (AD)(AE) = (AD)(AD + DE)

= (AD)2 + (AD)(DE). (I)
However, (AD)(DE) = (BD)(DC) (#52). (II)
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Substituting (II) into (I), we obtain

(AD)2 = (AC)(AB) - (BD)(DC),

or, using the letter designations in Fig. SIO-6,
ta

2 = cb - mn.

10-7 The two shorter sides ofa triangle measure 9 and 18. If the internal
angle bisector drawn to the longest side measures 8, find the measure
of the longest side of the triangle.

Let AB = 9, AC = 18, and angle bisector AD = 8. (See Fig.
. BD AB I

SI0-7.) Smce DC = AC = 2 (#47), we can let BD = m = x, so

that DC = n = 2x. From the solution to Problem 10-6, we know
that ta

2 = bc - mn. or (AD)2 = (AC)(AB) - (BD)(DC).

Therefore, (8)2 = (18)(9) - 2x 2
, and x = 7.

Thus, BC = 3x = 21.

Challenge Find the measure ofa side ofa triangle if the other two sides
and the bisector of the included angle have measures 12, 15,
and 10, respectively.

ANSWER: 18
810-7

~
8 D C

810-8 A

"'------';:------"'8

10-8 In a right triangle, the bisector of the right angle divides the hypote­
nuse into segments that measure 3 and 4. Find the measure of the
angle bisector of the larger acute angle of the right triangle.

In right 6.ABC, with right angle at C, and angle bisector CD,
AD = 3 while DB = 4. (See Fig. SI0-8.)

. AC AD 3
Smce CB = DB = 4 (#47), AC = 3x, and CB = 4x.

By the Pythagorean Theorem, applied to 6.ABC,
7

(3X)2 + (4X)2 = 7 2
, and x = "5'

21 28 AC CE
Thus, AC = 5 and CB = -5' Also, AB = EB (#47).
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21

Substituting, we get ~ = 28 CE . Thus CE = ~ and EB = ~.
-- CE
5

The proof may be concluded using either one of the following
methods.

METHOD I: From SolutionlO-6,(AE)2 = (AC)(AB) - (CE)(EB).

Substituting, we have (AE)2 = (¥){7) - (M)G) ,
and AE = 21Y5.

10

METHOD II: By the Pythagorean Theorem, applied to D.ACE,
21yS

(AE)2 = (AC)2 + (CE)2; therefore, AE = 10·
S1D-9 c

~
A 0 B

10-9 In a 30-60-90 right triangle, if the measure ofthe hypotenuse is 4,
find the distance from the vertex of the right angle to the point of
intersection of the angle bisectors.

In D.ABC (Fig. SlO-9), if AB = 4, then AC = 2 (#55c).

In D.ACE, since mLCAE = 30, CE = ~3 ' (I)

4 AC AG
and AE = Y3· In D.ACE, CE = GE (#47). (II)

If we let AG = y, then from equation (II), we find GE = ;3 .

Since AG + GE = AE, y + ;3 = ;3' and y = 1+4Y3 =
2V3 - 2. Thus, AG = 2y'3 - 2, (III)

and GE = 2 - 2y3 . (IV)
3

From Solution 10-6 we know that
(CG)2 = (AC)(CE) - (AG)(GE). (V)

Substituting (I), (III), and (IV) into (V), we get

(CG)2 = 8 - 4y'3.

Therefore, CG = V,---S---4y'-----=3 = v'6 - y'2.
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1-1 Express angles AFB, AEB, and ADB in terms of LCAF, LCBF,
LABE, and LBAD. Then apply Theorem #13.

1-2 Consider LADB as an exterior angle of ~CDB.

1-3 Examine the isosceles triangles.

1-4 METHOD I: Use Theorem #27 to show ~FCA is isosceles.

METHOD II: Circumscribe a circle about ~ABC, extend CE to
meet the circle at G. Then draw GF.

1-5 To show BP is paraIlel AE, use Theorem #7, after using Theorems
#14 and #5. To show BP is perpendicular AE, use Theorems #14
and #5 to prove that the bisector of LA is also the bisector of the
vertex angle of an isosceles triangle.

1-6 Extend AM through M to P so that AM = MP. Draw BT; Tis
the midpoint of AD. Then show that ~TBP is isosceles. Use
Theorems #2 I, #27, #I2, and #8.

1-7 METHOD I: Draw a line through M paraIlel to BC. Then use
Theorems #27 and #8.

METHOD II: Extend KM to meet CB extended at G; then prove
~KMC '" ~GMC.

1-8 Extend CP and CQ to meet AB at Sand R, respectively. Prove
that P and Q are the midpoints of CS and CR, respectively; then
use Theorem #26.

1-9 From E, the point of intersection of the diagonals of square
ABCD, draw a line paraIlel to BPQ. Use Theorems #25, #10, and
#23.
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1·10 METHOD I: Draw AF ..L DE, and draw DG, where G is on AF and
mLFDG = 60. Then show that AF is the perpendicular bisector
of DE. Apply Theorem #18.

METHOD II: Draw ~AFD on side AD so that mLFAD =

mLFDA = 15; then draw FE. Now prove mLEAB = 60.

METHOD III: Draw equilateral ~DFC externally on side DC;
then draw EF. Show that mLBAE = 60.

METHOD IV: Extend DE and CE to meet BC and AD at K and H,
respectively. Draw AF and CG perpendicular to DK. Now prove
AF is the perpendicular bisector of DE.

1-11 Join E and F, and prove that DGFE is an isosceles trapezoid.

1-12 Draw CD, CE, and the altitude from C to AB; then prove tri­
angles congruent.

1-13 Draw a line from one vertex (the side containing the given point)
perpendicular to a diagonal of the rectangle; then draw a line
from the given point perpendicular to the first line.

1-14 Prove various pairs of triangles congruent.

1-15 Use Theorems #26 and #10.

1-16 Draw a line through C and the midpoint of AD; then prove that
it is the perpendicular bisector of TD.

1-17 Prove that the four given midpoints determine a parallelogram.
Use Theorem #26.

1·18 Draw median CGD. From D and E (the midpoint of CG) draw
perpendiculars to XYZ. Show QD is the median of trapezoid

1
AXZB. Then prove QD = EP = 2CY.

1-19 Extend BP through P to E so thl;\t BE = AQ. Then draw AE and
BQ. Prove that EMQ is a diagonal of parallelogram AEBQ.
Use Theorem #27.

1·20 Prove ~AFE '" ~BFC '" ~DCE.
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1-21 (a) Prove four triangles congruent, thereby obtaining four equal
sides; then prove one right angle.
(b) Prove that one diagonal of the square and one diagonal of
the parallelogram share the same midpoint.

2-1 Consider D.ADC, then D.ABC. Apply Theorem #46.

2-2 METHOD I: Prove D.BFC ~ D.PEB; then manipulate the resulting
proportions.

METHOD II: Draw a line from B perpendicular to PD at G. Then
prove D.GPB '" D.EPB.

2-3 Prove two pairs of triangles similar and equate ratios. Alterna­
tively, extend the line joining the midpoints of the diagonals to
meet one of the legs; then use Theorems #25 and #26.

2-4 Draw a line through D parallel to BC meeting AE at G. Obtain
proportions from D.ADG ~ D.ABE and D.DGF ~ D.CEF.

2-5 Draw a line through E parallel to A D. Use this line with Theorems
#25 and #26.

2-6 Prove D.HEA ~ D.BEC, and D.BFA ~ D.GFC; then equate
ratios.

2-7 Extend APM to G so that PM = MG; also draw BG and GC.
Then use Theorem #46.

2-8 Show H is the midpoint of AB. Then use Theorem #47 in D.ABC.

2-9 Prove D.AFC ~ D.HGB. Use proportions from these triangles,
and also from D.ABE ~ D.BHG; apply Theorem #46.

2-10 Use proportions resulting from the following pairs of similar
triangles:

D.AHE ~ D.ADM, D.AEF ~ D.AMC, and D.BEG ~ D.BDC.
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2-11 Prove ~KAP "" ~PAB. Also consider LPKA as an exterior
angle of ~KPB and ~KPL.

2-12 From points Rand Q, draw perpendiculars to AB. Prove various
pairs of triangles similar.

2-13 Prove ~ACZ "" ~AYB, and ~BCZ "" ~BXA; then add the
resulting proportions.

2-14 Draw lines through Band C, parallel to A D, the angle bisector.
Then apply the result of Problem 2-13.

2-15 Use the result of Problem 2-13.

2-16 Prove ~FDG "" ~ABG, and ~BGE "" ~DGA.

3-1 Apply the Pythagorean Theorem #55 in the following triangles:
~ADC, ~EDC, ~ADB, and ~EDB.

3-2 Use Theorem #29; then apply the Pythagorean Theorem to
~DGB, ~EGA, and ~BGA. (G is the centroid.)

3-3 Draw a line from C perpendicular to HL. Then apply the Py­
thagorean Theorem to ~ABC and ~HGC. Use Theorem #51.

3-4 Through the point in which the given line segment intersects the
hypotenuse, draw a line parallel to either of the legs of the right
triangle. Then apply Theorem #55.

3-5 METHOD I: Draw AC meeting EFat G; then apply the Pythagorean
Theorem to ~FBC, ~ABC, and ~EGC.

METHOD II: Choose H on EC so that EH = FB; then draw BH.
Find BH.

3-6 Use the last two vectors (directed lines) and form a parallelogram
with the extension of the first vector. Also drop a perpendicular
to the extension of the first vector. Then use the Pythagorean
Theorem. The Law of Cosines may also be used.
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3-7 Draw the altitude to the side that measures 7. Then apply the
Pythagorean Theorem to the two right triangles.

3-8 METHOD I: Construct D.ABC so that CG J.. AB. (Why can this
be done?) Then use Theorem #55.

METHOD II: Draw altitude CJ. Apply the Pythagorean Theorem
to D.GJC, D.JEC, and D.JHC.

3-9 Extend BP to meet AD at E; also draw a perpendicular from C
to AD. Use Theorems #51 band #46.

3-10 Use Theorems #55, #29, and #5Ib.

3-11 From the point of intersection of the angle bisectors, draw a line
perpendicular to one of the legs of the right triangle. Then use
Theorem #55.

3-12 Apply the Pythagorean Theorem to each of the six right triangles.

3-13 Use Theorems #41, and #29.

3-14 Draw a perpendicular from the centroid to one of the sides;
then apply Theorem #55.

4-1 Use Theorem #34.

4-2 Draw AO, BC, and Oc. Prove D.BEC ,.., D.ABO.

4-3 Draw QA and QB; then prove D.DAQ ,.., D.CBQ, and D.QBE,..,
D.QAC. (D, C, and E are the feet of the perpendiculars on FA,
AB, and n, respectively.)

4-4 Show that D.GPB is isosceles.

4-5 Apply the Pythagorean Theorem to D.DEB, D.DAB, D.AEC, and
D.ABC.

4-6 Extend AO to meet circle 0 at C; then draw MA. Use Theorem
#52 with chords AOC and MPN.
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4-7 Use Theorem #52 with chords AB and CD.

4-8 Draw BC and AD.

METHOD I: Show ~CFD ~ ~DEA, and ~AEB ~ ~BFC.

METHOD II: Use the Pythagorean Theorem in ~AED, ~DFC,

~AEB, and ~BFC.

4-9 From the center of the circle draw a perpendicular to the secant
of measure 33. Then use Theorem #54.

4-10 Draw radii to points of contact; then draw DB. Consider OB as
an angle bisector in ~ABC. Use Theorem #47.

4-11 Draw KO and LO. Show that LKOL is a right angle.

4-12 Draw DS and SJ. Use Theorems #51a and #52.

4-13 Draw BD and CD. Apply Theorem #5Ib.

4-14 METHOD I: Draw ED. Use Theorems #55c and 55d. Then prove
~AEF ~ ~ABC.

METHOD II: Use only similar triangles.

4-15 Use Theorems #18 and #55.

4-16 Prove ~BEC - ~AED, and ~AEB - ~DEC. E is the inter­
section of the diagonals.

4-17 Use Theorems #53, #50, #37, and #8.

4-18 Prove ~DPB - ~BPC, and ~DAP ~ ~ACP.

4-19 METHOD I: Draw diameter BP of the circumcircle. Draw PT J..
altitude AD; draw PA and CPo Prove APCO is a parallelogram.

METHOD II: Let AB = AC. (Why is this permissible?) Then
choose a point P so that AP = BP. Prove ~ACD ~ ~BOD.

4-20 Draw PC, ED, and DC. Show that PC bisects LBPA.

4-21 Draw DO and CDE where E is on circle o. Use Theorems #30
and #52.
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4-22 From 0 draw perpendiculars to AB and CD; also draw OD. Use
Theorems #52 and #55.

4-23 For chords AB and CD, draw AD and CB. Also draw diameter
CF and chord BF. Use Theorem #55; also show that AD = FB.

4-24 Draw MO, NQ, and the common internal tangent. Show MNQO
is a parallelogram.

4-25 (a) Draw common internal tangent AP. Use Theorem #53. Also
prove D.ADE '" D.ABC.

(b) METHOD I: Apply Theorem #15 in quadrilateral ADPE.

METHOD II: Show D.ABC is a right triangle.

- - - -- -- <---->,
4-26 Draw OA and 0'B; then draw AE J.. 00' and BD J.. 00 . Prove

ABO'O is a parallelogram.

4-27 Prove D.AEO '" D.AFC ~ D.ADO'.

4-28 Extend the line of centers to the vertex of the square. Also draw
a perpendicular from the center of each circle to a side of the
square. Use Theorem #55a.

4-29 Apply the Pythagorean Theorem to D.DEO. E is the midpoint
of AO.

4-30 Find one-half the side of the square formed by joining the centers
of the four smaller circles.

4-31 Draw radii to the points of contact. Use Theorem #55.

4-32 Use an indirect method. That is, assume the third common chord
is not concurrent with the other two.

4-33 Show that the opposite angles are supplementary.

4-34 Show that quadrilateral D'BB'D is cyclic.

4-35 Show that LGFA '" LDFB after proving BDFO cyclic.

4-36 Show LBRQ is supplementary to LBCQ.
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4-37 Draw DE. Show quadrilateral DCEF is cyclic. Then find the
measure of LCED.

4-38 Draw AF. Show quadrilateral AEFB is cyclic. What type of
triangle is D.ABE?

4-39 Choose a point Q on BP such that PQ = QC. Prove D.BQC '"
D.APe.

4-40 METHOD I: Draw BC, OB, and Oe. Show quadrilateral ABGC
is cyclic, as is quadrilateral ABOe.

METHOD II: Draw BG and extend it to meet the circle at H.
Draw CH. Use Theorems #38, #18, and #30.

5-1 Draw EC and show that the area of D.DEC is one-half the area
of each of the parallelograms.

5-2 METHOD I: In D.EDC draw altitude EH. Use Theorems #28, #49,
and #24.

METHOD II: Use the ratio between the areas of D.EFG and
D.EDe.

5-3 Compare the areas of the similar triangles.

5-4 Represent the area of each in terms of the radius of the circle.

5-5 Prove D.ADC ~ D.AFO.

5-6 METHOD I: Draw a line through D and perpendicular to AB.
Then draw AQ and DQ. Use the Pythagorean Theorem in various
right triangles.

METHOD II: Draw a line through P parallel to BC and meeting
AB and DC (extended) at points Hand F, respectively. Then
draw a line from P perpendicular to Be. Find the desired result
by adding and subtracting areas.

5-7 Draw the altitude to the line which measures 14. Use similarity
to obtain the desired result.
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5-8 Use Formula #5b with each triangle containing LA.

5-9 Draw DC. Find the ratio of the area of ~DAE to the area of
~ADC.

5-10 Use Formula #5b with each triangle containing the angle be­
tween the specified sides.

5-11 METHOD I: From points C and D draw perpendiculars to AB.
Find the ratio between the areas of OAEDF and ~ABC.

METHOD II: Use similarity and Formula #5b for triangles con­
taining LA.

5-12 Draw the line of centers °and Q. Then draw NO, NQ, MO, and
MQ. Determine the type of triangle ~KLN is.

5-13 Extend one of the medians one-third its length, through the side
to which it is drawn; then join this external point with the two
nearest vertices. Find the area of one-half the parallelogram.

5-14 Use Theorem #55e or Formula #5c to find the area of ~ABC.
Thereafter, apply #29.

5-15 METHOD I: Draw the medians of the triangle. Use Theorems #26,
#25, #29, and #55.

METHOD II: Use the result of Problem 5-14.

5-16 Draw a line through E parallel to BD meeting AC at G. Use
Theorems #56 and #25.

5-17 Draw EC. Compare the areas of triangles BEC and BAC. Then
use Theorem #56 and its extension.

5-18 Through E, draw a line parallel to A1J meeting BC and AD
(extended) at points Hand G, respectively. Then draw AE and
BE. Find the area of ~AEB.

5-19 Draw diagonal AC. Use Theorem #29 in ~ABC. To obtain the
desired result, subtract areas.

5-20 Draw QB and diagonal BD. Consider each figure whose area
equals one-half the area of parallelogram ABCD.
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5-21 Draw AR and AS. Express both areas in terms of RS, RT, and
TS. Also use Theorems #32a, and #51a.

5-22 METHOD I: In equilateral l:i.ABC, draw a line through point P,
the internal point, parallel to BC meeting AB and AC at E and F,
respectively. From E draw ET 1. AC. Also draw PH " AC where
H is on AB. Show that the sum of the perpendiculars equals the
altitude of the equilateral l:i.ABC, a constant for the triangle.

METHOD II: Draw PA, PB, and PC; then add the areas of the three
triangles APB, APC, and BPC. Show that the sum of the per­
pendiculars equals the altitude of equilateral l:i.ABC, a constant
for the triangle.

6-1 Draw the radii of the inscribed circle to the points of tangency of
the sides of the triangle. Also join the vertices to the center of the
inscribed circle. Draw a line perpendicular at the incenter, to
one of the lines drawn from the incenter to a vertex. Draw a line
perpendicular to one of the sides at another vertex. Let the two
perpendiculars meet. Extend the side to which the perpendicular
was drawn through the point of intersection with the perpendicular
so that the measure of the new line segment equals the semi­
perimeter of the triangle.

6-2 Extend a pair of non-parallel opposite sides to form triangles with
the other two sides. Apply Heron's Formula to the larger triangle.
Then compare the latter area with the area of the quadrilateral.

6 3 ( U "l' I eN KN Al- a) METHOD I: se sImI ar tnang es to get QM = AM' so

prove AS = AM. Use Theorem #21-1 to prove rhombus.
METHOD II: Use similar triangles to show AQ is an angle bisector.
Use #47 to show SQ II AC, also show AM = MQ.

(b) Compare the areas of l:i.BMQ and l:i.AMQ, also of l:i.CSQ
and l:i.ASQ.

6-4 Draw AE and BF, where E and F are the points of tangency of
the common external tangent with the two circles. Then draw AN
(extended) and BN. Use #47 twice to show that eN and DN
bisect a pair of supplementary adjacent angles.

6-5 First find the area of the triangle by Heron's Formula (Formula
#5c). Then consider the area of the triangle in terms of the tri-
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angles formed by joining P with the vertices. (Use Formula ir5a).
Do this for each of the four cases which must be considered.

6-6 METHOD I: In l:::.ABC, with angle bisectors AE = BD, draw
LDBF""' LAEB, BF""' BE, FG 1- AC, AH 1- FH, where G
and H lie on AC and BF, respectively. Also draw DF. Use
congruent triangles to prove the base angles equal.

METHOD II: (indirect) In l:::.ABC, with angle bisectors CE = BF,
draw GF II EB externally, and through E draw GE II BF. Then
draw CG. Assume the base angles are not congruent.

METHOD III: (indirect) In l:::.ABC, with angle bisectors BE""' DC,
draw parallelogram BDCH; then draw EH. Assume the base
angles are not congruent. Use Theorem #42.

METHOD IV: (indirect) In l:::.ABC, with angle bisectors BE and DC
of equal measure, draw LFCD ""' LABE where F is on AB.
Then choose a point G so that BG = FC. Draw GH II FC, where
H is on BE. Prove l:::.BGH ""' l:::.CFD and search for a con­
tradiction. Assume mLC > mLB.

6-' METHOD I: Draw DH II AB and MN 1- DH, where H is on the
circle; also draw MH, QH, and EH. Prove l:::.MPD ""' l:::.MQH.

METHOD II: Through P draw a line parallel to CE, meeting EF,
- (MP)2

extended through F, at K, and CD at L. Find the ratio (MQ)l •

METHOD III: Draw a line through E parallel to A B, meeting the
circle at G. Then draw GP, GM, and GD. Prove l:::.PMG ""'
l:::.QME.

METHOD IV: Draw the diameter through M and O. Reflect DF
through this diameter; let D'F' be the image of DF. Draw CF',
MF', and MD'. Also, let P' be the image of P. Prove that P'
coincides with Q.

METHOD V: (Projective Geometry) Use harmonic pencil and
range concepts.

6-8 METHOD I: Draw DG II AB, where G is on CB. Also draw AG,
meeting DB at F, and draw FE. Prove that quadrilateral DGEF
is a kite (i.e. GE = FE and DG = DF).

METHOD II: Draw BF so that mLABF = 20 and F is on AC.
Then draw FE. Prove l:::.FEB equilateral, and l:::.FDE isosceles.
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METHOD III: Draw DF II A B, where F is on BC. Extend BA
through A to G so that AG = AC. Then draw CG. Use similarity
and theorem #47 to prove that DE bisects LFDB.

METHOD IV: With B as center and BD as radius, draw a circle
meeting BA, extended, at F and BC at G. Then draw FD and
DG. Prove l:::.FBD equilateral, and l:::.DBG isosceles. Also prove
l:::.DCG~ l:::.FDA.

METHOD V: Using C as center, AC and BC as radii, and AB as a
side, construct an l8-sided regular polygon.

METHOD VI: (Trigonometric Solution I) Use the law of sines in
l:::.AEC and l:::.ABD. Then prove l:::.AEC ~ l:::.DEB.

METHOD VII: (Trigonometric Solution II) Draw AF II Be. Choose
a point G on AC so that AG = BE. Extend BG to meet AF at H.
Apply the law of sines to l:::.A DB and l:::.ABH. Then prove
l:::.BDE~ l:::.AHG.

6-9 METHOD I: Rotate the given equilaterall:::.A BC in its plane about
point A through a counterclockwise angle of 60°. Let P' be the
image of P. Find the area of quadrilateral APCP' (when B is to
the left of C), and the area of l:::.BPe.

METHOD II: Rotate each of the three triangles in the given equi­
lateral triangle about a different vertex, so that there is now one
new triangle on each side of the given equilateral triangle, thus
forming a hexagon. Consider the area of the hexagon in parts,
two different ways.

6-10 Rotatel:::.DAP in its plane about point A through a counter­
clockwise angle of 90°. Express the area of l:::.PP'B (P' is the
image ofP), in two different ways using Formula #5c, and Formula
#5b. Investigatel:::.PAP' and l:::.APB.

6-11 Prove a pair of overlapping triangles congruent.

Challenge 1 Draw two of the required lines. Draw the third line as
two separate lines drawn from the point of intersection
of the latter two lines, and going in opposite directions.
Prove that these two smaller lines, in essence, combine to
form the required third line.
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Challenge 2 Use similarity to obtain three equal ratios. Each ratio
is to contain one of the line segments proved congruent
in Solution 6-11, while the measure of the other line
segment in each ratio is a side of l:::.KML where K, M,
and L are the circumcenters.

6-12 METHOD I: Begin by fixing two angles of the given triangle to yield
the desired equilateral triangle. Then prove a concurrency of the
four lines at the vertex of the third angle of the given triangle.

METHOD II: This method begins like Method I. However, here we
must prove that the lines formed by joining the third vertex of the
given triangle to two of the closer vertices of the equilateral
triangle are trisectors of the third angle (of the original triangle).
In this proof an auxiliary circle is used.

6-13 Use similarity to prove that the orthocenter must lie on the line
determined by the centroid and the circumcenter. The necessary
constructions are a median, altitude, and perpendicular bisector
of one side.

6-14 Draw the three common chords of pairs of circles. Show that the
three quadrilaterals (in the given triangle) thus formed are each
cyclic. (Note that there are two cases to be considered here.)

6-15 Draw the three common chords of pairs of circles. Use Theorems
#30, #35, #36, and #48.

7-1 METHOD I: A line is drawn through A of cyclic quadrilateral
ABCD, to meet CD, extended, at P, so that mLBAC =
mLDAP. Prove l:::.BAC,.., l:::.DAP, and l:::.ABD,.., l:::.ACP.

METHOD II: In quadrilateral ABCD, draw l:::.DAP (internally)
similar to l:::.CAB. Prove l:::.BAP,.., l:::.CAD. (The converse may
be proved simultaneously.)

7·2 Draw AF and diagonal AC. Use the Pythagorean Theorem; then
apply Ptolemy's Theorem to quadrilateral AFDC.

7·3 Use the Pythagorean Theorem; then apply Ptolemy's Theorem to
quadrilateral AFBE.

7-4 Draw CPo Use the Pythagorean Theorem; then apply Ptolemy's
Theorem to quadrilateral BPQC.
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7-5 Draw RQ, QP, and RP. Use similarity and Ptolemy's Theorem.

7-6 Prove that ABCD is cyclic; then apply Ptolemy's Theorem.

7-7 Apply Ptolemy's Theorem to quadrilateral ABPC.

7-8 Apply Ptolemy's Theorem to quadrilateral ABPC.

7-9 Apply the result obtained in Problem 7-7 to l:::.ABD and l:::.ADC.

7-10 Apply Ptolemy's Theorem to quadrilateral ABPC, and quadri­
lateral BPCD. Then apply the result obtained in Problem 7-7 to
l:::.BEC.

7-11 Apply the result of Problem 7-8 to equilateral triangles AEC and
BFD.

7-12 Consider BD in parts. Verify result with Ptolemy's Theorem.

7-13 Use the result of Problem 7-8.

7-14 Choose points P and Q on the circumcircle of quadrilateral
~

ABCD (on arc AD) so that PA = DC and QD = AB. Apply
Ptolemy's Theorem to quadrilaterals ABCP and BCDQ.

7-15 On side AB of parallelogram ABCD draw l:::.AP'B""'" l:::.DPC,
externally. Also use Ptolemy's Theorem.

7-16 METHOD I: Draw the diameter from the vertex of the two given
sides. Join the other extremity of the diameter with the remaining
two vertices of the given triangle. Use Ptolemy's Theorem.
(Note: There are two cases to be considered.)

METHOD II: Draw radii to the endpoints of the chord measuring
5. Then draw a line from the vertex of the two given sides per­
pendicular to the third side. Use Theorem #55c. Ptolemy's
Theorem is not used in this method. (Note: There are two
cases to be considered.)

8-1 METHOD I: Draw a line through C, parallel to AB, meeting PQR
at D. Prove that l:::.DCR '" l:::.QBR, and l:::.PDC '" l:::.PQA.
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METHOD II: Draw BM -l PR, AN -l PR, and CL -l PR, where
M, N, and L are on PQR. Prove that 6.BMQ ~ 6.ANQ,
6.LCP ~ 6.NAP, and 6.MRB ~ 6.LRe.

8-2 METHOD I: Compare the areas of the various triangles formed,
which share the same altitude. (Note: There are two cases to be
considered.)

METHOD II: Draw a line through A, parallel to BC, meeting CP
at S, and BP at R. Prove that 6.AMR ~ 6.CMB, 6.BNC ~

6.ANS, 6.CLP ~ 6.SAP, and 6.BLP ~ 6.RAP. (Note: There
are two cases to be considered.)

METHOD III: Draw a line through A and a line through C parallel
to BP, meeting CP and AP at Sand R, respectively. Prove that
6.ASN ~ 6.BPN, and 6.BPL ~ 6.CRL; also use Theorem #49.
(Note: There are two cases to be considered.)

METHOD IV: Consider BPM a transversal of 6.ACL and CPN a
transversal of 6.ALB. Then apply Menelaus' Theorem.

8-3 Apply Ceva's Theorem.

8-4 Use similarity, then Ceva's Theorem.

8-5 Use Theorem #47; then use Ceva's Theorem.

8-6 Use Theorem #47; then use Menelaus' Theorem.

8-7 Use Theorem #47; then use Menelaus' Theorem.

8-8 First use Ceva's Theorem to find BS; then use Menelaus' Theorem
to find TB.

8·9 Use Menelaus' Theorem; then use Theorem #54.

8-10 Use both Ceva's and Menelaus' Theorems.

8-11 Consider NGP a transversal of 6.AKC, and GMP a transversal of
6.AKB. Then use Menelaus' Theorem.

8-12 Draw AD -l BC, and PE -l BC, where D and E lie on Be. For
both parts (a) and (b), neither Ceva's Theorem nor Menelaus'
Theorem is used. Set up proportions involving line segments and
areas of triangles.
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8-13 Extend FE to meet en at P. Consider AM as a transversal of
l:::.PFC and l:::.PEB; then use Menelaus' Theorem.

8-14 Use one of the secondary results established in the solution of
Problem 8-2, Method I. (See III, IV, and V.) Neither Ceva's
Theorem nor Menelaus' Theorem is used.

8-15 Use Menelaus' Theorem and similarity.

8-16 Use Menelaus' Theorem, taking KLP and MNP as transversals
of l:::.A BC and l:::.A DC, respectively where P is the intersection of
ACand LN.

8·17 Use Theorems #36, #38, #48, and #53, followed by Menelaus'
Theorem.

8-18 Taking RSP and R'S'P' as transversals of l:::.ABC, use Menelaus'
Theorem. Also use Theorems #52 and #53.

8-19 Consider RNH, PU, and MQI transversals of l:::.ABC; use
Menelaus' Theorem. Then use Ceva's Theorem.

8-20 Use Ceva's Theorem and Theorem #54.

8-21 Draw lines of centers and radii. Use Theorem #49 and Menelaus'
Theorem.

8·22 Use Theorems #48, #46, and Menelaus' Theorem.

8-23 Use Menelaus' Theorem exclusively.

8-24 (a) Use Menelaus' Theorem and Theorem #34.
(b) Use Menelaus' Theorem, or use Desargues' Theorem
(Problem 8-23).

8·25 Extend DR and DQ through Rand Q to meet a line through C
parallel to A B, at points G and H, respectively. Use Theorem #48,
Ceva's Theorem and Theorem #10. Also prove l:::.GCD '"
l:::.HCD.

8·26 METHOD I: Use the result of Problem 8-25, Theorem #47, and
Menelaus'Theorem.
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METHOD II: Use Desargues' Theorem (problem 8-23).

8-27 Use Theorem #36a and the trigonometric form of Ceva's Theorem.

8-28 Use Theorems #18, #5, #46, and #47. Then use Menelaus' Theorem.

8-29 Consider transversals BC, AN, and DE of .6.XYz. Use Menelaus'
Theorem.

8-30 Consider transversals C"AB', A'B"C, BA"C' of .6.XYz. Use
Menelaus' Theorem.

9-1 METHOD I: Prove quadrilaterals cyclic; then show that two angles
are congruent, both sharing as a side the required line.

METHOD II: Prove quadrilaterals cyclic to show that two congruent
angles are vertical angles (one of the lines forming these vertical
angles is the required line).

METHOD III: Draw a line passing through a vertex of the triangle
and parallel to a segment of the required line. Prove that the
other segment of the required line is also parallel to the new line.
Use Euclid's parallel postulate to obtain the desired conclusion.

9-2 Discover cyclic quadrilaterals to find congruent angles. Use
Theorems #37, #36, and #8.

9-3 Prove X, Y, and Z collinear (the Simson Line); then prove
.6.PAB ~ .6.PXZ.

9-4 Draw the Simson Lines of .6.ABC and .6.SCR; then use the
converse of Simson's Theorem.

9-5 Show that M is the point of intersection of the diagonals of a
rectangle, hence the midpoint of AP. Then use Theorem #31.

9-6 Draw various auxiliary lines, and use Simson's Theorem.

9-' Use Simson's Theorem, and others to prove .6.LPM ~ .6.KPN.

9-8 Use the converse of Simson's Theorem, after showing that various
Simson Lines coincide and share the same Simson point.
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9-9 METHOD I: Extend an altitude to the circumcircle of the triangle.
Join that point with the Simson point. Use Theorems #36, #8, #14,
#5, #36a, #37, #7, and #18. Also use Simson's Theorem.

METHOD II: An isosceles (inscribed) trapezoid is drawn using one
of the altitudes as part of one base. Other auxiliary lines are
drawn. Use Theorems #9, #33, #21, #25, and Simson's Theorem.

9·10 Prove that each of the Simson Lines is parallel to a side of an
inscribed angle. Various auxiliary lines are needed.

9-11 Use a secondary result obtained in the proof for Problem 9-10,
line (III). Then show that the new angle is measured by arcs
independent of point P.

9-12 Use the result of Solution 9-10, line (III).

10-1 Draw altitude CE; then use the Pythagorean Theorem in various
right triangles.

10-2 Apply Stewart's Theorem.

10-3 METHOD I: Use Stewart's Theorem.

METHOD II: Use Heron's Formula (problem 6-1).

10-4 Apply Stewart's Theorem, using each of the interior lines separate­
ly. Also use the Pythagorean Theorem.

10-5 Use a secondary result obtained in the proof of Stewart's Theorem
[See the solution to Problem 10-1, equations (II) and (IV).]

10-6 Apply Stewart's Theorem and Theorem #47.

10-7 Use the result obtained from Problem 10-6.

10-8 METHOD I: Use Theorems #47, and #55, and the result obtained
from Problem 10-6.

METHOD II: Use Theorems #47 and #55.

10-9 Use Theorems #47 and #55, and the result obtained from Problem
10-6.
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APPENDICES

Selected Definitions, Postulates, and Theorems

1 If two angles are vertical angles then the two angles are congruent.
2 Two triangles are congruent if two sides and the included angle

of the first triangle are congruent to the corresponding parts of
the second triangle. (S.A.S.)

3 Two triangles are congruent if two angles and the included side
of the first triangle are congruent to the corresponding parts of
the second triangle. (A.S.A.)

4 Two triangles are congruent if the sides of the first triangle are
congruent to the corresponding sides of the second triangle.
(S.S.S.)

5 If a triangle has two congruent sides, then the triangle has two
congruent angles opposite those sides. Also converse.

6 An equilateral triangle is equiangular. Also converse.
7 If a pair of corresponding angles formed by a transversal of two

lines are congruent, then the two lines are parallel. Also converse.
S If a pair of alternate interior angles formed by a transversal of

two lines are congruent, then the lines are parallel. Also converse.
9 Two lines are paral1el if they are perpendicular to the same line.

10 If a line is perpendicular to one of two parallel lines, then it is
also perpendicular to the other.

11 If a pair of consecutive interior angles formed by a transversal of
two lines are supplementary, then the lines are parallel. Also
converse.

12 The measure of an exterior angle of a triangle equals the sum of
the measures of the two non-adjacent interior angles.

13 The sum of the measures of the three angles of a triangle is 180,
a constant.

14 The acute angles of a right triangle are complementary.
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15 The sum of the measures of the four interior angles of a convex
quadrilateral is 360, a constant.

16 Two triangles are congruent if two angles and a non-included
side of the first triangle are congruent to the corresponding parts
of the second triangle.

17 Two right triangles are congruent if the hypotenuse and a leg of
one triangle are congruent to the corresponding parts of the other
triangle.

18 Any point on the perpendicular bisector of a line segment is
equidistant from the endpoints of the line segment. Two points
equidistant from the endpoints of a line segment, determine the
perpendicular bisector of the line segment.

19 Any point on the bisector of an angle is equidistant from the
sides of the angle.

20 Parallel lines are everywhere equidistant.
21a The opposite sides of a parallelogram are parallel. Also converse.
21b The opposite sides of a parallelogram are congruent. Also

converse.
21e The opposite angles of a parallelogram are congruent. Also

converse.
21d Pairs of consecutive angles of a parallelogram are supplementary.

Also converse.
21e A diagonal of a parallelogram divides the parallelogram into two

congruent triangles.
21f The diagonals of a parallelogram bisect each other. Also converse.
21g A rectangle is a special parallelogram; therefore 21a through 2lf

hold true for the rectangle.
21b A rectangle is a parallelogram with congruent diagonals. Also

converse.
2li A rectangle is a parallelogram with four congruent angles, right

angles. Also converse.
21j A rhombus is a special parallelogram; therefore 21a through 21f

hold true for the rhombus.
21k A rhombus is a parallelogram with perpendicular diagonals.

Also converse.
211 A rhombus is a quadrilateral with four congruent sides. Also

converse.
21m The diagonals of a rhombus bisect the angles of the rhombus.
21n A square has all the properties of both a rectangle and a rhombus;

hence 21a through 21m hold true for a square.
22 A quadrilateral is a parallelogram if a pair of opposite sides are
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both congruent and parallel.
23 The base angles of an isosceles trapezoid are congruent. Also

converse.
24 If a line segment is divided into congruent (or proportional)

segments by three or more parallel lines, then any other trans­
versal will similarly contain congruent (or proportional) seg­
ments determined by these parallel lines.

2S If a line contains the midpoint of one side of a triangle and is
parallel to a second side of the triangle, then it will bisect the third
side of the triangle.

26 The line segment whose endpoints are the midpoints of two sides
of a triangle is parallel to the third side of the triangle and has a
measure equal to one-half of the measure of the third side.

27 The measure of the median on the hypotenuse of a right triangle
is one-half the measure of the hypotenuse.

28 The median of a trapezoid, the segment joining the midpoints of
the non-parallel sides, is parallel to each of the parallel sides, and
has a measure equal to one-half of the sum of their measures.

29 The three medians of a triangle meet in a point, the centroid,
which is situated on each median so that the measure of the
segment from the vertex to the centroid is two-thirds the measure
of the median.

30 A line perpendicular to a chord of a circle and containing the
center of the circle, bisects the chord and its major and minor
arcs.

31 The perpendicular bisector of a chord of a circle contains the
center of the circle.

32a If a line is tangent to a circle, it is perpendicular to a radius at the
point of tangency.

32b A line perpendicular to a radius at a point on the circle is tangent
to the circle at that point.

32c A line perpendicular to a tangent line at the point of tangency
with a circle, contains the center of the circle.

32d The radius of a circle is only perpendicular to a tangent line at the
point of tangency.

33 If a tangent line (or chord) is parallel to a secant (or chord) the arcs
intercepted between these two lines are congruent

34 Two tangent segments to a circle from an external point are
congruent.

3S The measure of a central angle is equal to the measure of its
intercepted arc.
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36 The measure of an inscribed angle equals one-half the measure
of its intercepted arc.

36a A quadrilateral is cyclic (i.e. may be inscribed in a circle) if one
side subtends congruent angles at the two opposite vertices.

37 The opposite angles of a cyclic (inscribed) quadrilateral are
supplementary. Also converse.

38 The measure of an angle whose vertex is on the circle and whose
sides are formed by a chord and a tangent line, is equal to one­
half the measure of the intercepted arc.

39 The measure of an angle formed by two chords intersecting inside
the circle, is equal to half the sum of the measures of its inter­
cepted arc and of the arc of its vertical angle.

40 The measure of an angle formed by two secants, or a secant and
a tangent line, or two tangent lines intersecting outside the circle,
equals one-half the difference of the measures of the intercepted
arcs.

41 The sum of the measures of two sides of a non-degenerate
triangle is greater than the measure of the third side of the
triangle.

42 If the measures of two sides of a triangle are not equal, then the
measures of the angles opposite these sides are also unequal, the
angle with the greater measure being opposite the side with
the greater measure. Also converse.

43 The measure of an exterior angle of a triangle is greater than the
measure of either non-adjacent interior angle.

44 The circumcenter (the center of the circumscribed circle) of a
triangle is determined by the common intersection of the per­
pendicular bisectors of the sides of the triangle.

4S The incenter (the center of the inscribed circle) of a triangle is
determined by the common intersection of the interior angle
bisectors of the triangle.

46 If a line is parallel to one side of a triangle it divides the other two
sides of the triangle proportionally. Also converse.

47 The bisector of an angle of a triangle divides the opposite side
into segments whose measures are proportional to the measures
of the other two sides of the triangle. Also converse.

48 If two angles of one triangle are congruent to two corresponding
angles of a second triangle, the triangles are similar. (A.A.)

49 If a line is parallel to one side of a triangle intersecting the other
two sides, it determines (with segments of these two sides) a
triangle similar to the original triangle.
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SO Two triangles are similar if an angle of one triangle is congruent
to an angle of the other triangle, and if the measures of the sides
that include the angle are proportional.

Sta The measure of the altitude on the hypotenuse of a right triangle
is the mean proportional between the measures of the segments
of the hypotenuse.

Stb The measure of either leg of a right triangle is the mean propor­
tional between the measure of the hypotenuse and the segment,
of the hypotenuse, which shares one endpoint with the leg con­
sidered, and whose other endpoint is the foot of the altitude on the
hypotenuse.

52 If two chords of a circle intersect, the product of the measures of
the segments of one chord equals the product of the segments of
the other chord.

53 If a tangent segment and a secant intersect outside the circle, the
measure of the tangent segment is the mean proportional between
the measure of the secant and the measure of its external segment.

54 If two secants intersect outside the circle, the product of the
measures of one secant and its external segment equals the product
of the measures of the other secant and its external segment.

55 (The Pythagorean Theorem) In a right triangle the sum of the
squares of the measures of the legs equals the square of the
measure of the hypotenuse. Also converse.

SSa In an isosceles right triangle (45-45-90 triangle), the measure of
the hypotenuse is equal to 0 times the measure of either leg.

SSb In an isosceles right triangle (45-45-90 triangle), the measure of
either leg equals one-half the measure of the hypotenuse times 0.

SSe In a 30-60-90 triangle the measure of the side opposite the 30
angle is one-half the measure of the hypotenuse.

SSd In a 30-60-90 triangle, the measure of the side opposite the 60
angle equals one-half the measure of the hypotenuse times 0.

SSe In a triangle with sides of measures 13, 14, and 15, the altitude to
the side of measure 14 has measure 12.

56 The median of a triangle divides the triangle into two triangles of
equal area. An extension of this theorem follows. A line segment
joining a vertex of a triangle with a point on the opposite side,
divides the triangle into two triangles, the ratio of whose areas
equals the ratio of the measures of the segments of this "opposite"
side.
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APPENDIX II Selected Formulas

1 The sum of the measures of the interior angles of an n-sided
convex polygon = (n - 2)180.

2 The sum of the measures of the exterior angles of any convex
polygon is constant, 360.

3 The area of a rectangle:
K = bh.

4a The area of a square:
K = S2.

4b The area of a square:

K = ~d2.

Sa The area of any triangle:

K = ~ bh, where b is the base and h is the altitude.

Sb The area of any triangle:

K = ~ ab sin C.

Sc The area of any triangle:
1

K = ys(s - a)(s - b)(s - C), where s = 2(a + b + c).

Sd The area of a right triangle:

K = ~ /1/2' where / is a leg.

Se The area of an equilateral triangle:

K s2y'3 h . 'd= -4-' were s IS any SI e.

Sf The area of an equilateral triangle:

K = h2~3 , where h is the altitude.

6a The area of a parallelogram:
K = bh.
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6b The area of a parallelogram:
K = ab sin C.

7 The area of a rhombus:
1

K = 2dld2o

8 The area of a trapezoid:
1

K = 2h(b1 + b2 ).

9 The area of a regular polygon:

K = ~ ap, where a is the apothem and p is the perimeter.

10 The area of a circle:

K = rr2 = ...:2 ,where d is the diameter 0

11 The area of a sector of a circle:

K = 3~ rr 2
, where n is the measure of the central angle.

12 The circumference of a circle:
C = 2rr.

13 The length of an arc of a circle:

L = 3~ 2rr, where n is the measure of the central angle of the arc.


