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INTRODUCTION

The challenge of well-posed problems transcends national boundaries,
ethnic origins, political systems, economic doctrines, and religious
beliefs; the appeal is almost universal. Why? You are invited to formulate
your own explanation. We simply accept the observation and exploit it
here for entertainment and enrichment.

This book is a new, combined edition of two volumes first published
in 1970. It contains nearly two hundred problems, many with extensions
or variations that we call challenges. Supplied with pencil and paper and
fortified with a diligent attitude, you can make this material the starting
point for exploring unfamiliar or little-known aspects of mathematics.
The challenges will spur you on; perhaps you can even supply your own
challenges in some cases. A study of these nonroutine problems can
provide valuable underpinnings for work in more advanced mathematics,

This book, with slight modifications made, is as appropriate now as it
was a quarter century ago when it was first published. The National Council
of Teachers of Mathematics (NCTM), in their Curriculum and Evaluation
Standards for High School Mathematics (1989), lists problem solving as its
first standard, stating that " mathematical problem solving in its broadest
sense is nearly synonymous with doing mathematics.” They go on to say,
"[problem solving] is a process by which the fabric of mathematics is
identified in later standards as both constructive and reinforced."”

This strong emphasis on mathematics is by no means a new agenda
item. In 1980, the NCTM published An Agenda for Action. There, the NCTM
also had problem solving as its first item, stating, "educators should give
priority to the identification and analysis of specific problem solving strate-
gies. ... [and] should develop and disseminate examples of 'good problems'
and strategies.” It is our intention to provide secondary mathematics
educators with materials to help them implement this very important
recommendation.

ABOUT THE BOOK
Challenging Problems in Geometry is organized into three main parts:
"Problems,"” "Solutions,” and "Hints." Unlike many contemporary
problem-solving resources, this book is arranged not by problem-solving
technique, but by topic. We feel that announcing the technique to be used
stifles creativity and destroys a good part of the fun of problem solving.
The problems themselves are grouped into two sections. Section I,
"A New Twist on Familiar Topics," covers five topics that roughly
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parallel the sequence of the high school geometry course. Section II,
"Further Investigations,” presents topics not generally covered in the high
school geometry course, but certainly within the scope of that audience.
These topics lead to some very interesting extensions and enable the reader
to investigate numerous fascinating geometric relationships.

Within each topic, the problems are arranged in approximate order of
difficulty. For some problems, the basic difficulty may lic in making the
distinction between relevant and irrelevant data or between known and
unknown information. The sure ability to make these distinctions is part
of the process of problem solving, and each devotee must develop this
power by him- or herself. It will come with sustained effort.

In the "Solutions" part of the book, each problem is restated and then
its solution is given. Answers are also provided for many but not all of
the challenges. In the solutions (and later in the hints), you will notice
citations such as "(#23)" and "(Formula #5b)." These refer to the
definitions, postulates, and theorems listed in Appendix I, and the
formulas given in Appendix II.

From time 10 time we give alternate methods of solution, for there is
rarely only one way to solve a problem. The solutions shown are far from
exhaustive, and intentionally so, allowing you to try a variety of different
approaches. Particularly enlightening is the strategy of using multiple
methods, integrating algebra, geometry, and trigonometry. Instances of
multiple methods or multiple interpretations appear in the solutions. Our
continuing challenge to you, the reader, is to find a different method of
solution for every problem.

The third part of the book, "Hints," offers suggestions for each
problem and for selected challenges. Without giving away the solution,
these hints can help you get back on the track if you run into difficulty.

USING THE BOOK

This book may be used in a variety of ways. It is a valuable supplement
to the basic geometry textbook, both for further explorations on specific
topics and for practice in developing problem-solving techniques. The
book also has a natural place in preparing individuals or student teams for
participation in mathematics contests. Mathematics clubs might use this
book as a source of independent projects or activities. Whatever the use,
experience has shown that these problems motivate people of all ages to
pursue more vigorously the study of mathematics.

Very near the completion of the first phase of this project, the
passing of Professor Charles T. Salkind grieved the many who knew and
respected him. He dedicated much of his life to the study of problem
posing and problem solving and to projects aimed at making problem
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solving meaningful, interesting, and instructive to mathematics students
at all levels. His efforts were praised by all. Working closely with this
truly great man was a fascinating and pleasurable experience.

Alfred S. Posamentier
1996




PREPARING TO
SOLVE A PROBLEM

A strategy for attacking a problem is frequently dictated by the use of
analogy. In fact, searching for an analogue appears to be a psychological
necessity. However, some analogues are more apparent than real, so
analogies should be scrutinized with care. Allied to analogy is structural
similarity or pattern. Identifying a pattern in apparently unrelated
problems is not a common achievement, but when done successfully it
brings immense satisfaction.

Failure to solve a problem is sometimes the result of fixed habits of
thought, that is, inflexible approaches. When familiar approaches prove
fruitless, be prepared to alter the line of attack. A flexible attitude may
help you to avoid needless frustration.

Here are three ways to make a problem yield dividends:

(1) The result of formal manipulation, that is, "the answer,"” may or may
not be meaningful; find out! Investigate the possibility that the
answer is not unique. If more than one answer is obtained, decide on
the acceptability of each alternative. Where appropriate, estimate the
answer in advance of the solution. The habit of estimating in advance
should help to prevent crude errors in manipulation.

(2) Check possible restrictions on the data and/or the results. Vary the
data in significant ways and study the effect of such variations on the
original result.

(3) The insight needed to solve a generalized problem is sometimes
gained by first specializing it. Conversely, a specialized problem,
difficult when tackled directly, sometimes yields to an easy solution
by first generalizing it.

As is often true, there may be more than one way to solve a problem.
There is usually what we will refer to as the "peasant's way" in contrast to
the "poet's way"—the latter being the more elegant method.

To better understand this distinction, let us consider the following
problem:

If the sum of two numbers is 2, and the product of these
same two numbers is 3, find the sum of the reciprocals
of these two numbers.
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Those attempting to solve the following pair of equations simultane-
ously are embarking on the "peasant’s way" to solve this problem.

x+y=2
xy =3

Substituting for y in the second equation yields the quadratic equation,
x2 - 2x + 3 = 0. Using the quadratic formula we can find x = 1% i V2.
By adding the reciprocals of these two values of x, the answer %—appears.
This is clearly a rather laborious procedure, not particularly elegant.

The "poet's way" involves working backwards. By considering the
desired result

1 1
-+—
x )y

and seeking an expression from which this sum may be derived, one
should inspect the algebraic sum:
rry
xy

The answer to the original problem is now obvious! That is, since
x +y = 2and xy =3, %L=2§ This is clearly a more elegant

solution than the first one.

The "poet's way" solution to this problem points out a very useful
and all too often neglected method of solution. A reverse strategy is
certainly not new. It was considered by Pappus of Alexandria about 320
A.D. In Book VII of Pappus' Collection there is a rather complete
description of the methods of "analysis” and "synthesis." T. L. Heath, in
his book A Manual of Greek Mathematics (Oxford University Press,
1931, pp. 452-53), provides a translation of Pappus' definitions of these
terms:

Analysis takes that which is sought as if it were
admitted and passes from it through its successive
consequences to something which is admitted as the
result of synthesis: for in analysis we assume that
which is sought as if it were already done, and we
inquire what it is from which this results, and again
what is the antecedent cause of the latter, and so on,
until, by so retracing our steps, we come upon
something already known or belonging to the class of
first principles, and such a method we call analysis as
being solution backward.
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But in synthesis, reversing the progress, we take as
already done that which was last arrived at in the
analysis and, by arranging in their natural order as
consequences what before were antecedents, and
successively connecting them one with another, we
arrive finally at the construction of that which was
sought: and this we call synthesis.

Unfortunately, this method has not received its due emphasis in the
mathematics classroom. We hope that the strategy recalled here will serve
you well in solving some of the problems presented in this book.

Naturally, there are numerous other clever problem-solving strategies
to pick from. In recent years a plethora of books describing various
problem-solving methods have become available. A concise description of
these problem-solving strategies can be found in Teaching Secondary
School Mathematics: Techniques and Enrichment Units, by A. S.
Posamentier and J. Stepelman, 4th edition (Columbus, Ohio: Prentice
Hall/Merrill, 1995).

Our aim in this book is to strengthen the reader's problem-solving
skills through nonroutine motivational examples. We therefore allow the
reader the fun of finding the best path to a problem's solution, an
achievement generating the most pleasure in mathematics.






PROBLEMS

SECTION 1
A New Twist on Familiar Topics

1. Congruence and Parallelism

The problems in this section present applications of several topics
that are encountered early in the formal development of plane Euclidean
geometry. The major topics are congruence of line segments, angles,
and triangles and parallelism in triangles and various types of quadri-
laterals.

1-1 In any AABC, E and D are interior points of AC and BC,
respectively (Fig. 1-1). AF bisects ZCAD, and BF bisects £ CBE.
Prove mZL AEB + mZADB = 2m/Z AFB.

Challenge 1 Prove that this result holds if E coincides with C.

Challenge 2 Prove that the result holds if E and D are exterior points
on extensions of AC and BC through C.
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1-2 In AABC, a point D is on AC so that AB = AD (Fig. 1-2).
mZLABC — mZACB = 30. Find m£CBD.

1.2 A

c B

1-3 The interior bisector of £ B, and the exterior bisector of Z C of
AABC meet at D (Fig. 1-3). Through D, a line parallel to CB
meets AC at L and AB at M. If the measures of legs LC and MB
of trapezoid CLMB are 5 and 7, respectively, find the measure of
base LM. Prove your result.

Challenge Find ZM if AABC is equilateral.
13 A

) J\M

E

B

C

1-4 In right AABC, CF is the median to hypotenuse 4B, CE is the
bisector of ZACB, and CD is the altitude to AB (Fig. 1-4).
Prove that £ DCE = Z ECF.

Challenge Does this result hold for a non-right triangle?
B

14 E

[ A

1-5 The measure of a line segment PC, perpendicular to hypotenuse
AC of right AABC, is equal to the measure of leg BC. Show BP
may be perpendicular or parallel to the bisector of ZA.
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1-6 Prove the following: if, in AABC, median AM is such that
mZBAC is divided in the ratio 1:2, and AM is extended through

M to D so that £DBA is a right angle, then AC = % AD
(Fig. 1-6).

Challenge Find two ways of proving the theorem when mZ A4 = 90.

A

1-7 In square ABCD, M is the midpoint of AB. A line perpendicular
to MC at M meets AD at K. Prove that ZBCM = ZLKCM.

Challenge Prove that AKDC is a 3-4-5 right triangle.

1-8 Given any AABC, AE bisects ZBAC, BD _bisects ZABC,
CP L BD, and CQ L 4E (Fig. 1-8), prove that PQ is parallel to
AB.

Challenge Identify the points P and Q when AABC is equilateral.

1-9 Given that ABCD is a square, CF bisects ZACD, and BPQ is
perpendicular to CF (Fig. 1-9), prove DQ = 2PE.

D Q [ A B

1-9 P 1-10

1-10 Given square ABCD with mZEDC = mZECD = 15, prove
AABE is equilateral (Fig. 1-10).
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1-11 In any AABC, D, E, and F are mid_points of the sides AC, 4B,
and BC, respectively (Fig. 1-11). BG is an altitude of AABC.
Prove that LEGF =~ L EDF.

Challenge 1 Investigate the case when AABC is equilateral.
Challenge 2 Investigate the case when AC = CB.

1-12

D E

1-12 ErighLAABC, with right angle at C, BD = BC, AE = AC,
EF 1 BC,and DG L AC (Fig. 1-12). Prove that DE = EF + DG.

1-13 Prove that the sum of the measures of the perpendiculars from
any point on a side of a rectangle to the diagonals is constant.

Challenge If the point were on the extension of a side of the rectangle,
would the result still hold?

1-14 The trisectors of the angles of a rectangle are drawn. For each
pair of adjacent angles, those trisectors that are closest to the
enclosed side are extended until a point of intersection is estab-
lished. The line segments connecting those points of intersection
form a quadrilateral. Prove that the quadrilateral is a rhombus.

Challenge 1 What type of quadrilateral would be formed if the
original rectangle were replaced by a square?

Challenge 2 What type of figure is obtained when the original figure
is any parallelogram?

Challenge 3 What type of figure is obtained when the original figure
is a rhombus?

1-15 In Fig. 1-15, BE ar&ﬁ__are altitudes of A4BC. F, G, and K
are midpoints of AH, AB, and BC, respectively. Prove that
ZFGK is a right angle.
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c

1-16 In parallelogram ABCD, M is the midpoint of BC. DT is drawn
from D perpendicular to MA as in Fig. 1-16. Prove that CT =
CD.
Challenge Make the necessary changes in the construction lines, and
then prove the theorem for a rectangle.

A

B

1-16
C D

1-17 Prove that the line segment joining the midpoints of two opposite
sides of any quadrilateral bisects the line segment joining the
midpoints of the diagonals.

1-18 Inany AABC, XYZ is any line through the centroid G (Fig. 1-18).
Perpendiculars are drawn from each vertex of AABC to this
line. Prove CY = AX + BZ.

1-19 In any AABC, CPQ is any line through C, interior to A4ABC
(Fig. 1-19). BP is perpendicular to line CPQ, AQ is perpendicular
to line CPQ, and M is the midpoint of AB. Prove that MP = MQ.



6 PROBLEMS

Challenge Show that the same result holds if the line through C is
exterior to AABC.

1-20 In Fig. 1-20, ABCD is a parallelogram with equilateral triangles
ABF and ADE drawn on sides AB and AD, respectively. Prove
that AFCE is equilateral.

F

1-21 If a square is drawn externally on each side of a parallelogram,
prove that

(a) the quadrilateral determined by the centers of these squares
is itself a square

(b) the diagonals of the newly formed square are concurrent with
the diagonals of the original parallelogram.

Challenge Consider other regular polygons drawn externally on the
sides of a parallelogram. Study each of these situations!

2. Triangles in Proportion

As the title suggests, these problems deal primarily with similarity
of triangles. Some interesting geometric proportions are investigated,
and there is a geometric illustration of a harmonic mean.

Do you remember manipulations with proportions such as: if

- b —-d . .
= 2 then gb— =< i They are essential to solutions of many

SR~

problems.
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2-1 In AABC, DE || BC, FE || DC, AF = 4, and FD = 6 (Fig. 2-1).
Find DB.
Challenge 1 Find DB if AF = m,; and FD = m,.

Challenge 2 FG || DE, and HG || FE. Find DB if AH = 2 and
HF = 4,

Challenge 3 Find DB if AH = m; and HF = m,.

2-2 In isosceles AABC (AB = AC), CB is extended through B to P
(Fig. 2-2). A line from P, parallel to altitude BF, meets AC at D
(where D is between A4 and F). From P, a perpendicular is drawn
to meet the extension of 4B at E so that B is between E and 4.
Express BF in terms of PD and PE. Try solving this problem
in two different ways.

Challenge Prove that BF = PD + PE when AB = AC, P is between
Band C, Disbetween C and F, and a perpendicular from P
meets AB at E.

2-3 The measure of the longer base of a trapezoid is 97. The measure
of the line segment joining the midpoints of the diagonals is 3.
Find the measure of the shorter base.

Challenge Find a general solution applicable to any trapezoid.

2-4 In AABC, D is a point on side BA such that BD:DA = 1:2.
E is a point on side CB so that CE:EB = 1:4. Segments DC
and AE intersect at F. Express CF:FD in terms of two positive
relatively prime integers.
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Challenge Show that if BD:DA = m:n and CE:EB = r:s, then
CF nN/m-+n
= ()

2-5 In AABC, BE is a median and O is the midpoint of BE. Draw
A0 and extend it to meet BC at D. Draw CO and extend it to
meet B4 at F. If CO = 15, OF = 5, and A0 = 12, find the
measure of OD.

Challenge Can you establish a relationship between OD and A0?

2-6 In parallelogram ABCD, points E and F are chosen on diagonal
AC so that AE = FC. L—BT is extended to meet AD at H, and
BF is extended to meet DC at G, prove that HG is parallel to AC.

Challenge Prove the theorem if E and F are on ;R‘., exterior to the
parallelogram.

2-7 AM is the median to side BC of AABC, and P is any point on
AM. BP extended meets AC at E, and CP extended meets AB at
D. Prove that DE is parallel to BC.

Challenge Show that the result holds if P is on m, exterior to
AABC.

2-8 In AABC, the bisector of £ A intersects BC at D (Fig. 2-8).
A perpendicular to 4D from B intersects AD at E. A line segment
through E and parallel to AC intersects BC at G, and AB at H.
If AB = 26, BC = 28, AC = 30, find the measure of DG.

Challenge Prove the result for CF L 4D where F is on AD exterior
to AABC.

A

29

>}
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29 In AABC, altitude BE is extended to G so that EG = the measure
of altitude CF. A line through G and parallel to AC meets BA
at H, as in Fig. 2-9. Prove that AH = AC.

Challenge 1 Show that the result holds when £ 4 is a right angle.

Challenge 2 Prove the_theorem for the case where the measure of
altitude BE is greater than the measure of altitude CF,
and G is on BE (between B and E) so that EG = CF.

2-10 In trapezoid ABCD (AB || DC), with diagonals AC and DB
intersecting at P, AM, a median of AADC, intersects BD at E
(Fig. 2-10). Through E, a line is drawn parallel to DC cutting 4D,
AC, and BC at points H, F, and G, respectively. Prove that
HE = EF = FG.

2-11 A line segment AB is divided by points K and L in such a way that
(AL)? = (AK)(4B) (Fig. 2-11). A line segment AP is drawn
congruent to AL. Prove that PL bisects Z KPB.

P

2-11

Challenge Investigate the situation when ZAPB is a right angle.

2-12 P is any point on altitude CD of AABC. AP and BP meet sides
CBand CA at points Q and R, respectively. Prove that ZQDC ==
ZRDC.
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2-13 In AABC, Z is any point on base 4B (Fig. 2-13). CZ is drawn.

A line is drawn through A parallel to CZ meeting BC at X. A
line is drawn through B parallel to CZ meeting AC at Y. Prove

1 1 1
that v+ sv = ¢z
Y
X
2-13 ¢
A 7 B

Challenge Two telephone cable poles, 40 feet and 60 feet high,

respectively, are placed near each other. As partial support,
a line runs from the top of each pole to the bottom of the
other. How high above the ground is the point of inter-
section of the two support lines?

2-14 In AABC, mZA = 120. Express the measure of the internal

bisector of £ A in terms of the two adjacent sides.

Challenge Prove the converse of the theorem established above.

2-15

2-16

Prove that the measure of the segment passing through the point
of intersection of the diagonals of a trapezoid and parallel to the
bases with its endpoints on the legs, is the harmonic mean be-
tween the measures of the parallel sides. The harmonic mean of
two numbers is defined as the reciprocal of the average of the
reciprocals of two numbers. The harmonic mean between a and
b is equal to

(a"‘+b")‘l _ _2ab
2 T a+b

In [JABCD, E is on BC (Fig. 2-16a). AE cuts diagonal BD at G
and DC at F. If AG = 6 and GE = 4, find EF.

A B

2-16a
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Challenge 1 Show that 4G is one-half the harmonic mean between
AF and AE.

Challenge 2 Prove the theorem when E is on the extension of CB
through B (Fig. 2-16b).

2-16b

A
pe——e
D

[+

3. The Pythagorean Theorem

You will find two kinds of problems in this section concerning the
key result of Euclidean geometry, the theorem of Pythagoras. Some
problems involve direct applications of the theorem. Others make
use of results that depend on the theorem, such as the relationship
between the sides of an isosceles right triangle or a 30-60-90 triangle.

3-1 In any AABC, E is any point on altitude 4D (Fig. 3-1). Prove
that (4C)? — (CE)? = (AB)® — (EB)>.
A

31

a
C 3) B

Challenge 1 Show that the result holds if E is on the extension of
AD through D.

Challenge 2 What change in the theorem results if E is on the extension
of AD through A?

3-2 In AABC, median AD is perpendicular to median BE. Find AB
if BC = 6 and AC = 8.
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Challenge 1 Express AB in general terms for BC = g, and AC = b.
Challenge 2 Find the ratio of AB to the measure of its median.
3-3 On hypotenuse AB of right AABC, draw square ABLH ex-
ternally. If AC = 6 and BC = 8, find CH.
Challenge 1 Find the area of quadrilateral HLBC.
Challenge 2 Solve the problem if square ABLH overlaps AABC.
3-4 The measures of the sides of a right triangle are 60, 80, and 100.
Find the measure of a line segment, drawn from the vertex of the

right angle to the hypotenuse, that divides the triangle into two
triangles of equal perimeters.

3-5 On sides AB and DC of rectangle ABCD, points F and E are
chosen so that AFCE is a rhombus (Fig. 3-5). If AB = 16 and
BC = 12, find EF.
F

A B

35

D C
E

Challenge If AB = a and BC = b, what general expression will give
the measure of EF?

3-6 A man walks one mile east, then one mile northeast, then another
mile east. Find the distance, in miles, between the man’s initial
and final positions.

Challenge How much shorter (or longer) is the distance if the course
is one mile east, one mile north, then one mile east?

3-7 If the measures of two sides and the included angle of a triangle
are 7, /50, and 135, respectively, find the measure of the segment
joining the midpoints of the two given sides.

Challenge 1 Show that when mZ A4 = 135,

EF = 3\/b* + ¢ + bev/2,
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where E and F are midpoints of sides 4C and 4B,
respectively, of AABC.

NOTE: a, b, and ¢ are the lengths of the sides opposite
LA, LB, and £LC of AABC.

Challenge 2 Show that when mZ£ A4 = 120,

EF = 5 Vb7 + ¢ + bev/I.

Challenge 3 Show that when mZ A4 = 150,

EF = 3 V/b7 + ¢ + bev/3.

Challenge 4 On the basis of these results, predict the values of EF for

3-8

mZA = 30, 45, 60, and 90.

Hypotenuse AB of right AABC is divided into four congruent
segments by points G, E, and H, in the order A4, G, E, H, B. If
AB = 20, find the sum of the squares of the measures of the line
segments from C to G, E, and H.

Challenge Express the result in general terms when AB = c.

39

3-10

Challenge Show that PG =

In quadrilateral ABCD, AB = 9, BC = 12,CD = 13, DA = 14,
and diagonal AC = 15 (Fig. 3-9). Perpendiculars are drawn from
Band D to AC, meeting AC at points P and Q, respectively. Find

PQ.

A
B
AN w
A e C
] D p
D C B

In AABC, angle C is a right angle (Fig. 3-10). AC = BC = 1,
and D is the midpoint of AC. BD is drawn, and a line perpendicular
to BD at P is drawn from C. Find the distance from P to the inter-
section of the medians of AABC.

/10
T30
the length of the hypotenuse.

when G is the centroid, and c is
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3-11 A right triangle contains a 60° angle. If the measure of the
hypotenuse is 4, find the distance from the point of intersection
of the 2 legs of the triangle to the point of intersection of the angle
bisectors.

3-12 From point P inside AABC, perpendiculars are drawn to the
sides meeting BC, CA, and 4B, at points D, E, and F, respectively.
If BD =8, DC = 14, CE = 13, AF = 12, and FB = 6, find
AE. Derive a general theorem, and then make use of it to solve
this problem.

3-13 For AABC with medians 4D, BE, and CF, let m = AD +
BE + CF, and let s = AB + BC + CA. Prove that %s >

3
m>zs.

3-14 Prove that g(a2 + b% + %) = my? + mp? + m.2. (m. means
the measure of the median drawn to side ¢.)
Challenge 1 Verify this relation for an equilateral triangle.

Challenge 2 The sum of the squares of the measures of the sides of a
triangle is 120. If two of the medians measure 4 and 5,
respectively, how long is the third median?

Challenge 3 If AE and BF are medians drawn to the legs of right

AABC, find the numeral value of % .

4. Circles Revisited

Circles are the order of the day in this section. There are problems
dealing with arc and angle measurement; others deal with lengths of
chords, secants, tangents, and radii; and some problems involve both.

Particular attention should be given to Problems 4-33 thru 4-40,
which concern cyclic quadrilaterals (quadrilaterals that may be in-
scribed in a circle). This often neglected subject has interesting applica-
tions. If you are not familiar with it, you might look at the theorems
that are listed in Appendix 1.
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4-1 Two tangents from an external point P are drawn to a circle,
meeting the circle at points 4 and B. A third tangent meets the
circle at T, and tangents PA and PB at points Q and R, respec-
tively. Find the perimeter p of APQR.

4-2 AB and AC are tangent to circle O at B and C, respectively, and
CE is perpendicular to diameter BD (Fig. 4-2). Prove (BE)(BO) =
(AB)(CE).

Challenge 1 Find the value of 4B when E coincides with O.

Challenge 2 Show that the theorem is true when E is between B and O.

AB BO
Challenge 3 Show that JPE= VED

4-3 From an external point P, tangents PA and PB are dra/v_v\n to a
circle. From a point Q on the major (or minor) arc AB, per-
pendiculars are drawn to 4B, m, and PB. Prove that the per-
pendicular to 4B is the mean proportional between the other
two perpendiculars.

Challenge Show that the theorem is true when the tangents are
parallel.

4-4 Chords AC and DB are perpendicular to each other and intersect
at point G (Fig. 4-4). In AAGD the altitude from G meets AD
at E, and when extended meets BC at P. Prove that BP = PC.

Challenge One converse of this theorem is as follows. Chords AC
and DB intersect at G. In A AGD the altitude from G meets
AD at E, and when extended meets BC at P so that BP =
PC. Prove that AC L BD.
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4-5 Square ABCD is inscribed in a circle. Point E is on the circle.
If AB = 8, find the value of

(4E)* + (BE)* + (CE)* + (DE)>.

Challenge Prove that for ABCD, a non-square rectangle, (4E)? +
(BE)? 4 (CE)? + (DE)? = 2d?, where d is the measure
of the length of a diagonal of the rectangle.

4-6 Radius 40 is perpendicular to radius OB, MN is parallel to 4B
meeting A0 at P and OB at Q, and the circle at M and N
(Fig. 4-6). If MP = /56, and PN = 12, find the measure of the
radius of the circle.

M A pF
B
46 P 48 3
B P [
] A
N

4-7 Chord CD is drawn so that its midpoint is 3 inches from the
center of a cirglg with a radius of 6 inches. From A4, the midpoint
of minor arc CD, any chord 4B is drawn intersecting CD in M.
Let v be the range of values of (4B)(4M), as chord 4B is made to
rotate in the circle about the fixed point 4. Find v.

4-8 A circle with diameter AC is intersected by a secant at points B
and D. The secant and the diameter intersect at point P outside
the circle, as shown in Fig. 4-8. Perpendiculars AE and CF are
drawn from the extremities of the diameter to the secant. If
EB = 2,and BD = 6, find DF.

Challenge Does DF = EB? Prove it!

49 A diameter CD of a circle is extended through D to external
point P. The measure of secant CP is 77. From P, another secant
is drawn intersecting the circle first at 4, then at B. The measure
of secant PB is 33. The diameter of the circle measures 74.
Find the measure of the angle formed by the secants.

Challenge Find the measure of the shorter secant if the measure of the
angle between the secants is 45.
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4-10 In AABC, in which AB= 12, BC = 18, and AC = 25, a
semicircle is drawn so that its diameter lies on AC, and so that it
is tangent to AB and BC. If O is the center of the circle, find the
measure of A0.

Challenge Find the diameter of the semicircle.

4-11 Two parallel tangents to circle O meet the circle at points M and
N. A third tangent to circle O, at point P, meets the other two
tangents at points K and L. Prove that a circle, whose diameter is
KL, passes through O, the center of the original circle.

Challenge Prove that for different positions of point P, on I/W—]\V, a
family of circles is obtained tangent to each other at O.

4-12 LM is a chord of a circle, and is bisected at K (Fig. 4-12). DKJ is
another chord. A semicircle is drawn with diameter DJ. KS,
perpendicular to DJ, meets this semicircle at S. Prove KS = KL.

Challenge Show that if DKJ is_a diameter of the first circle, or if
DKJ coincides with LM, the theorem is trivial.

S
4-12
D

-~

4-13 AABC is inscribed in a circle with diameter 4D. A tangent to the
circle at D cuts AB extended at E and AC extended at F. If
AB = 4, AC = 6, and BE = 8, find CF.

Challenge 1 Find mZ DAF.
Challenge 2 Find BC.
4-14 Altitude AD of equilateral A4BC is a diameter of circle O. If the

circle intersects 4B and AC at E and F, respectively, find the ratio
of EF: BC.

Challenge Find the ratio of EB: BD.
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4-15 Two circles intersect in 4 and B, and the measure of the common
chord 4B is 10. The line joining the centers cuts the circles in P
and Q. If PQ = 3 and the measure of the radius of one circle is
13, find the radius of the other circle.

Challenge Find the second radius if PQ = 2.

4-16 ABCD is a quadrilateral inscribed in a circle. Diagonal BD
bisects AC. If AB = 10, AD = 12, and DC = 11, find BC.

Challenge Solve the problem when diagonal BD divides AC into two
segments, one of which is twice as long as the other.

4-17 A is a point exterior to circle O. PT is drawn tangent to the circle
so that PT = PA. As shown in Fig. 4-17, C is any point on circle
0, and AC and PC intersect the circle at points D and B, re-
spectively. AB intersects the circle at E. Prove that DE is parallel
to AP.

Challenge 1 Prove the theorem for A interior to circle O.

Challenge 2 Explain the situation when A is on circle O.

4-18 PA and PB are tangents to a circle, and PCD is a secant. Chords
AC, BC, BD, and DA are drawn. If AC = 9, AD = 12, and
BD = 10, find BC.

Challenge If in addition to the information given above, P4 = 15
and PC = 9, find AB.

4-19 The altitudes of AABC meet at O. BC, the base of the triangle,
has a measure of 16. The circumcircle of AA4BC has a diameter
with a measure of 20. Find 4A0.

4-20 Two circles are tangent internally at P, and a chord, 4B, of the
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larger circle is tangent to the smaller circle at C (Fig. 4-20). PB
and PA cut the smaller circle at E and D, respectively. If 4B = 15,
while PE = 2 and PD = 3, find AC.

Challenge Express AC in terms of AB, PE, and PD.

4-20

4-21 A circle, center O, is circumscribed about AA4ABC, a triangle in
which £ C is obtuse (Fig. 4-21). With OC as diameter, a circle is
drawn intersecting 4B in D and D’. If AD = 3, and DB = 4,
find CD.

Challenge 1 Show that the theorem is or is not true if mZC = 90.
Challenge 2 Investigate the case for mZC < 90.

4-22 In circle O, perpendicular chords AB and CD intersect at E so
that AE = 2, EB = 12, and CE = 4. Find the measure of the
radius of circle O.

Challenge Find the shortest distance from E to the circle.

4-23 Prove that the sum of the measure of the squares of the seg-
ments made by two perpendicular chords is equal to the square
of the measure of the diameter of the given circle.

Challenge Prove the theorem for two perpendicular chords meeting
outside the circle.

4-24 Two equal circles are tangent externally at 7. Chord TM in circle
O is perpendicular to chord TN in circle Q. Prove that MN || OQ
and MN = 00.

Challenge Show that MN = +/2(R2 + r2) if the circles are unequal,
where R and r are the radii of the two circles.
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4-25 From point A on the common internal tangent of tangent circles
O and O, secants AEB and ADC are drawn, respectively (Fig.
4-25). If DE is the common external tangent, and points C and B
are collinear with the centers of the circles, prove

(@ mLl = mZ2, and
(b) LA is aright angle.

Challenge 1 Prove or disprove that if BC does not pass through the
centers of the circles, the designated pairs of angles are
not equal and £ 4 is not a right angle.

Challenge 2 Prove that DE is the mean proportional between the
diameters of circles O and O’.

4-26 Two equal intersecting circles O and O’ have a common chord
RS. From any point P on RS a ray is drawn perpendicular to RS
cutting circles O and O’ at 4 and B, respectively. Prove that AB
is parallel to the line of centers, 00’ , and that AB = 00O'.

4-27 A circle is inscribed in a triangle whose sides are 10, 10, and 12
units in measure (Fig. 4-27). A second, smaller circle is inscribed
tangent to the first circle and to the equal sides of the triangle.
Find the measure of the radius of the second circle.

Challenge 1 Solve the problem in general terms if AC = a, BC = 2b.

Challenge 2 Inscribe a third, smaller circle tangent to the second
circle and to the equal sides, and find its radius by
inspection.

Challenge 3 Extend the legs of the triangle through B and C, and
draw a circle tangent to the original circle and to the
extensions of the legs. What is its radius?
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4-28 A circle with radius 3 is inscribed in a square. Find the radius of
the circle that is inscribed between two sides of the square and
the original circle.

Challenge Show that the area of the small circle is approximately 3%,
of the area of the large circle.

4-29 AB is a diameter of circle O, as shown in Fig. 4-29. Two circles
are drawn with 40 and OB as diameters. In the region between
the circumferences, a circle D is inscribed, tangent to the three
previous circles. If the measure of the radius of circle D is 8, find
AB.

Challenge Prove that the area of the shaded region equals the area of
circle E. A

(o}
/0\ 431 Y
Y4 P,
1o r—]° c
W Y D B

4-30 A carpenter wishes to cut four equal circles from a circular piece
of wood whose area is 9r square feet. He wants these circles of
wood to be the largest that can possibly be cut from this piece of
wood. Find the measure of the radius of each of the four new
circles.

Challenge 1 Find the correct radius if the carpenter decides to cut
out three equal circles of maximum size.

Challenge 2 Which causes the greater waste of wood, the four circles
or the three circles?
4-31 Acircle isinscribed in a quadrant of a circle of radius 8 (Fig. 4-31).
What is the measure of the radius of the inscribed circle?
Challenge Find the area of the shaded region.
4-32 Three circles intersect. Each pair of circles has a common chord.
Prove that these three chords are concurrent.

Challenge Investigate the situation in which one circle is externally
tangent to each of two intersecting circles.
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4-33

4-34

4-35

4-36

The bisectors of the angles of a quadrilateral are drawn. From
each pair of adjacent angles, the two bisectors are extended until
they intersect. The line segments connecting the points of inter-
section form a quadrilateral. Prove that this figure is cyclic (i.e.,
can be inscribed in a circle).

In cyclic quadrilateral 4BCD, perpendiculars to AB and CD are
erected at B and D and extended until they meet sides CD and
AB at B’ and D', respectively. Prove AC is parallel to B'D’.

Perpendiculars BD and CE are drawn from vertices B and C of
AABC to the interior bisectors of angles C and B, meeting them
at D and E, respectively (Fig. 4-35). Prove that DE intersects AB
and AC at their respective points of tangency, F and G, with the
circle that is inscribed in AABC.

A line, PQ, parallel to base BC of AABC, cuts AB and AC at P
and Q, respectively (Fig. 4-36). The circle passing through P and
tangent to AC at Q cuts 4B again at R. Prove that the points R,
Q, C, and B lie on a circle.

Challenge Prove the theorem when P and R coincide.

4-37

(o] A 8
In equilateral A4ABC, D is chosen on R" so that AD = (AC),
and E is chosen on BC so that CE = - (BC) (Fig. 4-37). BD and
AE intersect at F. Prove that ZCFB is a right angle.
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Challenge Prove or disprove the theorem when AD = - (AC) and
CE = - (BC)

4-38 The measure of the sides of square ABCD is x. F is the midpoint
of BC, and AE L DF (Fig. 4-38). Find BE.

D c

4.38

A = B

4-39 1f equilateral AA4BC is inscribed in a circle, and a point P is
chosen on minor arc 4 C prove that PB = PA + PC.

4-40 From point A, tangents are drawn to circle O, meeting the cirie
at B and C (Fig. 4-40). Chord BF || secant ADE. Prove that FC
bisects DE.

5. Area Relationships

While finding the area of a polygon or circle is a routine matter
when a formula can be applied directly, it becomes a challenging task
when the given information is “indirect.” For example, to find the area
of a triangle requires some ingenuity if you know only the measures of
its medians. Several problems here explore this kind of situation. The
other problems involve a comparison of related areas. To tackle these
problems, it may be helpful to keep in mind the following basic rela-
tionships. The ratio of the areas of triangles with congruent altitudes
is that of their bases. The ratio of the areas of similar triangles is the
square of the ratio of the lengths of any corresponding line segments.
The same is true for circles, which are all similar, with the additional
possibility of comparing the lengths of corresponding arcs. Theorem
#56 in Appendix I states another useful relationship.

5-1 Asshown in Fig. 5-1, Eiis on AB and C is on FG. Prove LJABCD
is equal in area to [JEFGD.
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G
Challenge Prove that the same proposition is true if E lies on the
extension of AB through B.

5-2 The measures of the bases of trapezoid ABCD are 15 and 9, and
the measure of the altitude is 4. Legs DA and CB are extended to
meet at E. If F is the midpoint of 4D, and G is the midpoint of
BC, find the area of AFGE.

Challenge Draw GL || ED and find the ratio of the area of AGLC to
the area of AEDC.

5-3 The distance from a point A to a line BC is 3. Two lines / and /',
parallel to BC, dividle AABC into three parts of equal area.
Find the distance between / and /'.

5-4 Find the ratio between the areas of a square inscribed in a circle
and an equilateral triangle circumscribed about the same circle.

Challenge 1 Using a similar procedure, find the ratio between the areas
of a square circumscribed about a circle and an equilat-
eral triangle inscribed in the same circle.

Challenge 2 Let D represent the difference in area between the cir-
cumscribed triangle and the inscribed square. Let K
represent the area of the circle. Is the ratio D: K greater
than 1, equal to 1, or less than 1?

Challenge 3 Let D represent the difference in arca between the
circumscribed square and the circle. Let T represent the
area of the inscribed equilateral triangle. Find the ratio
D:T.

5-5 A circle O is tangent to the hypotenuse BC of isosceles right
AABC. AB and AC are extended and are tangent to circle O at E
and F, respectively, as shown in Fig. 5-5. The area of the triangle
is X2, Find the area of the circle.
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Challenge Find the area of trapezoid EBCF.

5-6 PQ is the perpendicular bisector of AD, AB | BC, and DC L BC
(Fig. 5-6). If AB =9, BC = 8, and DC = 7, find the area of

quadrilateral APQB.
A
P
5-6 D
8O Q c

5-7 A triangle has sides that measure 13, 14, and 15. A line per-
pendicular to the side of measure 14 divides the interior of the
triangle into two regions of equal area. Find the measure of the
segment of the perpendicular that lies within the triangle.

Challenge Find the area of the trapezoid determined by the per-
pendicular to the side whose measure is 14, the altitude to
that side, and sides of the given triangle.

5-8 In AABC, AB = 20, AC = 22% ,and BC = 27. Points Xand Y
are taken on 4B and AC, respectively, so that AX = AY. If the
area of AAXY =  area of AABC, find AX.

Challenge Find the ratio of the area of ABXY to that of ACXY.

59 In AABC, AB =1, AC = 9. Or@, point D is taken so that
BD = 3. DE is drawn cutting AC in E so that quadrilateral

BCED has ; the area of AABC. Find CE.
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Challenge Show that if BD = '%c, and the area of quadrilateral
BCED = %K, where K is the area of AABC, then

CE=b (m'z;l——ml)) ’

5-10 An isosceles triangle has a base of measure 4, and sides measuring
3. A line drawn through the base and one side (but not through
any vertex) divides both the perimeter and the area in half. Find
the measures of the segments of the base defined by this line.

Challenge Find the measure of the line segment cutting the two sides
of the triangle.

5-11 Through D, a point on base BC of AABC, DE and DF are drawn
parallel to sides 4B and AC, respectively, meeting 4C at E and
AB at F. If the area of AEDC is four times the area of ABFD,
what is the ratio of the area of AAFE to the area of AABC?

Challenge Show that if the area of AEDC is k? times the area of
ABFD, then the ratio of area of AAFE to the area of
AABCis k: (1 + k)2

5-12 Two circles, each of which passes through the center of the other,
intersect at points M and N (Fig. 5-12). A line from M intersects
the circles at K and L. If KL = 6, compute the area of AKLN.

L N

5-12 7

M

Challenge If 7 is the measure of the radius of each circle, find the least
value and the greatest value of the area of AKLN.

5-13 Find the area of a triangle whose medians have measures 39, 42,
45,

5-14 The measures of the sides of a triangle are 13, 14, and 15. A second
triangle is formed in which the measures of the three sides are the
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same as the measures of the medians of the first triangle. What is
the area of the second triangle?
Challenge 1 Show that K(m) = (%) K where K represents the area of

AABC, and K(m) the area of a triangle with sides my,
my, m., the medians of AABC.

Challenge 2 Solve Problem 5-13 using the results of Challenge 1.

5-15 Find the area of a triangle formed by joining the midpoints of
the sides of a triangle whose medians have measures 15, 15, and 18.

Challenge Express the required area in terms of K(m), where K(m) is
the area of the triangle formed from the medians.

5-16 In AABC, E is the midpoint of BC, while F is the midpoint of
AE, and BF meets AC at D. If the area of AABC = 48, find the
area of AAFD.

Challenge 1 Solve this problem in general terms.
Challenge 2 Change AF = %AE to AF = %AE, and find a general

solution.

5-17 In AABC, D is the midpoint of side BC, E is the midpoint of
AD, F is the midpoint of BE, and G is the midpoint of FC (Fig.
5-17). What part of the area of AABC is the area of AEFG?

Challenge ~ Solve the problemif BD = 3 BC, AE = 3 AD, BF = 3 BE,
and GC = %FC.

A

5-17 5.18

B
B ) 9

5-18 In trapezoid A BCD with upper base 4 D, lower base BC, and legs
ABand CD, E is the midpoint of CD (Fig. 5-18). A perpendicular,
EF, is drawn to BA (extended if necessary). If EF = 24 and
AB = 30, find the area of the trapezoid. (Note that the figure is
not drawn to scale.)
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Challenge Establish a relationship between points F, A, and B such
that the area of the trapezoid ABCD is equal to the area of
AFBH.

5-19 In [JABCD, a line from C cuts diagonal BD in E and AB in F.
If F is the midpoint of 4B, and the area of ABEC is 100, find the
area of quadrilateral AFED.

Challenge Find the area of AGEC where G is the midpoint of BD.

5-20 P is any point on side 4B of [J4BCD. CP is drawn through P
meeting DA extended at Q. Prove that the area of ADPA is
equal to the area of A QPB.

Challenge Prove the theorem for point P on the endpoints of side BA.

5-21 RS ig\the diameter of a semicircle. Two smaller semicircles, RT
and TS, are drawn on RS, and their common internal tangent AT
intersects the large semicircle at A, as shown in Fig. 5-21. Find
the ratio of the area of a semicircle with radius A7 to the area of
the shaded region.

5-21

R S
T

5-22 Prove that from any point inside an equilateral triangle, the sum
of the measures of the distances to the sides of the triangle is
constant.

Challenge In equilateral AABC, legs AB and BC are extended
through B so that an angle is formed that is vertical to
Z ABC. Point P lies within this vertical angle. From P,
perpendiculars are drawn to sides BC, AC, and AB at
points Q, R, and S, respectively. Prove that PR — (PQ +
PS) equals a constant for AABC.



SECTION II
Further Investigations

6. A Geometric Potpourri

A variety of somewhat difficult problems from elementary Euclidean
geometry will be found in this section. Included are Heron’s Theorem
and its extension to the cyclic quadrilateral, Brahmagupta's Theorem.
There are problems often considered classics, such as the butterfly
problem and Morley's Theorem. Other famous problems presented are
Euler’s Theorem and Miquel’s Theorem.

Several ways to solve a problem are frequently given in the Solution
Part of the book, as many as seven different methods in one case!
We urge you to experiment with different methods. After all, ‘the right
answer’ is not the name of the game in Geometry.

6-1 Heron's Formula is used to find the area of any triangle, given
only the measures of the sides of the triangle. Derive this famous
formula. The area of any triangle = \/s(s — a)(s — b)(s — ¢),
where a, b, ¢ are measures of the sides of the triangle and s is the
semiperimeter.

Challenge Find the area of a triangle whose sides measure 6, /2, v/50.

6-2 An interesting extension of Heron’s Formula to the cyclic
quadrilateral is credited to Brahmagupta, an Indian mathematician
who lived in the early part of the seventh century. Although
Brahmagupta’s Formula was once thought to hold for all
quadrilaterals, it has been proved to be valid only for cyclic
quadrilaterals.

The formula for the area of a cyclic quadrilateral with side
measures a, b, ¢, and d is

K=+(=a = b6 — G —d),

where s is the semiperimeter. Derive this formula.
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Challenge 1 Find the area of a cyclic quadrilateral whose sides

measure 9, 10, 10, and 21.

Challenge 2 Find the area of a cyclic quadrilateral whose sides

6-3

6-5

6-6

6-7

6-8

measure 15, 24, 7, and 20.

Sides BA and CA of AABC are extended through 4 to form
rhombuses BATR and CAKN. (See Fig. 6-3.) BN and RC,
intersecting at P, meet AB at S and AC at M. Draw MQ parallel
to AB. (a) Prove AMQS is a rhombus and (b) prove that the area
of ABPC is equal to the area of quadrilateral ASPM.

K
6-3
T

A
7 /
NS
Q
Two circles with centers 4 and B intersect at points M and N.
Radii 4P and BQ are parallel (on opposite sides of 4B). If the

common external tangents meet AB at D, and PQ meets AB at
C, prove that ZCND is a right angle.

8 c

In a triangle whose sides measure 5”7, 6'/, and 7", point P is 2"
from the 5" side and 3" from the 6'’ side. How far is P from the
7 side?

Prove that if the measures of the interior bisectors of two angles
of a triangle are equal, then the triangle is isosceles.

In circle O, draw any chord AB, with midpoint M. Through M
two other chords, FE and CD, are drawn. CE and FD intersect
AB at Q and P, respectively. Prove that MP = MQ. (See Fig.
6-7.) This problem is often referred to as the butterfly problem.

AABC is 1sosceles with CA = CB. mZ ABD = 60, m/ BAE =
50, and mZ C = 20. Find the measure of ZEDB (Fig. 6-8).
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c

6-9 Find the area of an equilateral triangle containing in its interior a
point P, whose distances from the vertices of the triangle are 3, 4,
and 5.

6-10 Find the area of a square ABCD containing a point P such that
PA =3,PB="7and PD = 5.

Challenge 1 Find the measure of PC.
Challenge 2 Express PC in terms of PA, PB, and PD.

6-11 If, on each side of a given triangle, an equilateral triangle is
constructed externally, prove that the line segments formed by
joining a vertex of the given triangle with the remote vertex of the
equilateral triangle drawn on the side opposite it are congruent.

Challenge 1 Prove that these lines are concurrent.

Challenge 2 Prove that the circumcenters of the three equilateral
triangles determine another cquilateral triangle.

6-12 Prove that if the angles of a triangle are trisected, the intersections
of the pairs of trisectors adjacent to the same side determine an
equilateral triangle. (This theorem was first derived by F. Morley
about 1900.)

6-13 Prove that in any triangle the centroid trisects the line segment
joining the center of the circumcircle and the orthocenter (i.e.
the point of intersection of the altitudes). This theorem was first
published by Leonhard Euler in 1765.
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Challenge 1 The result of this theorem leads to an interesting problem
first published by James Joseph Sylvester (1814-1897).
The problem is to find the resultant of the three vectors
52, ﬁ, and O_C"acting on the center of the circumcircle
O of AABC.

Challenge 2 Describe the situation when AABC is equilateral.

Challenge 3 Prove that the midpoint of the line segment determined
by the circumcenter and the orthocenter is the center of
the nine-point circle. The nine-point circle of a triangle
is determined by the following nine points; the feet of the
altitudes, the midpoints of the sides of the triangle, and
the midpoints of the segments from the vertices to the
orthocenter.

6-14 Prove that if a point is chosen on each side of a triangle, then the
circles determined by each vertex and the points on the adjacent
sides pass through a common point (Figs. 6-14a and 6-14b). This
theorem was first published by A. Miquel in 1838.

Challenge 1 ProveinFig.6-14a,m/ZBFM = m/ZCEM = m/Z ADM,;
or in Fig. 6-14b, m£ BFM = m/ZCDM = mZLGEM.

Challenge 2 Give the location of M when AF = FB = BE = EC =
CD = DA.

6-15 Prove that the centers of the circles in Problem 6-14 determine a
triangle similar to the original triangle.

Challenge Prove that any other triangle whose sides pass through the
intersections of the above three circles, P, Q, and R (two
at a time), is similar to AABC.
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7. Ptolemy and the Cyclic Quadrilateral

One of the great works of the second Alexandrian period was a
collection of earlier studies, mainly in astronomy, by Claudius Ptole-
maeus (better known as Ptolemy). Included in this work, the Almagest,
is a theorem stating that in a cyclic (inscribed) quadrilateral the sum
of the products of the opposite sides equals the product of the diagonals.
This powerful theorem of Ptolemy enables us to solve problems which
would otherwise be difficult to handle. The theorem and some of its
consequences are explored here.

7-1 Prove that in a cyclic quadrilateral the product of the diagonals is
equal to the sum of the products of the pairs of opposite sides
(Ptolemy’s Theorem).

Challenge 1 Prove that if the product of the diagonals of a quadrilateral
equals the sum of the products of the pairs of opposite
sides, then the quadrilateral is cyclic. This is the converse
of Ptolemy's Theorem.

Challenge 2 To what familiar result does Ptolemy’s Theorem lead
when the cyclic quadrilateral is a rectangle?

Challenge 3 Find the diagonal, d, of the trapezoid with bases a and b,
and equal legs c.

7-2 E is a point on side AD of rectangle ABCD, so that DE = 6,
while DA = 8, and DC = 6. If CE extended meets the cir-
cumcircle of the rectangle at F, find the measure of chord DF.
(See Fig. 7-2.)

7-2 F

C\—/B

Challenge Find the measure of FB.
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7-3 On side AB of square 4BCD, right AABF, with hypotenuse AB,
is drawn externally to the square. If AF = 6 and BF = 8 find
EF, where E is the point of intersection of the diagonals of the

square.

Challenge Find EF, when F is inside square ABCD.

7-4 Point P on side AB of right A ABCis placed so that BP = PA =
Point Q is on hypotenuse AC so that PQ is perpendicular to AC.
If CB = 3, find the measure of BQ, using Ptolemy’s Theorem.

(See Fig. 7-4.)
Challenge 1 Find the area of quadrilateral CBPQ.

Challenge 2 As P is translated from B to A along B4, find the range
of values of BQ, where PQ remains perpendicular to CA.

7-4

o

7-5 If any circle passing through vertex A4 of parallelogram ABCD
intersects sides AB, and AD at points P and R, respectively, and
diagonal AC at point Q, prove that (4Q)(AC) = (AP)XAB) +
(AR)(AD). (See Fig. 7-5.)

Challenge Prove the theorem valid when the circle passes through C.

7-6 Diagonals AC and BD of quadrilateral 4BCD meet at E. If
AE =2, BE = 5, CE = 10, DE—4andBC—-— find AB.

Challenge Find the radius of the circumcircle if the measure of the

. —_— . |
distance from DC to the center O is 2~2 .

7-7 If isosceles AABC (AB = AC) is inscribed in a circle, and a
. . e PA AC
point P is on BC, prove that PB ¥ PC — BC> @ constant for the

given triangle.
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7-8 If equilateral AABC is inscribed in a circle, and a point P is on
BC, prove that PA = PB 4 PC.

7-9 If square ABCD is inscribed in a circle, and a point P is on B/Z‘,

that PAEPC _ PD
prove thal 55~ "Pp = P4

7-10 1f regular pentagon ABCDE is inscribed in a circle, and point P
is on BC, prove that PA + PD = PB + PC + PE.

7-11 If regular hexagon ABCDEF is inscribed in a circle, and point P
is on BC, prove that PE + PF = PA + PB + PC + PD.

Challenge Derive analogues for other regular polygons.

7-12 Equilateral A4DC is drawn externally on side AC of AABC.
Point P is taken on BD. Find mZ APC such that BD = PA +
PB + PC.

Challenge Investigate the case where AADC is drawn internally on
side AC of AABC.

7-13 A line drawn from vertex 4 of equilateral A ABC, meets BC at D

. . 1 1 1
and the circumcircle at P. Prove that 0 = P+ PC

Challenge 1 If BP = 5and PC = 20, find AD.
Challenge 2 If mBP:mPC = 1:3, find the radius of the circle in
challenge 1.
7-14 Express in terms of the sides of a cyclic quadrilateral the ratio of
the diagonals.
Challenge Verify the result for an isosceles trapezoid.
7-15 A point P is chosen inside parallelogram ABCD such that

ZAPB is supplementary to ZCPD. Prove that (4AB)Y(AD) =
(BP)Y(DP) + (AP)(CP).

7-16 A triangle inscribed in a circle of radius 5, has two sides measuring
5 and 6, respectively. Find the measure of the third side of the
triangle.

Challenge Generalize the result of this problem for any triangle.
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8. Menelaus and Ceva:
Collinearity and Concurrency

Proofs of theorems dealing with collinearity and concurrency are
ordinarily clumsy, lengthy, and, as a result, unpopular. With the aid of
two famous theorems, they may be shortened.

The first theorem is credited to Menelaus of Alexandria (about
100 A.D.). In 1678, Giovanni Ceva, an Italian mathematician, pub-
lished Menelaus’ Theorem and a second one of his own, related to it.
The problems in this section concern either Menelaus’ Theorem,
Ceva’s Theorem, or both. Among the applications investigated are
theorems of Gerard Desargues, Blaise Pascal, and Pappus of Alex-
andria. A rule of thumb for these problems is: try to use Menelaus’
Theorem for collinearity and Ceva’s Theorem for concurrency.

8-1 Points P, Q, and R are taken on sides AC, AB, and BC (extended
if necessary) of AABC. Prove that if these points are collinear,

AQ BR CP

This theorem, together with its converse, which is given in the
Challenge that follows, constitute the classic theorem known as
Menelaus’ Theorem. (See Fig. 8-1a and Fig. 8-1b.)

Challenge In AABC points P, Q, and R are situated respectively on
sides AC, AB, and BC (extended when necessary). Prove

AQ BR CP

that if EE‘R.'P—A=—1,

then P, Q, and R are collinear. This is part of Menelaus’
Theorem.

8-2 Prove that three lines drawn from the vertices 4, B, and C of
A ABC meeting the opposite sides in points L, M, and N, re-

spectively, are concurrent if and only if NB LC M4 = 1.
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This is known as Ceva’s Theorem. (See Fig. 8-2a, and Fig. 8-2b.)

N

8-2a A 8-2b

8 L ¢ 8 C 1
8-3 Prove that the medians of any triangle are concurrent.

8-4 Prove that the altitudes of any triangle are concurrent.

Challenge Investigate the difficulty in applying this proof to a right
triangle by Ceva’s Theorem.

8-5 Prove that the interior angle bisectors of a triangle are concurrent.

8-6 Prove that the interior angle bisectors of two angles of a non-
isosceles triangle and the exterior angle bisector of the third angle
meet the opposite sides in three collinear points.

8-7 Prove that the exterior angle bisectors of any non-isosceles triangle
meet the opposite sides in three collinear points.

8-8 In right AA4BC, P and Q are on BC and AC, respectively, such
that CP = CQ = 2. Through the point of intersection, R, of AP
and BQ, a line is drawn also passing through C and meeting AB
at S. PQ extended meets 4B at 7. If the hypotenuse AB = 10 and
AC = 8, find TS.

Challenge 1 By how much is T'S decreased if P is taken at the midpoint
of BC?
Challenge 2 What is the minimum value of 7.S?

8-9 A circle through vertices B and C of AABC meets AB at P and

- 3 o QC  (RCY)AC)
AC at R. If PR meets BC at Q, prove that 0B = (PB)AB)

(See Fig. 8-9.)
Challenge Investigate the case where the points P and R are on the
extremities of BA and CA, respectively.
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8-10 c

8-10

8-11

8-12

8-13

8-14

Challenge Complete the expressions for &P and 55

P Y

In quadrilateral ABCD, AB and CD meet at P, while 4D and BC

meet at Q. Diagonals AC and ﬁ) meet ﬁé at X and Y, respec-

tively (Fig. 8-10). Prove that X_Q = — %-

Prove @t a lincirawn through the centroid, G, of AABC, cuts
sides 4B and AC at points M and N, respectively, so that
(AMYNC) 4+ (ANYMB) = (AM)AN). (SeceFig. 8-11.)

In AABC, points L, M, and N lie on BC, AC, and 4B, respect-
ively, and AL, BM, and CN are concurrent.

(a) Find the numerical value of + gx
(b) Find the numerical value of;z + m g%

Congruent line segments AE and AF are taken on sides 4B and

AC, respectively, of AABC. The median AM intersects EF at

- QE _ AC
point Q. Prove that OF = 4B

In AABC, 747: m and CN are concurrent at P. Express the ratio
Pf in terms of segments made by the concurrent lines on the sides
of AABC. (See Fig. 8-2a, and Fig. 8-2b.)

CP
PM
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8-15 Side AB of square ABCD is extended to P so that BP = 2(AB).
With M, the midpoint of DC, BM is drawn meeting AC at Q.

PQ meets BC at R. Using Menelaus’ theorem, find the ratio %-

(See Fig. 8-15.)

Challenge 1 Find S5 , when BP = AB.

CR

RB’ when BP = k- AB.

Challenge 2 Find

A B8 P
Q % K
R
D M c

8-16 Sides 4B, Eé, CT), and DA of quadrilateral ABCD are cut by a

straight line at points K, L, M, and N, respectively. (See Fig. 8-16.)

BL AK DN CM
Prove that — - —«— - —— = 1.

LC KB NA MD ~
Challenge 1 Prove the theorem for parallelogram ABCD.

Challenge 2 Extend this theorem to other polygons.

8-17 Tangents to the circumcircle of AABC at points 4, B, and C
meet sides BC, AC, and AB at points P, Q, and R, respectively.
Prove that points P, Q, and R are collinear. (See Fig. 8-17.)

8-18 A circle is tangent to side BC, of AABC at M, its midpoint, and
cuts ABand AC at points R, R’, and S, S, respectively. If RS and
R'S are each extended to meet BC at points P and P’ respectively,
prove that (BP)}(BP') = (CP)(CP"). (See Fig. 8-18.)
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Challenge 1 Show that the result implies that CP = BP'.
Challenge 2 Investigate the situation when AABC is equilateral.

8-19 In AABC (Fig. 8-19) P, Q and R are the midpoints of the sides
AB, BC, and AC. Lines AN BL, and CM are concurrent, meetmg
the opposnte sides in N, L, and M, respectlvely If PL meets BC
at J, MQ meets AC at I, and RN meets AB at H, prove that H, I,
and J are collinear.

8-20 F

K
————— N D ) ¢

8-20 AABC cuts a circle at points E, E’, D, D', F, F', as in Fig. w
Prove that if AD, BF, and CE are concurrent, then AD’, BF’,
and CE' are also concurrent.

8-21 Prove that the three pairs of common external tangents to three
circles, taken two at a time, meet in three collinear points.

8-22 AM is a median of AABC, and point G on AM is the centroid.
AM is extended through M to point P so that GM = MP.
Through P, a line parallel to AC cuts AB at Q and BC at P,;
through P, a line parallel to AB cuts CB at N and AC at P,;
and a line through P and parallel to CB cuts AB at P;. Prove that
points Py, P,, and Pj are collinear. (See Fig. 8-22.)
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8-23 If AAB,C, and AA,B,C, are situated so that the lines joining
the corresponding vertices, m, )TB;, and ‘51—6‘_2', are con-
current (Fig. 8-23), then the pairs of corresponding sides intersect
in three collinear points. (Desargues’ Theorem)

Challenge Prove the converse.

8-24 A circle inscribed in AABC is tangent to sides BC, CA, and AB at

points L, M, and N, respectively. If MN extended meets BC at P,
BP
— B ﬁ(——* — —
(b) prove that if NL meets AC at Q and ML meets AB at R, then
P, Q, and R are collinear.

BL
(a) prove that ic=

8-25 In AABC, where CD is the altitude to 4B and P is any point on
DC, AP meets CB at Q, and BP meets CA at R. Prove that
m/£RDC = mZ QDC, using Ceva’s Theorem.

8-26 In AABC points F, E, and D are the feet of the altitudes drawn
from the vertices 4, B, and C, respectively. The sides of the pedal
AFED, EF, DF, and DE, when extended, meet the sides of
AABC, /TB, }TC", and BC (extended) at points M, N, and L,
respectively. Prove that M, N, and L are collinear. (See Fig. 8-26.)

8-27 In AABC (Fig. 3-27), L, M, and N are the feet of the altitudes
from vertices 4, B, and C. Prove that the perpendiculars from 4,
B, and C to MN, LN, and LM, respectively, are concurrent.

Challenge Prove that PL, OM, and RN are concurrent.
8-28 Prove that the perpendicular bisectors of the interior angle bi-

sectors of any triangle meet the sides opposite the angles being
bisected in three collinear points.
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8-29 Figure 8-29a shows a hexagon 4ABCDEF whose pairs of opposite
sides are: [4B, DE), [CB, EF], and [CD, AF]. If we place points
A, B, C, D, E, and F in any order on a circle, the above pairs of
opposite sides intersect at points L, M, and N respectively. Prove
that L, M, and N are collinear. Fig. 8-29b shows one arrangement
of the six points, 4, B, C, D, E, and F on a circle.

8-29a 8

Challenge 1 Prove the theorem for another arrangement of the points
A, B, C, D, E, and F on a circle.

Challenge 2 Can you explain this theorem when one pair of opposite
sides are parallel?

8-30

8-30 Points 4, B, and C are on one line and points A4’, B’, and C’ are
on another line (in any order). (Fig. 8-30) If AB' and A'B meet
at C”, while AC’ and 4'C meet at B", and BC' and B'C meet at
A", prove that points A", B", and C’’ are collinear.

(This theorem was first published by Pappus of Alexandria about
300 A.D.)
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9. The Simson Line

If perpendiculars are drawn from a point on the circumcircle of a
triangle to its sides, their feet lie on a line. Although this famous line
was discovered by William Wallace in 1797, careless misquotes have,
in time, attributed it to Robert Simson (1687-1768). The following
problems present several properties and applications of the Simson
Line.

9-1 Prove that the feet of the perpendiculars drawn from any point on
the circumcircle of a given triangle to the sides of the triangle are
collinear. (Simson’s Theorem)

Challenge 1 State and prove the converse of Simson’s Theorem.

Challenge 2 Which points on the circumcircle of a given triangle lie
on their own Simson Lines with respect to the given
triangle?

9-2 Altitude 4D of AABC meets the circumcircle at P. (Fig. 9-2)
Prove that the Simson Line of P with respect to AABC is parallel
to the line tangent to the circle at 4.

Challenge Investigate the special case where B4 = CA.
9-3 From point P on the circumcircle of AABC, perpendiculars PX,

PY, and PZ are drawn to sides AC, 4B, and BC, respectively.
Prove that (PA)PZ) = (PB)PX).

9-4

9.4 In Fig. 9-4, sides ;ﬁé, 176", and CA of AABC are cut by a trans-
versal at points Q, R, and S, respectively. The circumcircles of
AABC and ASCR intersect at P. Prove that quadrilateral APSQ
is cyclic.
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9-5 In Fig. 9-5, right AABC, with right angle at A, is inscribed in
circle 0. The Simson Line > of point P, with respect to AABC,
meets PA at M. Prove that MO is perpendicular to PA.

Challenge Show that PA is a side of the inscribed hexagon if
mZAOM = 30.

9.6 From a point P on the circumference of circle O, three chords are
drawn meeting the circle at points 4, B, and C. Prove that the
three points of intersection of the three circles with P4, PB, and
PC as diameters, are collinear.

Challenge Prove the converse.

9-7 P is any point on the circumcircle of cyclic quadrilateral 4ABCD.
If PK, PL, PM, and PN are the perpendiculars from P to sides
AB, BC, CD, and D7, respectively, prove that (PK)PM) =
(PLY(PN).

9-8 In Fig. 9-8, line segments AB, BC, EC, and ED form triangles
ABC, FBD, EFA, and EDC. Prove that the four circumcircles of
these triangles meet at a common point.

Challenge Prove that point P is concyclic with the centers of these
four circumcircles.

9-9 The line joining the orthocenter of a given triangle with a point on
the circumcircle of the triangle is bisected by the Simson Line
(with respect to that point).

9-10 The measure of the angle determined by the Simson Lines of two
given points on the circumcircle of a given triangle is equal to
one-half the measure of the arc determined by the two points.
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Challenge Prove that if three points are chosen at random on a circle,
the triangle formed by these three points is similar to the
triangle formed by the Simson Lines of these points with
respect to any inscribed triangle.

9-11 If two triangles are inscribed in the same circle, a single point on
the circumcircle determines a Simson Line for each triangle.
Prove that the angle formed by these two Simson Lines is con-
stant, regardless of the position of the point.

9-12 In the circumcircle of AABC, chord PQ is drawn parallel to
side BC. Prove that the Simson Lines of AA4BC, with respect to
points P and Q, are concurrent with the altitude AD of AABC.

10. The Theorem of Stewart

The geometry student usually feels at ease with medians, angle bi-
sectors, and altitudes of triangles. What about ‘internal line segments’
(segments with endpoints on a vertex and its opposite side) that are
neither medians, angle bisectors, nor altitudes? As the problems in this
section show, much can be learned about such segments thanks to
Stewart’s Theorem. Named after Matthew Stewart who published it in
1745, this theorem describes the relationship between an ‘internal line
segment’, the side to which it is drawn, the two parts of this side, and
the other sides of the triangle.

c
10-1
a d b
B%——H'—"A
m D n
N J

Y
c

10-1 A classic theorem known as Stewart’s Theorem, is very useful as
a means of finding the measure of any line segment from the
vertex of a triangle to the opposite side. Using the letter designa-
tions in Fig. 10-1, the theorem states the following relationship:
a’n 4+ b?m = c(d® + mn).  Prove the validity of the theorem.



46 PROBLEMS

Challenge If a line from C meets AB at F, where F is not between A4
and B, prove that

(BC)*(AF) — (AC)*(BF) = AB[CF)* — (AF)(BF)).

10-2 In an isosceles triangle with two sides of measure 17, a line
measuring 16 is drawn from the vertex to the base. If one segment
of the base, as cut by this line, exceeds the other by 8, find the
measures of the two segments.

10-3 In AABC, point E is on 4B, so that AE = ; EB. Find CE if
AC = 4,CB = 5,and AB = 6.

Challenge Find the measure of the segment from E to the midpoint
of CB.

10-4 Prove that the sum of the squares of the distances from the vertex
of the right angle, in a right triangle, to the trisection points along

. 5
the hypotenuse, is equal to 5 the square of the measure of the
hypotenuse.

Challenge 1 Verify that the median to the hypotenuse of a right
triangle is equal in measure to one-half the hypotenuse.
Use Stewart’s Theorem.

Challenge 2 Try to predict, from the results of Problem 10-4 and
Challenge 1, the value of the sum of the squares for a
quadrisection of the hypotenuse.

10-5 Prove that the sum of the squares of the measures of the sides of
a parallelogram equals the sum of the squares of the measures of
the diagonals.

Challenge A given parallelogram has sides measuring 7 and 9, and a
shorter diagonal measuring 8. Find the measure of the
longer diagonal.

10-6 Using Stewart’s Theorem, prove that in any triangle the square of
the measure of the internal bisectors of any angle is equal to the
product of the measures of the sides forming the bisected angle
decreased by the product of the measures of the segments of the
side to which this bisector is drawn.
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Challenge 1 Can you also prove the theorem in Problem 10-6 without
using Stewart’s Theorem?

_ _be

Challenge 2 Prove that in AABC, 1, = bte /2, when ZBAC is a
right angle.

10-7 The two shorter sides of a triangle measure 9 and 18. If the internal
angle bisector drawn to the longest side measures 8, find the
measure of the longest side of the triangle.

Challenge Find the measure of a side of a triangle if the other two sides
and the bisector of the included angle have measures 12,
15, and 10, respectively.

10-8 In a right triangle, the bisector of the right angle divides the
hypotenuse into segments that measure 3 and 4. Find the measure
of the angle bisector of the larger acute angle of the right triangle.

10-9 In a 30-60-90 right triangle, if the measure of the hypotenuse
is 4, find the distance from the vertex of the right angle to the
point of intersection of the angle bisectors.






SOLUTIONS

1. Congruence and Parallelism

1-1 In any AABC, E andRare interior points of;ﬁ and BC, re-
spectively (Fig. S1-1a). AF bisects ZCAD, and BF bisects £ CBE.
Prove mZAEB + mZADB = 2m £ AFB.

mZAFB = 180 — [(x + w) + (¥ + 2)] (#13) m

mZAEB = 180 — [(2x + w) 4+ z] (#13)
mZADB = 180 — [(2y + z) + w] (#13)
mZLAEB + mZADB = 360 — [2x + 2y 4 2z + 2w]

2mLAFB = 2[180 — (x + y + z + w)] (twice 1)
2mZLAFB = 360 — [2x + 2y + 2z 4+ 2w]

Therefore, mZ AEB + m/ZADB = 2m/Z AFB.

B

Challenge 1 Prove that this result holds if E coincides with C (Fig.
S1-1b).
PROOF:
We must show that mZAEB + mZADB = 2mZ AFB.
Let mLCAF = mALFAD = x.
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Since ZADB is an exterior angle of AAFD,
mZADB = m/ZAFD + x (#12).
Similarly, in AAEF,
mZAFD = mZAEB + x (#12).
mZADB + mZLAEB + x = 2mZLAFD + x,
thus, mZAEB + m/ ADB = 2m/ AFB.

1-2 In AABC, a point D is on AC so that AB = AD (Fig. S1-2).
mZABC — mZACB = 30. Find mZCBD.

mZCBD = mZABC — mZABD
Since AB = AD, m/ABD = mZ ADB (45).

S1-2 A

Y B

Therefore, by substitution,

m/ZCBD = mZABC — mZADB. 1))
But mZADB = mZCBD + mZC (#12). i

Substituting (II) into (I), we have

mZCBD = m£LABC — [m£ZCBD + m/C].
mZCBD = m£ZABC — mZCBD — m/C

Therefore, 2m/CBD = m£ZABC — mZACB = 30, and

m/CBD = 15.
COMMENT: Note that mZ ACB is undetermined.

1-3 The interior bisector of /B, and the exterior bisector of £C of
AABC meet at D (Fig. S1-3). Through D, a line parallel to CB
meets AC at L and AB at M. If the measures of legs LC and MB
of trapezoid CLMB are 5 and 7, respectively, find the measure of
base LM. Prove your result.
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mZl = mZ2and m£2 = mZ3 (#8).
Therefore, mZ1 = m/Z3 (transitivity).
In isosceles ADMB, DM = MB (#5).
Similarly, mZ4 = m/Z5 and mZ£5 = mZLDC (#8).
Therefore, mZ4 = m/ZLDC (transitivity).

Thus, in isosceles ADLC, DL = CL (#5).

Since DM = DL + LM, by substitution,
MB = LC+ LM,or LM = MB — LC.
Since LC = 5and MB =7, LM = 2.

Challenge Find LM if AABC is equilateral.

ANSWER: Zero

51

1-4 In right AABC, CF is the median drawn to hypotenuse AB, CE
is the bisector of ZACB, and CD is the altitude to AB (Fig. S1-4a).

Prove that / DCE =~ ZECF.
B

S14a E

C A
METHOD 1: In right AABC, CF = 3 AB = FA (#27).
Since ACFA is isosceles, ZFCA = /A (#5).

In right ABDC, Z B is complementary to ZBCD.
In right A4ABC, Z B is complementary to ZA.

)
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Therefore, ZBCD == / A. an
From (I) and (1), LFCA = £ BCD. (1)
Since CE is the bisector of ZACB, Z ACE =~ / BCE. av)

In right AABC, PC L CA and PC = BC and AE bisects Z A.
By subtracting (III) from (IV), we have £ DCE = Z ECF.

METHOD 1II: Let a circle be circumscribed about right A4BC.
Extend CE to meet the circle at G; then draw FG (Fig. S1-4b).

Since CE bisects Z ACB, it also bisects AGB. Thus, G is the

midpoint of A’él\B,_and FG L 4B. Since both FG and CD are
perpendicular to 4B,

FG || CD (#9), and £ DCE = LFGE (43). ()
Since radius CF = radius FG, ACFG is isosceles and
L ECF = LFGE. (n

Thus, by transitivity, from (I) and (II), £ DCE =~ £ ECF.
Challenge Does this result hold for a non-right triangle?

ANSWER: No, since it is a necessary condition that BA pass
through the center of the circumcircle.

1-5 The measure of a line segment PC, perpendicular to hypotenuse AC
of right AABC, is equal to the measure of leg BC. Show BP may
be perpendicular or parallel to the bisector of ZA.

CASE 1: We first prove the case for BP || AE (Fig. S1-5a).

In right AABC, PC L AC, PC = BC, and AE bisects ZA.
ZCEA is complementary to LCAE, while ZBDA is comple-
mentary to Z DAB (#14).

Since LCAE=>~ £ DAB, LBDA =~ L CEA.However, ZBDA =
LEDC (#1). Therefore, LCED= LCDE, and ACED is
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isosceles (#5). Since isosceles triangles CED and CPB share the
same vertex angle, they are mutually equiangular. Thus, since
ZCED = /CPB, EA | PB (#7).

S$1-5a c S1-5b

case n1: We now prove the case for AE L BP (Fig. S1-5b).
/ CPF is complementary to ZCFP (#14). Since L CFP =
/ BFA (#1), LCPF is complementary to ZBFA. However, in
ACPB, CP =~ CB and £CPB = ZCBP (#5); hence, ZCBP is
complementary to ZBFA. But ZCBP is complementary to
ZPBA. Therefore, / BFA =~ /FBA (both are complementary
to ZCBP). Now we have AFAB isosceles with 4D an angle
bisector; thus, 4D L BFP since the bisector of the vertex angle
of an isosceles triangle is perpendicular to the base.

Prove the following: if, in AABC, median AM is such that m £ BAC
is divided in the ratio 1:2, and AM is extended through M to D

so that ZDBA is a right angle, then AC = 5 AD (Fig. S1-6).

Let mZBAM = x; then mZMAC = 2x. Choose point P on
AD so that AM = MP.

Since BM = MC, ACPB is a parallelogram (#21f). Thus,
BP = AC.

Let 7 be the midpoint of AD making BT the median of right
AABD.
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1-7

It follows that BT = 54D, or BT = AT (#27), and, conse-

quently, m/TBA = x. ZBTP is an exterior angle of isosceles
ABTA. Therefore,m/ BTP = 2x (#12). However, since BP || AC
(#21a), m£L CAP = mZLBPA = 2x (#8). Thus, ATBP is isosceles
with BT = BP.

Since BT = 3 AD and BT = BP = AC, AC = %AD.

QUESTION: What is the relation between points P and D when
mZA4 = 90?

In square ABCD, M is the midpoint of AB. A line perpendicular
to MC at M meets AD at K. Prove that ZBCM =~ LKCM.

MeTHOD 1: Draw ML | 4D (Fig. S1-7a). Since AM = MB and
AD || ML || BC, KP = PC (#24). Consider right AKMC; MP
is a median. Therefore, MP = PC (#27). Since A MPC is isosceles,
mZ1 = mZ2. However, since ML || BC, mZ1 = mZ3 (#8),
thus, m/2 = m/3; thatis, ZBCM =~ / KCM.

G
M */1
1
A 8 A M_-
$1-7a 0 $1.7b 5
K K
P
! 3
D |
L c D [o]

METHOD 11: Extend XM to meet CB extended at G (Fig. S1-7b).
Since AM = MB and mZKAM = m/ MBG (right angles) and
mZAMK = mZGMB, AAMK<= ABMG (AS.A.). Then,
KM = MG. Now, AKMC = AGMC (5.AS.), and ZBCM =
LKCM.

METHOD 11: Other methods may easily be found. Here is one
without auxiliary constructions in which similarity is employed
(Fig. S1-7c).

AM = MB = %s, where BC = s.

ZAMK is complementary to £ZBMC, and ZBCM is com-
plementary to ZBMC (#14).
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S1.7¢

D c
Therefore, right AMAK ~ right ACBM, and AK = }‘s.

In right AMAK, MK = 2> (455), while in right ACBM,
V5

MC = == (#55).
Vs
. MK 4 1 MB . .
Therefore, since Yok E =3=5c’ right AMKC ~ right
2

ABMC (#50), and Z BCM =~ L KCM.

1-8 Given any AABC, AE bisects £BAC, BD bisects ZABC,
CP L BD, and CQ L AE, prove that PQ is parallel to AB.

Extend CP and CQ to meet 4B at S and R, respectively (Fig.
S1-8). It may be shown that ACPB = ASPB, and ACQA =~
ARQA (AS.A).

It then follows that CP = SP and CQ = RQ or P and Q are
midpoints of CS and CR, respectively. Therefore, in ACSR,
PQ || SR (#26). Thus, PQ || AB.

Challenge Identify the points P and Q when AABC is equilateral.

ANSWER: P and Q are the midpoints of CA and CB,
respectively.
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1-9

Given that ABCD is a square, CF bisects ZACD, and BPQ L CF
(Fig. S1-9), prove DQ = 2PE.

A B

Draw RE || BPQ. Since E is the midpoint of DB (#2In) in
ADQB, DR = QR (#25). Since RE L CF (#10), ARGC =~
AEGC,and LCRG = LCEG.

Therefore, RQPE is an isosceles trapezoid (#23), and PE = QR.
2RQ = DQ and, therefore, DQ = 2PE.

1-10 Given square ABCD with mZEDC = mZECD = 15, prove
AABE is equilateral.
METHOD I: In square ABCD, draw AF perpendicular to DE
(Fig. S1-10a). Choose point G on AF so that mZFDG = 60.
Why does point G fall inside the square? mZAGD = 150 (#12).
Since m£LEDC = mZECD = 15, m£ DEC = 150 (#13); thus,
ZAGD =~ / DEC.
Therefore, AAGD = ADEC (S.A.A.), and DE = DG.
In right ADFG, DF = 3 (DG) (455¢).
Therefore, DF = 5 (DE), or DF = EF.
Since AF is the perpendicular bisector of DE, AD = AE (#18).
A similar argument shows BC = BE. Therefore, AE =
BE = AB (allare equal to the measure of a side of square 4 BC D).
A B A B
s1.10a \\ $1-10b 1501\
\ \
\
150°——\AG )\F
AN AN
. [ ! \
60\[/ ‘e E 15! N\ /¢
p Il c Dl c
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METHOD It: In square ABCD, with mZ EDC = m/ZECD = 15,
draw AAFD on AD such that mZFAD = mZFDA = 15.
Then draw FE (Fig. S1-10b).

AFAD = AEDC (AS.A), and DE = DF.

Since LADC is a right angle, mZFDE = 60 and AFDE is
equilateral so that DF = DE = FE. Since m£Z DFE = 60 and
mZLAFD = 150 (#13), mZAFE = 150. Thus, m£FAE = 15
and mZ DAE = 30.

Therefore, nZ EAB = 60. In a similar fashion it may be proved
that m£Z ABE = 60; thus, AABE is equilateral.

METHOD II: In square ABCDﬂith mZLEDC = mLECﬂ= 15,
draw equilateral ADFC on DC externally; then draw EF (Fig.
S1-10¢).

EF is the perpendicular bisector of DC (#18).

Since AD = FD, and m£ADE = m/FDE = 75, AADE =~
AFDE (S.AS)).

Since m£ DFE = 30, m4Z DAE = 30.

Therefore, mZ BAE = 60.

In a similar fashion, it may be proved that mZ ABE = 60; thus,
AABE is equilateral.

A 8 A &
\
$1-10¢ si-10d |\
\
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METHOD 1v: Extend DE and CE to meet BC and AD at K and H,
respectively (Fig. S1-10d). In square ABCD, mZKDC =
mZ HCD = 15, therefore, ED = EC (#5).

Draw AF and CG perpendicular to DK.

In right ADGC, mZGCD = 175 (#14), while m£ ADF = 75 also.
Thus, AADF = ADCG, and DF = CG. m/GEC = 30 (#12).
In AGEC, CG = 3 (EC) (455). Therefore, CG = 1 (ED), or
DF = 3 (ED).
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Since AF is the perpendicular bisector of DE, AD = AE (#18).
In a similar fashion, it may be proved that BE = BC; therefore,
A ABE is equilateral.

1-11 In any . AABC, D, E, irgi F are midpoints of the sides AC, AB,
and BC, respectively. BG is an altitude of AABC (Fig. S1-11).
Prove that ZEGF =~ ZEDF.

S1-11

GF is the median to hypotenuse CB of right ACGB, therefore,
GF = 3 (CB) (f27).

DE = 1 CB (426), therefore, DE = GF.

Join midpoints E and F. Thus, EF || AC (#26).

Therefore, DGFE is an isosceles trapezoid (#23).

Then £ DEF =~ /GFE.
Thus, AGFE =2 ADEF (8.A.S.), and ZEGF = LEDF.

1-12 In right AABC, with right angle at C, BD = BC, AE = AC,
EF L BC, and DG L AC. Prove that DE = EF + DG.

A

Draw CP 1 4B, also draw CE and CD (Fig. S1-12).

ms3+msl +ms2 =90
mZA3 + mZl = mZ4 (#5)
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By substitution, mZ4 + mZ2 = 90;
but in right ACPE, mZ4 + mZ1 = 90 (#14).
Thus, Z1 == /2 (both are complementary to Z4), and right
ACPE = right ACFE, and PE = EF.
Similarly, m£9 + mZ7 + mZ6 = 90,
mZ9 + mZLT = mLS5S (#5).
By substitution, m£5 4+ mZ6 = 90.
However, in right ACPD, m/5 4+ mZ7 = 90 (#14).
Thus, £6 = 27 (both are complementary to £5), and right
ACPD = right ACGD, and DP = DG.
Since DE = DP + PE, we get DE = DG + EF.

Prove that the sum of the measures of the perpendiculars from
any point on a side of a rectangle to the diagonals is constant.

A - 8
”~

s1a3 | K.z

\ 7

HYS 3 >
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Let P be any point on side AB of rectangle ABCD (Fig. S1-13).
PG and PF are perpendiculars to the diagonals.

Draw AJ perpendicular to DB, and then PH perpendicular to 4J.
Since PHJF is a rectangle (a quadrilateral with three right angles),
we get PF = HJ.

Since PH and BD are both perpendicular to AJ, PH is parallel to
BD (#9).

Thus, ZAPH = / ABD (#7).

Since AE = EB (§21f, 21h), ZCAB= LABD (#5). Thus, by
transitivity, Z EAP = Z APH; also in AAPK, AK = PK (#5).
Since ZAKH = /PKG (#1), right AAHK =2 right APGK
(S.A.A)). Hence, AH = PG and, by addition, PF 4 PG =
HJ 4+ AH = AJ, a constant.

The trisectors of the angles of a rectangle are drawn. For each
pair of adjacent angles, those trisectors that are closest to the
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D

enclosed side are extended until a point of intersection is established.
The line segments connecting those points of intersection form a
quadrilateral. Prove that the quadrilateral is a rhombus.

As a result of the trisections,

isosceles AAHD = isosceles ABFC, and

isosceles AAGB = isosceles A DEC (Fig. S1-14a).

Since AH = HD = FB = FC,and AG = GB = DE = CE,
and LHAG= /GBF= /FCE= /HDE= right angle,
AHAG = AFBG = AFCE= AHDE (58.A8.).

Therefore, HG = FG = FE = HE, and EFGH is a rhombus
#21-D).

S1-14a A B

$1-14b G

c D c

Challenge 1 What type of quadrilateral would be formed if the original

rectangle were replaced by a square?

Consider ABCD to be a square (Fig. S1-14b). All of the
above still holds true; thus we still maintain a rhombus.
However, we now can easily show AAHG to be isosceles,
mZLAGH = mZAHG = 75.

Similarly, mZBGF =75. mAZAGB = 120, since
mZGAB = m/ZGBA = 30.

Therefore, mZ HGF = 90. We now have a rhombus
with one right angle; hence, a square.

1-15 In Fig. S1-15, BE and AD are altitudes of AABC. F, G, and K

are midpoints of AH, AB, and BC, respectively. Prove that ZFGK
is a right angle.

In AAHB, GF | BH (#26).

And in AABC, GK || AC (#26).

Since BE 1 AC, BE 1 GK,

then GF L GK (#10); that is, Z FGK is a right angle.
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S1-16 A T

1-16 In parallelogram ABCD, M is the midpoint of BC. DT is drawn

1-17

from D perpendicular to MA (Fig. S1-16). Prove CT = CD.

Let R be the midpoint of 4D; draw CR and extend it to meet
TDat P. Since AR = 3 AD, and MC =  BC, AR = MC. Since

AR || MC, ARCM is a parallelogram (#22). Thus, CP || MT.
In AATD, since RP || AT and passes through the midpoint of
AD, it must also pass through the midpoint of TD (#25). Since
MT || CP, and MT LTD, CP LTD (#10). Thus, CP is the
perpendicular bisector of TD, and CT = CD (#18).

Prove that the line segment joining the midpoints of two opposite
sides of any quadrilateral bisects the line segment joining the
midpoints of the diagonals.

ABCD is any quadrilateral. K, L, P, and Q are midpoints of @,
BC, BD, and AC, respectively. We are to prove that KL bisects PQ.
Draw KP and QL (Fig. S1-17).

In AADB, KP = 5 AB, and KP || AB (426).
Similarly, in AACB, QL = 3 AB, and OL || 4B (426).

By transitivity, KP = QL, and KP || QL. It then follows that
KPLQ is a parallelogram (#22), and so PM = QM (#21f).
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1-18 In any AABC, XYZ is any line through the centroid G. Per-
pendiculars are drawn from each vertex of AABC to this line.
Prove CY = AX + BZ.

Draw medians CD, AF, and BH.

From E, the midpoint of CG, draw EP L XZ.

Also draw DO L XZ (Fig. S1-18).

Since ZCGY = ZQGD (#1), and EC = EG = DG (429),
AQGD = APGE, and QD = EP.

AX || BZ (#9), therefore, QD is the median of trapezoid 4 XZB,
and QD = 3 (X + BZ) (#29).

EP = 3CY (425, #26), therefore, 3CY = ;(AX + BZ)
(transitivity), and CY = AX + BZ.

[

$1-19a
//E‘-\_-P d &
/// M //’
A
oo

1-19 In any AABC, CPQ is any line through C interior to AABC.
BP is perpendicular to line CPQ, AQ is perpendicular to line CPQ,
and M is the midpoint of AB. Prove that MP = MQ.

Since BP L CG and A0 L CG, BP || AQ, (#9).

Without loss of generality, let AQ > BP (Fig. S1-19a).

Extend BP to E so that BE = AQ.

Therefore, AEBQ is a parallelogram (#22).

Draw diagonal EQ.

EQ must pass through M, the midpoint of 4B, since the diagonals

of the parallelogram bisect each other. Consequently, M is also
the midpoint of EQ.

In right AEPQ, MP is the median to hypotenuse EQ.
Therefore, MP = 3 EQ = MQ (#27).
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Challenge Show that the same result holds if the line through C is
exterior to AABC.

Extend PB through B to E so that BE = AQ (Fig. S1-19b).
Since 40 || PE (#9), quadrilateral AEBQ is a parallelo-
gram (#22).

Thus, if M is the midpoint of AB, it must also be the
midpoint of QF (#21f).

Therefore, in right AQPE, MP = S EQ = MQ (427).

$1-19b

1-20 In Fig. S1-20, ABCD is a parallelogram with equilateral triangles
ABF and ADE drawn on sides AB and AD, respectively. Prove
that AFCE is equilateral.

In order to prove AFCE equilateral, we must show AAFE =~
ABFC = ADCE so that we may get FE = FC = CE.

Since AB = DC (#21b), and AB = AF = BF (sides of an equi-
lateral triangle are equal), DC = AF = BF. Similarly, 4AE =
DE = BC.

We have ZADC = £ ABC.

mZEDC = 360 — mZADE — mZADC = 360 — m/ ABF —
m/ ABC = m/FBC.

Now m/BAD = 180 — mZADC (#21d),

and mZFAE = m/FAB + mZBAD + mZ{DAE = 120 +
m/BAD = 120 + 180 — mZADC = 300 — mZADC =
mZEDC.

Thus, AAFE = ABFC = A DCE (S.A.S.), and the conclusion
follows.
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1-21 If a square is drawn externally on each side of a parallelogram,
prove that

(a) the quadrilateral, determined by the centers of these squares,
is itself a square

(b) the diagonals of the newly formed square are concurrent with
the diagonals of the original parallelogram.
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(a) ABCD is a parallelogram.

Points P, Q, R, and S are the centers of the four squares ABGH,
DAlJ, DCLK, and CBFE, respectively (Fig. S1-21).

PA = DR and AQ = QD (each is one-half a diagonal).

£ ADC is supplementary to £ DAB (#21d), and

Z IAH is supplementary to £ DAB (since LIAD =~ L HAB=
right angle). Therefore, LADC = LIAH.

Since mZRDC = m£ QDA = m/Z HAP = mZ QAI = 45,
ZRDQ = LQAP. Thus, ARDQ = APAQ (S.AS.), and
OR = QP.

In a similar fashion, it may be proved that QP = PS and PS =
RS.

Therefore, PQRS is a rhombus.

Since ARDQ =2 APAQ, ZDQR = LAQP;

therefore, ZPQR = Z DQA (by addition).

Since £ DQA = right angle, ZPQR =< right angle, and PQRS
is a square.
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(b) To prove that the diagonals of square PQRS are concurrent
with the diagonals of parallelogram 4 BCD, we must prove that
a diagonal of the square and a diagonal of the parallelogram
bisect each other. In other words, we prove that the diagonals of
the square and the diagonals of the parallelogram all share the
same midpoint, (i.e., point O).

£ BAC = L ACD (#8), and

mZPAB = mZRCD = 45; therefore, ZPAC = / RCA.

Since LAOP = ZCOR (#1),and AP = CR, AAOP = ACOR
(S.AA.).

Thus, A0 = CO, and PO = RO.

Since DB passes through the midpoint of AC (#21If), and,
similarly, 0S passes through the midpoint of PR, and since AC
and PR share the same midpoint (i.c., O), we have shown that
AC, PR, DB, and QS are concurrent (i.e., all pass through
point O).

2. Triangles in Proportion

2-1 In AABC, DE || BC, FE || DC, AF = 4, and FD = 6 (Fig.
S2-1). Find DB.

§2-1

B c

AF AE 2 AE
In AADC, D — EC (#46) So, 3 = EC . (I)

. AD AE
However in AABC, DB = EC (#46),
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and - = 2= (I

From (I) and (I1), 7 = 55 Thus, DB = 15.

Challenge 1

Challenge 2

Challenge 3

Find DB if AF = m; and FD = m,.
ANSWER: DB = :—f (m, + my)

In Fig. S2-1, FG || DE, and HG | FE. Find DB if
AH = 2 and HF = 4,

ANSWER: DB = 36
Find DB if AH = m, and HF = m,.

m
ANSWER: DB = ;12—2 (my + my)?

2-2 In isosceles AABC (AB = AC), CB is extended through B to P
(Fig. §2-2). A line from P, parallel to altitude BF, meets AC at D
(where D is between A and F). From P, a perpendicular is drawn
to meet the extension of AB at E so that B is between E and A.
Express BF in terms of PD and PE. Try solving this problem in
two different ways.

METHOD 1I: Since A ABC is isosceles, £LC =~ £ZABC.
However, ZPBE =~ £ ABC (#1).
Therefore, £ C'= ZPBE.

Thus, right ABFC ~ right APEB (#48), and 3F = BC

PE _ PB
BC
PD _ PB + BC

In APDC, since BF is parallel to PD, BF = BC (#49).

Using a theorem on proportions, we get
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PD — BF _ PB+ BC — BC _ PB
BF BC ~ BC

— BF _ PE
BF = BF
Thus, PD — BF = PE, and BF = PD — PE.

PD
Therefore,

METHOD 11: Since PD is parallel to BF, and BF is perpendicular to
AC, PD is perpendicular to AC (#10).

Draw a line from B perpendicular to PD at G.

/L ABC = L ACB (#5), and LABC = L PBE (#1);

therefore, LACB = / PBE (transitivity).

£ Eand £ Fareright angles; thus, A PBE and A BCF are mutually
equiangular and, therefore, ZEPB =~ /FBC.

Also, since BF || PD, ZFBC = £/ DPC (#7).

By transitivity, ZGPB(£ DPC) = Z EPB.

Thus, AGPB =~ AEPB (A.AS.), and PG = PE.

Since quadrilateral GBFD is a rectangle (a quadrilateral with
three right angles is a rectangle), BF = GD.

However, since GD = PD — PG, by substitution we get,
BF = PD — PE.

The measure of the longer base of a trapezoid is 97. The measure
of the line segment joining the mudpoints of the diagonals is 3
(Fig. S2-3). Find the measure of the shorter base. (Note that the
figure is not drawn to scale.)

A 8

s23 [~

H N

D c
METHOD I: Since E and F are the midpoints of DB and 4C,
respectively, EF must be parallel to DC and AB (#24).

Since EF is parallel to DC, AEGF ~ ADGC (#49), and
GC DC

GF~ EF’
GC _ 97
3

However, since DC = 97 and EF = 3, GF =
Then, SC.—GF _ 913 _ FC _ 94
LTeF T T3 %GR T 3
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FA _ 94 GA _ 91

Since FC = FA’G_F = 3,00 ep =3
Since AAGB ~ AFGE (#48), oa = 42 -
Thus, 5 = %7, and 4B = 91.

METHOD I1: Extend FE to meet AD at H. In AADC, HF = % (DC)
(#25, #26).

Since DC = 97, HF = > -

Since EF = 3, HE = 5 -

In AADB, HE = 3 (AB) (425, #26).
Hence, AB = 91.

Challenge Find a general solution applicable to any trapezoid.

ANSWER: b — 2d, where b is the length of the longer base
and d is the length of the line joining the midpoints of the
diagonals.

2-4 In AABC, D is a point on side_ﬁ such that BD:DA = 1:2
(Fig. S2-4). E is a point on side CB so that CE:EB = 1:4. Seg-
ments DC and AE intersect at F. Express CF:FD in terms of
two positive relatively prime integers.

Draw DG || BC.
AADG ~ AABE (#49),and 55 = 3o = 5+

) BE 3
Then DG = ; (BE).
CF EC

But A DGF ~ ACEF (#48), and 5 = 2

. 1 CF
Since EC = Z(BE)’ =3 — =3
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2-5 In AABC, BE is a median and O is the midpoint of BE (Fig.
$2-5). Draw AO and extend it to meet BC at D. Draw CO and
extend it to meet Béit F.IfCO = 15, OF = 5, and AO = 12,
find the measure of OD.

Draw EH parallel to AD. Since E is the midpoint of AC, EG =

%(AO) — 6 (#25, #26). Since H is the midpoint of CD, GH =

3 (OD) (#25, #26). In ABEH, OD is parallel to EH and O is
the midpoint of BE; therefore, OD = - EH (#25, #26).

Then OD = E[EG + GH),s0 OD = 5[6 + EOD] =
Note that the measures of CO and OF were not necessary for the
solution of this problem.
Challenge Can you establish a relationship between OD and AO?
ANSWER: OD = %AO, regardless of the measures of CO,
OF, and AO.

2-6 In parallelogram ABCD, points E and F are chosen on diagonal
AC so that AE = FC (Fig. $2-6). If BE is extended to meet AD
at H, and BF is extended to meet DC at G, prove that HG is
parallel to AC.

$2.6 F

In ZJABCD, AE = FC.
Since ZBEC =~ / HEA (#1), and LHAC = L ACB (#8),

AHEA ~ ABEC (4#48), and EF’_’f = 2.

Similarly, ABFA ~ AGFC (448), and 2z = o2
HE

However, since FC = AE, —— BE ﬁ_ (transitivity).

Therefore, in AHBG, HG || EF (#46), or HG || AC.




70 SOLUTIONS

2-7 AM is the median to side BC of AABC, and P is any point on AM
(Fig. $2-7). BP extended meets AC at E, and CP extended meets
AB at D. Prove that DE is parallel to BC.

Extend APM to G so that PM = MG. Then draw BG and CG.
Since BM = MC, PG and R‘Lisect_each other, making BPCG
a parallelogram (#21f). Thus, PC || BG and BP || GC (#21a), or
BE | GC and DC || BG. It follows that DP || BG.

AD AP

Therefore, in AABG, DB = PG (#46). O
Similarly, in AAGC where PE || GC, 42 = a2 (#46).  (II)
From () and (Il), 52 = 2¢.

Therefore, DE is parallel to BC, since in AABC, DE cuts sides

AB and AC proportionally (#46).
A

$2-8

DG

2-8 In AABC, the bisector of ZA intersects BC at D (Fig. 52-8). A
perpendicular to AD from B intersects AD at E. A line segment
through E and parallel to AC intersects BC at G, and AB ar H.
If AB = 26, BC = 28, AC = 30, find the measure of DG.
1= L2 #8), L1 = £S5 (angle bisector),
therefore, /2 =~ /5.

In AAHE, AH = HE (#5).

In right AAEB, £ 4 is complementary to £5 (#14), and £3 is
complementary to £2.

Since L2 = /5, £3 is complementary to £5.

Therefore, since both £3 and Z4 are complementary to £S5,
they are congruent. Thus, in ABHE, BH = HE (#5) and, there-
fore, BH = AH.In AABC,since HG || AC and H is the midpoint
of AB, G is the midpoint of BC (#25), and BG = 14.
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In AABC, AD is an angle bisector, therefore,

AB
¢ = be (D).
Let BD = x; then DC = 28 — x. By substituting,
26 x
%=ﬁ,andx= 13 = BD.

Since BG = 14, and BD = 13, then DG = 1.

In AABC, altitude BE is extended to G so that EG = the measure
of altitude CF. A line through G and parallel to AC meets BA
at H (Fig. $2-9). Prove that AH = AC.

c

$2.9

H A F 8

Since BE L AC and HG || AC, HG L BG.
LH= LBAC (#7)
Since ZAFC is also a right angle, AAFC ~ AHGB (#48),

AC  BH
and 7= = - 1))
In ABHG, AE | HG,
AH  BH
therefore, GE = CB (#46). an
From (I) and (II), 5¢ = 22

Since the hypothe51s stated that GE = FC, it follows that
AC = AH.

In trapezoid ABCD (AB || DC), with diagonals AC and DB
intersecting at P, AM, a median of AADC, intersects BD at E
(Fig. §2-10). Through E, a line is drawn parallel to DC cutting
AD, AC, and BC at points H, F, and G, respectively. Prove that
HE = EF = FG.
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2-11

§2-10

D

In AADM, since HE | DM, AAHE ~ AADM (#49).

HE AE . —_—

Therefore, = = —-. In AAMC, since EF | MC,
EF AE
NAAEF ~ AAMC (#49). Therefore, ™MC = M

In ADBC, since EG || DC, ABEG ~ ABDC (#49).

EG BG

Therefore, 3(:, rTol
BG EG _ E cie .
But BC = 4 M (#24) thus, e = (transmwty).
EF EG

It then follows that W = 2¢ = D’ O
But, since M is the midpoint of DC, DM = MC, and
DC = 2MC. ¢))
Substituting (II)in (I), we find that HE = EF, and % = Z(ifC) .

Thus, EF = 3 (EG) and EF = FG.
We therefore get HE = EF = FG (transitivity).

A line segment AB is divided by points K and L in such a a way
that (AL)? = (AK)(AB) (Fig. S2-11). A line segment AP is
drawn congruent to AL. Prove that PL bisects ZKPB.

P

$2-11

K L

Since AP = AL, (AL)? = (AK)(AB) may be written (4P)? =

(AK)(AB), or, as a proportion, A—I; - :_g
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AKAP ~ APAB (#50).

It then follows that £/ PKA =~ / BPA, and £ KPA =~ Z/ PBA.
Since ZPKA is an exterior angle of AKPB,

mZPKA = mZKPB + mZPBK (#12).

ZPKA =~ / BPA may be written as

m/PKA = m/ BPL + m/KPL + m/ APK. 1))
Since AP = AL, in AAPL,
mZALP = mZKPL + mZAPK (#5). an
Considering ZPKA as an exterior angle of AKPL,
mZLPKA = mZALP + m/ZKPL (#12). amy
Combine lines (I) and (I11) to get
m/ BPL + m/ZKPL + m/ APK = m/ZALP + m/KPL.
Therefore, mZ BPL + mZ APK = m/Z ALP (by subtraction).
av)
Combine lines (II) and (IV) to get
mZKPL + mZAPK = mZBPL + mZAPK.

Therefore, mZ KPL = mZ BPL (by subtraction), and PL bisects
ZKPB.

P is any point on altitude CD of AABC (Fig. 52-12). AP and

BP meet sides CB and CA at points Q and R, respectively. Prove
that £QDC =~ ZRDC.

A

Draw RUS || CD, and QFT | CD.

RU AU
AAUR ~ AAPC (#49), 50 op = 5 -
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2-13

AASU ~ AADP (#49), 50 2o = 45 -

RU US RU cP
Therefore, =5 = 75024 75 = pp
ABVQ ~ ABPC (#49), s0 2 = 22

VT BV

ABTV ~ ABDP (§49), 50 55 = 25
Therefore, 'g—:,/ = 1—‘% (transitivity), and Q_V’T/ = %
% = %;—/ (transitivity), and 1 + Z—S = Q—V{/ +1;
therefore, RUTUS OV + VT,

RU =~ ov
RS _ QT RS _ RU

RU - QV' QT ~ Qv
Since RS || CD || OT, 55 = o7 $24).

ARPU ~ AVPQ (#48), and ﬁ’ - 1%’-
Therefore, Q_T = D_T (transmvny).

ZRSD =~ /£ QTD == right angle, ARSD ~ AQTD (4#50);
LSDR = /LTDQ, LRDC = £ QDC (subtraction).

In AABC, Z is any point on base AB as shown in Fig. S2-13a.
CZ is drawn. A line is drawn through A parallel to CZ meeting BC
at X. A line is drawn through B parallel to CZ meeting AC at Y.

1
Prove that Ax + =< BY =z
Consider AAYB; since CZ || BY, AACZ ~ AAYB (#49), and
AZ AB

¢z~ By’
Consider ABXA; since CZ || AX, ABCZ ~ ABXA (#49), and
BZ _ AB
cz~ ax

By addition 52 _ 48, 48,

AZ
ezt~ ertax
AB AB AR
But AZ + BZ = AB, therefore,a= B_Y+ Vi

1 1
Dividing by (4B) we obtain — CZ BT + =
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$2-13a Y s213

40
x

B |

A z

Challenge Two telephone cable poles, 40 feet and 60 feet high, re-
spectively, are placed near each other. As partial support,
a line runs from the top of each pole to the bottom of the
other, as shown in Fig. S2-13b. How high above the ground

is the point of intersection of the two support lines?

Using the result of Problem 2-13, we immediately obtain
the following relationship:

Therefore, X = 24. Thus, the point of intersection of the
two support lines is 24 feet above the ground.

2-14 In AABC, mZA = 120 (Fig. S2-14). Express the measure of
the internal bisector of ZA in terms of the two adjacent sides.

Ef“\
! N
$2-14 ! AN
1 N
[ N
F
Il \\ - 7
A _~
%\4 "
! [}
[} )
[ [}
] !
B D [

Draw a line through B parallel to 4D meeting CA at E, and a
line through C parallel to 4D meeting B4 at F.

Since £EAB is supplementary to £ZBAC, mZEAB = 60, as
does the measure of its vertical angle, ZFAC.

Now, mZBAD = m/ZEBA =60 (#8), and m4ALDAC =
mZACF = 60 (#8).
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2-15

Therefore, AEAB and AFAC are equilateral triangles since they
each contain two 60° angles.

Thus, AB = EB and AC = FC.
From the result of Problem 2-13, we also know that
1 1

1
ab = EB T FC’
1 1

T 1
By substitution, -7 = —% + —=-

.. . 1 AC + AB
Combining fractions, —— = AB)(AC)
_ (4B)(4C)
Therefore, AD = AC + AB

Prove that the measure of the segment passing through the point
of intersection of the diagonals of a trapezoid and parallel to the
bases, with its endpoints on the legs, is the harmonic mean between
the measures of the parallel sides. (See Fig. S2-15.) The harmonic
mean of two numbers is defined as the reciprocal of the average
of the reciprocals of two numbers. The harmonic mean between
. a~t 4+ b-1\—1 2ab
a and b is equal to (——2-—) =216

A B

E

D Cc

In order for FG to be the harmonic mean between AB and DC
—2 .
1 1
48T DC
1 1 1
From the result of Problem 2-13, FE = 4B + DC > and

1 1

it must be true that FG =

FE=—T"—"T Similarly, EG = T 1
AB ' DC AB  DC

Therefore, FE = EG. Thus, since FG = 2FE,

FG = %, and FG is the harmonic mean between AB
487 CD

and CD.
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2-16 In parallelogram ABCD, E is on BC. AE cuts diagonal BD at G

and DC at F, as shown in Fig. S2-16. If AG = 6 and GE = 4,
find EF.

A

§2-16

e . 3> F

AFDG ~ AABG (§48), and 5 = 22

ABGE ~ ADGA (448), and 22 = 29

e . GF AG
Therefore, by transitivity, 4G = GE

By substitution, 4 +6EF = g and EF = 5.

NOTE: AG is the mean proportional between GF and GE.

3. The Pythagorean Theorem

3-1 In any AABC, E is any point on altitude AD (Fig. S3-1). Prove
that (AC)? — (CE)? = (AB)? — (EB)2.

A

§3-1

¢ 5
By the Pythagorean Theorem (#55),

for AADC, (CD)? + (AD)?> = (AC)?;
for AEDC, (CD)? + (ED)? = (EC)*.

By subtraction, (4D)?> — (ED)? = (4C)? — (EC)2. )
By the Pythagorean Theorem (#55),
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for AADB, (DB)? + (AD)? = (4B)?;
for AEDB, (DB)? + (ED)? = (EB)>.
By subtraction, (4D)? — (ED)? = (4B)?> — (EB)*. an
Thus, from (I) and (II),
(AC)? — (EC)? = (4B)*> — (EB)%.

NoTE: For E coincident with D or A4, the theorem is trivial.

3-2 In AABC, median AD is perpendicular to median BE (Fig. S3-2).
Find AB if BC = 6 and AC = 8.
Let AD = 3x; then AG = 2x and DG = x (#29).
Let BE = 3y; then BG = 2y and GE = y (#29).
By the Pythagorean Theorem,
for ADGB, x* + (2p)% = 9 (#55);
for AEGA, y? + (2x)® = 16 (455).
By addition, 5x2 4 5y% = 25;
therefore, xZ + y2 = 5.
However, in ABGA, (2y)2 + (2x)2 = (4B)? (#55),

or 4y% + 4x% = (4B)2.

Since xZ 4 y? = 5, 4x% 4 4y? = 20.
By transitivity, (4B)% = 20, and 4B = 2\/5.

Challenge 1 Express AB in general terms for BC = a, and AC = b.

2 2
ANSWER: AB = , /“ “;b

Challenge 2  Find the ratio of AB to the measure of its median.

ANSWER: 2:3

$3-3
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3-3 On hypotenuse AB of right AABC, draw square ABLH externally
(Fig. S3-3). If AC = 6 and BC = 8, find CH.
Draw CDG perpendicular to 4B.
In right A4BC, AB = 10 (455, and 42 = 45 (451b).

Substituting in this ratio, we find AD = 3.6; therefore, DB = 6.4.

. AD CcD
In right AABC, ©D = DB (#51a);

therefore, CD = 4.8.

Since DG = 10, CG = 148. HG = AD = 3.6.

In right AHGC, (HG)? + (CG)? = (HC)? (#55), and HC =
2/58.

Challenge 1 Find the area of quadrilateral HLBC.
ANSWER: 106
Challenge 2  Solve the problem if square ABLH overlaps AABC.
ANSWER: 21/10
3-4 The measures of the sides of a right triangle are 60, 80, and 100
(Fig. S3-4). Find the measure of a line segment, drawn from the

vertex of the right angle to the hypotenuse, that divides the triangle
into two triangles of equal perimeters.

Let AB = 60, AC = 80, and BC = 100. If AABD is to have
the same perimeter as AACD, then AB + BD must equal
AC + DC, since both triangles share 4AD; that is, 60 + BD =
80 + 100 — BD. Therefore, BD = 60 and DC = 40.

Draw DE perpendicular to AC.
Right AEDC ~ right AABC (#49); therefore, =2 = pc -
By substituting the appropriate values, we have £ _ % and

60 100’
ED = 24
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By the Pythagorean Theorem (#55), for AEDC, we find EC = 32;
then, by subtraction, AE = 48. Again using the Pythagorean
Theorem (#55), in AAED, AD = 24\/5.

On sides AB and DC of rectangle ABCD, points F and E are
chosen so that AFCE is a rhombus, as in Fig. S3-5a. If AB = 16
and BC = 12, find EF.

METHOD I: Let AF = FC = EC = AF = x (#21-]).

Since AF = xand AB = 16, BF = 16 — x.

Since BC = 12, in right AFBC, (FB)? + (BC)? = (FC)? (#55),
or (16 — x)® + (12)®> = x%,and x = 275
Again by applying the Pythagorean Theorem (#55) to AABC,
we get AC = 20.

Since the diagonals of a rhombus are perpendicular and bisect
each other, AEGC is a right triangle, and GC = 10.

Once more applying the Pythagorean Theorem (#55),

in AEGC, (EG)? + (GC)? = (EC)2.

(EG)? + 100 = 2 and EG = ¥

Thus, FE = 2(EG) = 15.
5,
2

Draw a line through B parallel to EF meeting DC at H (Fig.
S3-5b).

METHOD II: Since x = 22—5 (see Method I), EC =

A F 8

$3-5b /

9]
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Since quadrilateral BFEH is a parallelogram (#21a), and FB =
AB — AF = 1, EH = L. Therefore, HC = 9.

In right ABCH, (BH)? = (BC)? + (HC)? (#55), so that
BH = 15.

Therefore, EF = BH = 15 (#21b).

Challenge [f AB = a and BC = b, what general expression will give
the measure of EF ?

b
ANSWER: ;\/a2 + b2

3-6 A man walks one mile east, then one mile northeast, then another
mile east (Fig. S3-6). Find the distance, in miles, between the man’s
initial and final positions.

(finish)
F

Let S and F be the starting and finishing positions, respectively.
Draw FD L S4, then draw FC || AB.
In rthombus ABFC, CF = BF = AC = 1 (#21-]); also SA = 1.

In isosceles right AFDC, FD = CD = ? (#55b).
Applying the Pythagorean Theorem (#55) to right A DSF,
(FD)* + (SD)* = (SF)*
V2\? V2\?2
(2) +(+%) = ey
V5 + 2v2 = SF.

Challenge How much shorter (or longer) is the distance if the course is
one mile east, one mile north, then one mile east?

ANSWER: The new course is shorter by /5 + 2v/2 — /5.

3-7 If the measures of two sides and the included angle of a triangle are
7, /50, and 135, respectively, find the measure of the segment
Joining the midpoints of the two given sides (Fig. S3-7).
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c
c
$3.8a
$3.7 :
£
I
)
I F
L0y .
o A B A G 3 H 8

Draw altitude CD. Since mZCAB = 135, mZ DAC = 45,
therefore, A ADC is an isosceles right triangle. If AC = /50 =
5v/2, then DA = DC = 5 (#55b).

In ADBC, since DB = 12 and DC = 5, BC = 13 (#55).

Therefore, EF = 3 (BC) = = (426).

Challenge 4 On the basis of these results, predict the values of EF when
mZA = 30, 45, 60, and 90.

When mZA = 30, EF = %\/bz F % — benv/3:
when mZA = 45, EF = 3A/67 + ¢ — bev/2;

when mZA = 60, EF = §\/b2 T % = bev/I;

when mZA = 90, EF = %\/b2 T+ ¢ — ber/0.

3-8 Hypotenuse AB of right AABC is divided into four congruent
segments by points G, E, and H, in the order A, G, E, H, B (Fig.
S3-8a). If AB = 20, find the sum of the squares of the measures
of the line segments from C to G, E, and H.

METHOD I: Since AB =20, AG = GE = EH = HB = 5. Since
the measures of AC, CB, and CG are not given, AABC may be

constructed so that CG is perpendicular to AB without affecting
the sum required.

Since CG is the altitude upon the hypotenuse of right AABC,

5 _¢CG 2 _
2= = =3 (#51a), and (CG)* = T5.

By applying the Pythagorean Theorem to right A HGC, we find

(CG)® + (GH)? = (HC)® (#55),
or 75 + 100 = 175 = (HC)>.
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Since CE = GH (#27), (CE)% = (GH)? = 100. Therefore,
(CG)? + (CE)* + (HC)? = 15 + 100 + 175 = 350.

METHOD I1: In Fig. S3-8b, CJ is drawn perpendicular to A4B.
Since AB = 20, CE = 10 (#27). Let GJ = x,and JE = 5 — x.
In ACJG and ACJE, (CG)? — x% = 102 — (5 — x)% (#55),

or (CG)2 = 75 + 10x. 1))
Similarly, in ACJH and ACJE,

(CH)? — (10 — x)2 = 102 — (5 — x)?,

or (CH)? = 175 — 10x. an
By addition of (I) and (1), (CG)? + (CH)? + (CE)? =

75 + 10x + 175 — 10x + 100 = 350.

Notice that Method II gives a more general proof than Method 1.

Challenge Express the result in general terms when AB = c.

2

Tc
ANSWER: —8—

3-9 Inquadrilateral ABCD, AB = 9, BC = 12,CD = 13, DA = 14,
and diagonal AC = 15. Perpendiculars are drawn from B and D
to AC, meeting AC at points P and Q, respectively (Fig. S3-9).
Find PQ.

Consider AACD. If we draw the altitude from C to AD we find
that CE = 12, AE = 9, and ED = 5 (#55¢).

Therefore, AABC =~ ANAEC (S.8.5.).

Thus, altitude BP, when extended passes through E. In AABC,

AC 27

1B = AP (#51b), nd AP ; therefore, AP = —
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Now consider A4QD, where PE || QD (#9).
27

AE
ED = PQ ~ (#46), and— PQ ; thus, PQ = 3.

3-10 In AABC, angle C is a right angle (Fig. S3-10). AC and BC are
each equal to 1. D is the midpoint of AC. BD is drawn, and a line
perpendicular to BD at P is drawn from C. Find the distance from
P to the intersection of the medians of AABC.

Applying the Pythagorean Theorem to A DCB,
(DC)* + (CB)® = (DB)? (#55).
14 1= (0B DB=3/5
Since the centroid of a triangle trisects each of the medians (#29),
DG = 3 (DB) = 3 (3v/3) = V5

Consider right A DCB where CP is the altitude drawn upon the
hypotenuse.

DB  DC
Therefore, — oc = pp #31b).

1 1

2V _ 2 3
1~ DpP’ 10
2

Thus, PG = DG — DP, and
1
PG——\/_ 10\/_=E\/§.

$3-10 \

c E B

3-11 A right triangle contains a 60° angle. If the measure of the hypotenuse
is 4, find the distance from the point of intersection of the 2 legs of
the triangle to the point of intersection of the angle bisectors.
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In Fig. S3-11, AB = 4, mZCAB = 60; therefore mZB = 30
and AC = 2 (#55c). Since AE and CD are angle bisectors,
mLCAE = 30, and mZACD = 45. From the point of inter-
section, 7, of the angle bisectors draw FI L AC. Thus, the angles
of A AIF measure 30°, 60° and 90°.

Let AF y. Since y = = (AI)\/_ (#55d), then A = \/— , and
FI = 2 = 28 4550,
\/—
Since mAFCI =45, FC = FI = (2 — y) (#5).
Therefore, 2 — y) = M ,and y = (3 — V/3).
Hence, FC = 2 — y) = V3 — 1.

Then CI = (FC)V'2Z = vV2(\V/3 — 1), and CI = \/6 — +/2 (#55a).

From point P inside AABC, perpendiculars are drawn to the sides
meeting BC, CA, and AB, at points D, E, and F, respectively
(Fig. S3-12). If BD = 8, DC = 14, CE = 13, AF = 12, and
FB = 6, find AE. Derive a general theorem, and then make use
of it to solve this problem.

The Pythagorean Theorem is applied to each of the six right
triangles shown in Fig. S3-12.

(BD)? + (PD)* = (PB)?, (FB)® + (PF)* = (PB)*;

therefore, (BD)? + (PD)? = (FB)? + (PF)%. )
(DC)* + (PD)* = (PC)?, (CE)* + (PE)* = (PC)%;
therefore, (DC)? + (PD)? = (CE)? + (PE)2. an
(EA)® + (PE)? = (PA)?, (AF)? 4 (PF)? = (PA)*;
therefore, (EA)2 + (PE)? = (AF)? + (PF)2. {11

Subtracting (11) from (I), we have
(BD)? — (DC)? = (FB)® + (PF)* — (CE)* — (PE)®. (V)



86 SOLUTIONS

3-13

Rewriting (III) in the form (EA)? = (AF)? + (PF)? — (PE)?,
and subtracting it from (IV) we obtain

(BD)? — (DC)* — (EA)?> = (FB)> — (CE)? — (AF)%, or
(BD)? + (CE)® + (AF)* = (DC)? + (EA)® + (FB)~.

Thus, if, from any point P inside a triangle, perpendiculars are
drawn to the sides, the sum of the squares of the measures of
every other segment of the sides so formed equals the sum of the
squares of the measures of the other three segments.

Applying the theorem to the given problem, we obtain

82 4+ 132 4 122 = 62 4 142 4 X2, 145 = X%, /145 = X.

A
$313

F E

8 D c

For AABC with medians AD, BE, and CF, let m = AD +
BE + CF, and lets = AB + BC + CA (Fig. S3-13). Prove that

3 3

ES >m > ZS'

BG + GA > AB,CG + GA > AC,and BG + CG > BC (#41).
By addition, 2(BG + GC + AG) > AB + AC + BC.

Since BG + GC + AG = 2 (BE + CF + AD) (29),

4 3
3m > s; therefore, m > - 25

—AB+FG> BG, 5 BC+GD> CG, 5 AC+ GE > AG (#4])

Byaddmon (AB + BC + AC) + FG + GD + GE > BG +
CG + AG.

Substituting,§s+ gm > im,§s> Sm,m < Es.

by substitution, 2 (3 m) > s, or

3 3
Thus,§s>m> 25

3-14 Prove that ‘—::(a2 + b2 4+ ¢?) = m,? + my? + m.2 (m, means

the measure of the median drawn to side c.)
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In AABC, medians AE, BD, CF, and GP L 4B are drawn, as in
Fig. S3-14a. Let GP = h, and PF = k.

Since AF = 3, then AP = 5 — k.

Apply the Pythagorean Theorem (#55),

. 9 c L\ _ (2 2

in AMGP, 1 + (5 - k)" = (3ma)

4 2

orh? +5 — ck + k% = im,2 )
In ABGP, K + (5 +K) = (3ms)’,
or h? + S + ck + k* = my2 D
Adding (I) and (ID), 2h2 + %~ 4 2k* = §m,? + S mp?,
or 24 + 2k = Sm? + gmy? — G- a

()"

However, in AFGP, h® + k?

Therefore, 2h% + 2k = & m.”. av)

By substitution of (IV) into (III),

Y

2 4 4 2
§mc2 = §ma2 + §mb2 — %

Therefore, c2 = gmaz + -;-;m,,2 — gmcz.

Similarly, b2 = gmaz + gmcz — gmbz,

and g% = gmbz + gmcz - gmaz.

(ma® + mp® + m.?),

By addition, a2 4 b% + ¢% = %

or 3 @+ b2 + ¢?) = m2 + my? + m.%
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Challenge 2

Challenge 3

The sum of the squares of the measures of the sides of a
triangle is 120. If two of the medians measure 4 and 5,
respectively, how long is the third median?

From the result of Problem 3-14, we know that

me® + my? 4+ m? = 3(02 + b% + ¢2).
This gives us 52 + 47 + m? = 3 (120).

Som? = 49, and m = 7.

If AE and BF are medians drawn to the legs of right
(AE)? + (BF)? .

AABC, find the numerical value of T AR (Fig.
S$3-14b).
c
$3-14b
F E
A ) B

Use the previously proved theorem (Problem 3-14) that
the sum of the squares of the measures of the medians

3
equals 2 the sum of the squares of the measures of the

sides of the triangle.
(AE)? + (BF)? + (CD)?
= 2[4C)* + (CBY + (4B?] (1)
By the Pythagorean Theorem (#55),
(AC)? + (CB)? = (4B)*. an
Also, (CD) = , (AB) (427). ai)
By substituting (11) and (I11) into (1),
(4E)* + (BF)* + (34B)" = J[(4B) + (4B)?),
or (AE)? + (BF)’ = (4B)* — { (4B)".
(AE)? 4 (BE)Z 5 .

Then (AB): =2
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4. Circles Revisited

4-1 Two tangents from an external point P are drawn to a circle,
meeting the circle at points A and B. A third tangent meets the
circle at T, and tangents PA and PB at points Q and R, respectively.
Find the perimeter p of APQR.

We first consider the case shown in Fig. S4-1a where AQ = QT
and BR = RT (#34).

Therefore, p = PQ + QT + RT + PR = PQ + QA + BR +
PR = PA + PB.

We next consider the case shown in Fig. S4-1b where AQ = QT
and BR = RT (#34).

Therefore, p = PA + AQ + QT + RT + RB + PB
PA + QR + QR + PB

PA + PB + 20R.

$4-1b 54.2

4-2 AB and AC are tangent to circle O at B and C, respectively, and
CE is perpendicular to diameter BD (Fig. S4-2). Prove (BE)(BO) =
(AB)(CE).

Draw A0, BC, and OC, as in Fig. S4-2. We must first prove
A0 L BC. Since AB = AC (#34), and BO = OC (radii), 4O is
the perpendicular bisector of BC (#18). Since ZABD is a right
angle (#32a), £3 is complementary to £2. In right AAPB, /1
is complementary to £2. Therefore, £1 =~ Z3.

Thus, right ABEC ~ right AABO, and

AB _ BO

3E = cp» O (BEXBO) = (4B)(CE).
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Challenge 3 Show that % = ;——25 .
We have proved that B_g = g—z M

Since ABCD is a right triangle (#36),
(CE)? = (BE)(ED) (#SIa). Then CE = \/BE\/ED. (Il)

From (1) and (I1) we get 42 \/_gf/ﬁ @)

By multiplying both sides of (I1I) by \7‘?—5 we get:

AB _ BO
VBE = \E

E

4-3 From an external point P, tangents PA and PB are drawn 1o a
c:rcle (Fig. S4-3a). From a point Q on the major (or minor) arc
AB perpendiculars are drawn to AB, PA, and PB. Prove that
the perpendicular to AB is the mean proportional between the other
two perpendiculars.

PA and PB are tangents; 0D 1L P4, QF L PB, and OC L 4B.
Draw Q04 and QB.

mZDAQ = 3 mAQ (#38); m£L QBA = 5 mAQ (#36)
Therefore, mZ DAQ = mZ QBA (transitivity),

D A
right ADAQ ~ right ACBQ (#48), and g 2= g 4.

mZ QBE = 5 mOB (#38); m£L QAB = imQB (#36)
Therefore, mZ QBE = mZ QAB (transitivity), and

right AQBE ~ right AQAC (#48) so that g—E -&.
We therefore obtain -Q_C E (transitivity). In Fig. S4-3a, point

$4-3b
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Q is on the major arc of circle O. Fig. S4-3b shows Q on the
minor arc. Note that the proof applies equally well in either case.

Chords AC and DB are perpendicular to each other and intersect
at point G (Fig. S4-4). In AAGD the altitude from G meets AD
at E, and when extended meets BC at P. Prove that BP = PC.

In right AAEG £ A is complementary to £ 1 (#14), and £2 is

complementary to £ 1. Therefore, LA = /2.

However, £2 =~ /4 (#1). Thus, £LA4 = ZA4.

Since £ A and Z B are equal in measure to % mDC (#36), they are
congruent. Therefore, £4 =~ /B, and BP = GP (#5).
Similarly, /D> /3 and £ D = ZC so that GP = PC.

Thus, CP = PB.

’ AL N\
$44 $45
D 5& . B
‘}
ONNL—"°¢
[ E

Square ABCD is inscribed in a circle (Fig. S4-5). Point E is on
the circle. IFAB = 8, find the value of (AE)? + (BE)% + (CE)? +
(DE)Z.

In this problem we apply the Pythagorean Theorem to various
right triangles. DB and AC are diameters; therefore, A DEB,
ADAB, AAEC, and A ABC are right triangles (#36).

In ADEB, (DE)? + (BE)? = (BD)?;

in ADAB, (AD)? + (AB)? = (BD)? (#55).

Therefore (DE)? + (BE)? = (AD)? + (4B)>

In AAEC, (AE)? + (CE)? = (AC)?;

in AABC (AB)? + (BC)? = (AC)? (#55).

Therefore, (AE)? + (CE)? = (4B)% + (BC)2.

By addition, (4E)% + (CE)* + (DE)? + (BE)? = (AB)? +
(BC)? 4 (AD)? + (AB)%. Since the measures of all sides of
square ABCD equal 8,

(AE)? + (CE)? + (DE)* + (BE)® = 4(8%) = 256.
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4-6

To generalize, (A4E)? + (CE)? + (DE)? + (BE)? = 4s® where
s is the measure of the length of the side of the square. Interpret
this result geometrically!

In Fig. S4-6, radius AO is perpendicular to radius OB, MN is
parallel to AB meeting AO at P and OB at Q, and the circle at
M and N. If MP = /56, and PN = 12, find the measure of the
radius of the circle.

Extend radius 40 to meet the circle at C. We first prove that
MP = NQ by proving AAMP =~ ABNQ.

Since AAOB is isosceles, ZOAB = L OBA (#5), and trapezoid
APQB is isosceles (#23); therefore, AP = QB. Since MN || AB,
ZLMPA = /PAB (#8), and L NQB = £ QBA (#8). Thus, by

transitivity, £ZMPA =~ ZBQN. MA =~ BN (#33). Therefore,

MAB = NBA and ZAMN<= ZBNM (436). Therefore,
AAMP = ABNQ (S.A.A.), and MP = QN.

Let PO = a, and radius O4 = r. Thus, AP = r — a.
(AP)(PC) = (MP)(PN) (#52)
(r — a)(r + a) = (v/56)(12)

r? — a? = 124/56 )

We now find a? by applying the Pythagorean Theorem to isosceles
right APOQ.

(PO)? + (Q0)? = (PQ)%, s0a® + a® = (12 — v/56)%, and
a? = 100 — 12\/56.

By substituting in equation (1),
r? = 123/56 + 100 — 121/56, and r = 10.

M A A

SN CD
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Chord CD is drawn so that its midpoint is 3 inches from the center
of a circle with a radlus of 6 inches (Fig. S4-7). From A, the mid-
point of minor arc CD any chord AB is drawn intersecting CD in
M. Let v be the range of values of (AB)(AM), as chord AB is
made to rotate in the circle about the fixed point A. Find v.

(ABYAM) = (AM + MBYAM) = (AM)? + (MBYAM) =
(AM)? + (CM)(MD) (#52)

E is the midpoint of CD, and we let EM = x.In AOED, ED =
/27 (#55). Therefore, CE = /217.

(CMYMD) = (V27 + x)(v/2T — x),and in AAEM, (AM)? =
9 + x2, (#55).

(ABY(AM) = 9 + x* + (V2T + x)(V2T — x) =

Therefore, v has the constant value 36.

QUESTION: Is it permissible to reason to the conclusion that
v = 36 by considering the two extreme positions of point M,
one where M is the midpoint of CD, the other where M coincides
with C (or D)?

A circle with diameter AC is intersected by a secant at points B
and D. The secant and the diameter intersect at point P outside the
circle, as shown in Fig. S4-8. Perpendiculars AE and CF are
drawn from the extremities of the diameter to the secant. If
EB = 2, and BD = 6, find DF.

METHOD 1: Draw BC and AD. ZABC =~ /£ ADC = right angle,
since they are inscribed in a semicircle. mZFDC + mZEDA =
0andmZLFCD + m/ZFDC = 90; therefore, ZEDA =~ / FCD,
since both are complementary to ZFDC.

Thus, right ACFD ~ right ADEA (#48), and o = £

ED

)

or (EA)(FC) = (DF)(ED). (N



94 SOLUTIONS

Similarly, mZEAB+ m/ZEBA =90 and mAZFBC +

mZLEBA = 90;
therefore, L EAB == ZFBC, since both are complementary to
. . EB  EA
Z EBA. Thus, right AAEB ~ right ABFC, and 7= F’
or (EA)FC) = (EB)(FB). an

From (I) and (l1) we find (DF)(ED) = (EB)(FB).
Substituting we get (DF)(8) = (2)(DF + 6), and DF = 2.

MLTHOD I11: By applying the Pythagorean Theorem (#55),
in AAED, (ED)? + (EA)? = (4D)?;
in ADFC, (DF)? + (FC)? = (DC)2

(ED)? + (DF)? = (AD)* + (DC)? — ((EA)? + (FC)?)

In AAEB, (EB)? + (EA)? = (AB)?;
in ABFC, (BF)? + (FC)? = (BC)>.

Il

(EB)? + (BF)? = (4B)® + (BC)? — ((EA)® + (FC)?)

Since (4D)? + (DC)? = (AC)? = (4B)% + (BC)?,

we get (ED)? + (DF)? = (EB)? + (BF). ()]
Let DF = x. Substituting, (8)2 + xZ = (2)® + (x + 6)?,

64 + x> =44 x2 4+ 12x + 36, and x = 2.

Challenge Does DF = EB? Prove it!
From Method 1, (1) and (II), (DFYED) = (EB)(FB).
Then, (DF)(EB + BD) = (EB)(BD + DF),

and (DF)(EB) + (DF)BD) = (EB)YBD) + (EB)(DF).
Therefore, DF = EB.

From Method 11, (1),
(ED)? + (DF)? = (EB)* + (BF)>.

Then, (EB + BD)? + (DF)? = (EB)? + (BD + DF)*,
and (EB)® + 2(EB)(BD) + (BD)® + (DF)* = (EB)* +
(BD)*> + 2(BD)(DF) + (DF)*.

Therefore, EB = DF.
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49 A diameter CD of a circle is extended through D to external
point P. The measure of secant CP is 77. From P, another secant
is drawn intersecting the circle first at A, then at B. (See Fig.
S4-9a.) The measure of secant PB is 33. The diameter of the circle
measures 74. Find the measure of the angle formed by the secants.
(Note that the figure is not drawn to scale.)

B B
S4.9b !
$4.9a X /I,'E A
// A ///
A
CU P CUD |

Since CD =74 and PC = 77, PD = 3. Since (PA)(PB) =

(PD)Y)(PC) (#54), (PAY(33) = (3)(77),and PA = 1T.

Therefore, BA = 26. Draw OE 1L AB. Then AE = BE = 13

(#30). Since OD = 37 and PD = 3, OP = 40.

In right APEO, PE = 20 and PO = 40.

Therefore, mZ EOP = 30 and mZP = 60 (#55c).

Challenge Find the measure of secant PB when mZCPB = 45 (Fig.

S4-9b).
In right APEO, OE = 20+/2 (#55b).
Since OB = 37, in right ABEO, BE = /569 (#55).
Therefore, PB = 20\/2 + /569.

4-10 In AABC, in which AB = 12, BC = 18, and AC = 25, a
semicircle is drawn so that its diameter lies on AC, and so that it
is tangent to AB and BC (Fig. S4-10). If O is the center of the
circle, find the measure of AO.

$4-10

\
\
\
WV

x o]
Draw radii OD and OE to the points of contact of tangents 4B
and BC, respectively. OD = OE (radii), and mZBDO =
mZBEO = 90 (#32a). Since DB = BE (#34), right ABDO =~
right ABEO (#17), and £ DBO = Z EBO.

Cc
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—_— AB BC
In AABC, BO bisects £ B so that 20 = o¢ (#47).

Let 40 = x: thenlxz =18

_25_x,andx= 10 = 40.

Challenge Find the diameter of the semicircle.

% ‘;“79 ~ 13.4

ANSWER

4-11 Two parallel tangents to circle QO meet the circle at points M and
N. A third tangent to circle O, at point P, meets the other two
tangents at points K and L (Fig. S4-11). Prove that a circle,
whose diameter is KL, passes through O, the center of the original
circle.

Draw KO and LO. If KL is to be a diameter of a circle passing
through O, then Z KOL will be an angle inscribed in a semicircle,
or a right angle (#36).
Thus, we must prove that ZKOL is a right angle. It may easily
be proved that OK bisects ZMKP and OL bisects LPLN
(Probiem 4-10).

Since m/ MKP 4+ m/ZNLP = 180 (#11), we determine that
mZOKL + mZOLK = 90 and mZ KOL = 90 (#13).
It then follows that £ KOL is an inscribed angle in a circle whose
diameter is KL; thus, O lies on the new circle.

S

$4-11 $4-12 D

P\

J

4-12 LM is a chord of a circle, and is bisected at K (Fig. S4-12). DKJ
is another chord. A semicircle is drawn with diameter DIJ. K§,
perpendicular to DJ, meets this semicircle at S. Prove KS = KL.

Draw DS and SJ.

£ DSJ is a right angle since it is inscribed in a semicircle. Since
SK is an altitude drawn to the hypotenuse of a right triangle,
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%‘ = %‘(#ﬂa), or
(SK)? = (DK)(KJ). )]

However, in the circle containing chord LM, DJ is also a chord
and (DK)(KJ) = (LK)KM) (452).

Since LK = KM, (DK)(KJ) = (KL)% a1

From lines (I) and (I1), (SK)? = (KL)?, or SK = KL.

E

4-13 Triangle ABC is inscribed in a circle with diameter AD, as shown
in Fig. S4-13. A tangent to the circle at D cuts AB extended at E
and AC extended at F. If AB = 4, AC = 6,and BE = 8, find CF.

Draw DC and BD.
ZABD =~ £ ACD = right angle, since they are inscribed in

semicircles (#36).

AE AD

In right AADE, 4D = 4B (#51b);

thus, (4D)? = (AE)(AB).
. AF AD
In right AADF, <D = AC (#51b);

thus, (4D)? = (AF)(AC).

By transitivity, (AE)}(AB) = (AFYAC).
By substitution, (12)(4) = (6 + CF)®6), and CF = 2.
Challenge 1 Find m/ DAF.
ANSWER: 30

Challenge 2 Find BC.
ANSWER: 2(v/6 + 1)
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4-14 Altitude AD of equilateral AABC is a diameter of circle O. If
the circle intersects AB and AC at E and F, respectively, as in
Fig. S4-14, find the ratio of EF:BC.

METHOD 1: Let GD = 1, and draw ED.

LAED is a right angle (#36). mZABD = 60 and AD 1 BC;
therefore, mZ BAD = 30, and mZADE = 60 (#14).

Because of symmetry, AD L EF. Therefore, m£GED = 30.
In AGED, since GD = 1, we get ED = 2 (#55¢c), and EG =
V3 (#55d).

In AAEG (30-60-90 triangle), since EG = /3, we get AG = 3.

AG EF
AAEF ~ DABC (#49),and 22 = 22

Since AG:AD = 3:4, the ratio EF:BC = 3:4.
METHOD 11: AEOG is a 30-60-90 triangle. Therefore, OG =
L OE = 3 0D; thus, OG = GD, and AG = 3 AD. However,
AAEF ~ AABC (#49). Therefore, EF = %BC, or EF:BC =
3:4.
Challenge Find the ratio of EB:BD.
ANSWER: 1:2

A

$4-14 S$4-15a ‘gh
E F "’

4-15 Two circles intersect in A and B, and the measure of the common
chord AB = 10. The line joining the centers cuts the circles in P
and Q (Fig. S4-15a). If PQ = 3 and the measure of the radius of
one circle is 13, find the radius of the other circle. (Note that the
illustration is not drawn to scale.)

Since 0’4 = O’'B and 04 = OB, OO’ is the perpendicular bi-
sector of AB (#18).

Therefore, in right AATO, since A0 = 13 and AT = 5, we find
OT = 12 (#55).
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Since OQ = 13 (also a radius of circle 0), and OT = 12, TQ = 1.
We know that PQ = 3.

In Fig. S4-15a, PT = PQ — TQ; therefore, PT = 2. Let 0’4 =
OP=r,and PT =2, TO' = r — 2.

Applying the Pythagorean Theorem in right AATO’,
(AT)? + (TO')? = (40').

Substituting, 52 4+ (r — 2)2 = r%, and r = %9.
In Fig. S4-15b, PT = PQ + TQ; therefore, PT = 4. Again, let
O'A=0P=r,thenTO = r — 4.

Applying the Pythagorean Theorem in right AATO’,
(AT)? + (TO')? = (40)%.

Substituting, 52 + (r — 4)> = r%, and r = 4_81 .

Challenge Find the second radius if PQ = 2.

ANSWER: 13

$4-15b

4-16 ABCD is a quadrilateral inscribed in a circle. Diagonal BD bisects
AC, as in Fig. S4-16. If AB = 10, AD = 12, and DC = 1],
find BC.
mZDBC = 3m(DC); m£DAC = 3 m(DC) (#36).

Therefore, £ DBC =~ /£ DAC, and LCEB = £ DEA (#1).
Thus, ABEC ~ AAED (#48), and

AD DE
CB = CE O]

Similarly, m£ CAB = 3 m(CB), and m£.CDB = 3 m(CB) (436).
Therefore, Z CAB = /. CDB, and Z AEB= / DEC (#1).
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DC DE

Thus, AAEB ~ ADEC (#48),and —— = ——- an
But AE = CE,; hence, from (1) and (1I), '2.—1; = 3—2'
Substltutmg, — = F) ,and CB = 120

Challenge Solve the problem when diagonal BD divides AC into two
segments, one of which is twice as long as the other.

ANSWER: CB = 240 if AE = —AC

11°

CB = ”,lfAE —AC

4-17 A is a point exterior to circle O. PT is drawn tangent to the circle
so that PT = PA. As shown in Fig. S4-17a, C is any point on
circle O, and AC and PC intersect the circle at points D and B,
respectively. AB intersects the circle at E. Prove that DE is parallel

to AP.
PC PT PC AP
pr = pg (#53). Since PT = AP, “% = Lo-

Since AAPC and A BPA share the same angle (i.e., ZAPC),
and the sides which include this angle are proportional, AAPC ~
ABPA (#50). Thus, £ BAP =~ £ ACP. However, since ZACP
is supplementary to £ DEB (#37), and ZAED is supplementary
to LDEB, ZACP =~ L AED.

By transitivity, Z BAP = Z AED so that DE || AP (#8).
Challenge 1 Prove the theorem for A interior to circle O.

As in the proof just given, we can establish that Z BAP =~
L ACP. See Fig. S4-17b. In this case, LDE? >~ L/ ACP
(#36); therefore, £ BAP =~ / DEB, and DE is parallel

to AP (#7). .

D £
PC \(

$4-17a
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Challenge 2 Explain the situation when A is on circle O.

ANSWER: DE reduces to a point on PA; thus we have a
limiting case of parallel lines.

4-18 PA and PB are tangents to a circle, and PCD is a secant. Chords
AC, BC, BD, and DA are drawn, as illustrated in Fig. S4-18. If
AC = 9, AD = 12, and BD = 10, find BC.

mZPBC = %m(é@) (#38). mLPDB = ;m(éa) (#36).
Therefore, ZPBC =~ ZPDB.
PB

CB
Thus, ADPB ~ ABPC (#48), and - = 55 a

Since PA = PB (#34), by substituting in (I) we get %g - P4
AC PA

AD = D’ (i
CB 1

ﬁ,orCB=7§-

Similarly, A DAP ~ AACP (#48), and

From (I) and (II), 45 = 2, and 33 =

Challenge If in addition to the information given above, PA = 15 and
PC = 9, find AB.

ANSWER: AB = 11}‘

A A

54-18 $4-19a Ak& p
c Q q
A Ah A
A N
4-19 The altitudes of AABC meet at O (Fig. S4-19a). BC, the base
of the triangle, has a measure of 16. The circumcircle of AABC

has a diameter with a measure of 20. Find AO. (Figure not drawn
to scale.)

METHOD 1: Let BP be a diameter of the circle circumscribed about
AABC. Draw PC and PA. Draw PT perpendicular to AD.
Since £ BCP is inscribed in a semicircle, it is a right angle (#36).
Therefore, since BP = 20 and BC = 16, we get, by the Pythag-
orean Theorem, PC = 12.

Z BAP is a right angle (#36).
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4-20

Therefore, ZPAO is complementary to Z EAO.

Also, in right AEAQO, Z EOA is complementary to Z EAO (#14).
Thus, ZPAO = /£ EQA; hence, EC || AP (#8).

Since AD L BC and PC L BC (#36), AD || PC (#9).

It then follows that APCO is a parallelogram (#21a), and A0 =
PC = 12.

METHOD 1i: The solution above is independent of the position
of point A4 on the circle. But we may more easily do this problem
by letting 4D be the perpendicular bisector of BC, in other words
letting AABC be isosceles (AB = AC). Our purpose for doing
this is to place the circumcenter on altitude 4D as shown in
Fig. S4-19b.

The circumcenter P is equidistant from the vertices (AP = BP)s
and lies on the perpendicular bisectors of the sides (#44).

Since altitude A D is the perpendicular bisector of BC, Plies on AD.
Since the circumdiameter is 20, AP = BP = 10.
In APBD, since BP = 10 and BD = 8, then PD = 6 (#55).
Thus, AD = 16.
£ DAC is complementary to £ DCA, and
£ DBO is complementary to £ BCA (#14).
Therefore, £ DAC = DBO.
DC

Thus, right AACD ~ right ABOD (#48), and 5p = or

oD
Substituting, %6= Oi; then OD = 4, and by subtraction,
40 = 12. b

Two circles are tangent internally at P, and a chord, AB, of the
larger circle is tangent to the smaller circle at C. PB and PA cut
the smaller circle at E and D, respectively (Fig. S4-20). If AB = 15,
while PE = 2 and PD = 3, find AC.
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Draw ED and the common external tangent through P.
mLPED = ,m(FD) (#36), m£TPD = 3 m(FD) (#38).
Therefore, ZPED = LTPD O

Similarly, mLPBA = m(PA) (#36).

m/TPA = - m(PA) (#38)

Therefore, ._/_PBA =~ LTPA. an
Thus, from (I) and (ll), ZPED = LPBA, and ED || BA (#7).

In APBA, 2B = A D E (446). Thus —-Now draw CD. (1)

mZPDC = 3 m(PC) (#36), while m£PCB = 3 m(PC) (#38).
Therefore, LPDC =~ £ PCB.
Sincem£PCD = 3 m(PD) (#36),andm£TPD = 5 m(PD) (#38),

ZPCD = £TPD. Since, from (1), LPBA = /TPD, ZPCD =
ZPBA.

Thus, APBC ~ APCD (#48), and £LBPC = £ DPC.

Since, in APBA, PC bisects 2 BPA, L2 Ag (#47).

' PA
From (Ill), 5 = 7<-

Since AB = 15, BC = AB — AC = 15 — AC; therefore, ;—; =

15 — AC
—AC—,andAC=9.

Challenge Express AC in terms of AB, PE, and PD.

(4B)(PD)
PE + PD

’PA

ANSWER: AC =

4-21 A circle, center O, is circumscribed about AABC, a triangle in
which £C is obtuse (Fig. S4-21). With OC as diameter, a circle
is drawn intersecting AB in D and D'. If AD = 3, and DB = 4,
find CD.
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Extend CD to meet circle O at E. In the circle with diameter OC,
OD is perpendicular to CD (#36). In circle O, since OD is
perpendicular to CE, CD = DE (#30). Again in circle O,
(CD)(DE) = (AD)(DB) (#52).

Since CD = DE, (CD)® = (3)(4), and CD = VT2 = 2\/3.

C

4-22 In circle O, perpendicular chords AB and CD intersect at E so
that AE = 2, EB = 12, and CE = 4 (Fig. S4-22). Find the
measure of the radius of circle O.

From the center O, drop perpendiculars to CD and 4B, meeting
these chords at points F and G, respectively. Join O and D.

Since (AE)(EB) = (CE)XED) (4#52), ED = 6.
OF bisects CD (#30), and CD = 10, therefore, FD = 5.
Similarly, since AB = 14, then GB = 7 and GE = 5.

Quadrilateral EFOG is a rectangle (a quadrilateral with three
right angles is a rectangle). Therefore, GE = FO = 5.

Applying the Pythagorean Theorem to isosceles right AFOD,
we find DO = 5+/2, the radius of circle O.

Challenge Find the shortest distance from E to the circle.

ANSWER: 5v/2 — /26

4-23 Prove that the sum of the squares of the measures of the segments
made by two perpendicular chords is equal to the square of the
measure of the diameter of the given circle.

Draw AD, CB, diameter COF, and BF as illustrated in Fig.
S$4-23.

Since AB L CD, ACEB is a right triangle, and ¢% + 5% = y?
(#55). In right AAED, a®> 4+ d® = x%. (#55)

By addition, a® + b% + ¢ 4+ d? = x* 4 y&



4-24

4-25
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In right ACBF, y* + 2% = m?.

£4 is complementary to £2 (#14), and £3 is complementary to
Z1.

However, Z2 = Z1 (#36); therefore, Z4 = £3. Thus, ADF =~
BFD, and AD =~ ﬁ‘; hence, x = z.
Therefore, y2 + x% = m?, and a® + b2 + ¢? + d* = m®.

Two equal circles are tangent externally at T. Chord TM in circle
O is perpendicular to chord TN in circle Q (Fig. S4-24). Prove
that MN || OQ and MN = 0Q.

Draw the line of centers 0Q, MO, and NQ; then draw the
common internal tangent KT meeting MN at K.

mZKTN = %ml/ﬁ’ and mZKTM = %mm‘ (#38).
mZKTN + mZKTM = mZ MTN = 90.
Therefore, %ml/ﬁ' +4- %mﬁ/ﬁ‘ = 90,

or ml?T+ mMT = 180.

Thus, mZMOT + mZNQT = 180 (#35), and MO || NQ (#11).
Since MO = NQ (radii of equal circles), MNQO is a parallelo-
gram (#22).

It then follows that MN = OQ and MN || OQ.

As illustrated, from point A on the common internal tangent of
tangent circles O and O', secants AEB and ADC are drawn,
respectively. If DE is the common external tangent, and points
C and B are collinear with the centers of the circles, prove

(@) m4L1l = mZ2, and
(b) LA is a right angle.
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(a) Draw common internal tangent AP (Fig. S4-25).
For circle 0', (4P)?> = (AC)(AD) (#53);

for circle O, (AP)® = (AB)AE) (#53).

AC _ AB

Therefore, (AC)(AD) = (AB)(AE), or T

Thus, AADE ~ AABC (#50), and mZ1 = m/2.

(b) METHOD 1: Draw DP and PE. GE = GP and DG = GP (#34).

Therefore, in isosceles ADGP, £3 = /4; and in isosceles
AEGP, /5= /6. Since mZ3 + mZ4 + msS5 + ml6 =
180, mZ4 4+ m/5 = 90 = m£ DPE.

Since m£ZCDP = 90 and mZPEB = 90 (#36), in quadrilateral
ADPE Z A must also be a right angle (#15).

METHOD U: Draw DO’ and OE. DO’ L DE and EO L DE
(#32a). Therefore, DO’ || OF, and m£ DO’B 4+ mZ EOC = 180.

Thus, mDP + mEP = 180 (#35).
However, m£ DCP = %mﬁ’, and m£LEBP = %mﬁ (#36).

By addition, mZDCP + mZEBP = 3 (mDP + mEP) =
2 (180) = 90. Therefore, m£BAC = 90 (413).

$4-26

4-26 Two equal intersecting circles O and O’ have a common chord
RS (Fig. S4-26). From any point P on RS a ray is drawn per-
pendicular to RS cutting circles O and O’ at A and B, respectively.
Prove that AB parallel to the line of centers OO, and that AB =
00'.

Draw OA and O’B; then draw AE L 00’ and BD 1 00'.
Since PAB L RS and the line of centers 00’ L RS, AB || 00’
#9).




4-27
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Consider AAOE and ABO’'D. Since AB | 00D, AE = BD
(#20), and A0 = O’'B since they are radii of equal circles.

Thus, right AAOE == right ABO'D (#17).
Therefore, ZAOE =~ £/ BO’'D, and A0 || O’B (#7).
It follows that ABO’O is a parallelogram (#22).
Thus, AB = OO’ (#21b).

A circle is inscribed in a triangle whose sides are 10, 10, and 12 units
in measure (Fig. S4-27). A second, smaller circle is inscribed
tangent to the first circle and to the equal sides of the triangle. Find
the measure of the radius of the second circle.

Draw AO'OF, OF, and O'D. OFE 1 AC and O'D L AC (#32a).
CF = CE = 6 (#34)
Since AC = 10, AE = 4. Inright AAFC, AF = 8 (#55).
Right AAEO ~ right AAFC (#48), and —— = — -
. 6 8
Substituting, OE= 2’ and OF = 3.
Therefore, GF = 6, and AG = 2.
Let O'D = O0G=r.Then O'A =2 —r
Since O'D | OE (#9), right AADO' ~ right AAEO, and
oD _ OE.

0’4~ 04

Since in right AAEQ, AE = 4 and OF = 3, A0 = 5 (#55).
r 3 3

Thus, 5—, = ;,andr = ;-

Challenge 1 Solve the problem in general terms if AC = a, BC = 2b.

bla — b)3'2

ANSWER: r =
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Challenge 2 Inscribe still another, smaller circle, tangent to the second

circle and to the equal sides. Find its radius by inspection.

o 133
A R22°3% 16

Chalienge 3 Extend the legs of the triangles through B and C, and draw

4-28

4-29

a circle tangent to the original circle and to the extensions
of the legs. What is its radius?

ANSWER: 12

A circle with radius 3 is inscribed in a square, as illustrated in
Fig. S4-28. Find the radius of the circle that is inscribed between
two sides of the square and the original circle.

Since OA bisects right angle 4, A DAO and AEAOQ' are isosceles
right triangles. Let EQO’ = x; then 40’ = x\/2 (#55a).

Since O'F = xand OF = 3, 04 = 3 + x + xv/2.

But in AADO, AO = 3/2 (#55a). It then follows that 3v/2 =

W2 -3
3+x+x\/§,andx=:/\%—ﬁ=3(3—2\/§).

G C
$4.28 $4-29 P
AR 8
E
[o]

c

AB is a diameter of circle O (Fig. $S4-29). Two circles are drawn
with AO and OB as diameters. In the region between the circum-
ferences, a circle D is inscribed tangent to the three previous
circles. If the measure of the radius of circle D is 8, find AB.

Let radius AE = x. Since CD = 8, DE = AE4+ CD = x + 8.
Thus, by applying the Pythagorean Theorem in ADEO,
(EO0)? + (DO)? = (DE)?, x* + (DO)? = (x + 8)% and
DO = 4/x T 4.

However, DO 4 CD = CO = OA = AE 4+ EO.

Substituting, 4v/x + 4 4+ 8 = 2x, and x = 12.

Therefore, AB = 4x = 48.
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4-30 A carpenter wishes to cut four equal circles from a circular piece
of wood whose area is equal to 9w square feet. He wants these
circles of wood to be the largest that can possibly be cut from this
piece of wood. Find the measure of the radius of each of the four
new circles (Fig. S4-30).

Let the length of the radius of the four small circles be x. By
joining the centers of the four small circles, we get a square whose
side equals 2x and whose diagonal equals 2x\/2 (#55a). There-
fore, the diameter of circle O equals 2x + 2xv/2, and its radius
equals x(1 4+ +/2). Since the area of circle O is 9, the radius is 3.

3 —
Therefore, x(1 + v/2) = 3,and x = T3V = 3(v2 — 1) feet.

Challenge 1 Find the correct radius if the carpenter decides to cut out
three equal circles of maximum size.

ANSWER: 3(2v/3 — 3)

Challenge 2 Which causes the greater waste of wood, the four circles
or the three circles?
ANSWER: Three circles

A
$4.30 A4 . $4-31
A\\ X
X C _.._.1P
ol2Y N e i
X |
0 | 8
D

4-31 A circle is inscribed in a quadrant of a circle of radius 8, as shown
in Fig. S4-31. What is the measure of the radius of the inscribed
circle?

Draw radii PC and PD to points of tangency with 40 and BO.
Then PC L A0, PD L OB (#32a).

Since ZAOB is aright angle, PCOD is a rectangle (a quadrilateral
with three right angles is a rectangle). Moreover, since radius
PC = radius PD, PCOD is a square.

Let PC = PD = r;then CO = OD = r,and OP = r\/2 (#55a),
while PT = r. Therefore, OT = r 4+ rv/2, but OT = 8 also;

thus, r + /2 = 8, and r = 8(v/2 — 1), (approximately 3%) .
QUESTION: Explain why OT goes through P.
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Challenge Find the area of the shaded region.

4-32

$4-32

4-33

ANSWER: 16[4(x"2 — w) + 3(m\/2 — 2)]

Three circles intersect. Each pair of circles has a common chord
(Fig S4-32). Prove that these three chords are concurrent.

Let chords AB and CD intersect at P. These are the common
chords for circles O and Q, and circles O and R, respectively.
Circles R and Q intersect at points E and F. Draw EP and
extend it.

Assume that EP does not pass through F. It therefore meects
circles Q and R at points X and Y, respectively.

In circle O, (AP)(PB) = (CPXPD) (#52).

Similarly, in circle Q, (AP)(PB) = (EP)(PX) (#52).

By transitivity, (CP)(PD) = (EP)(PX).

However, in circle R, (CPYPD) = (EP)(PY) (#52).

It then follows that X and Y must be the same point and must lic
both on circle Q and circle R.

Thus, EP will meet the intersection of circles Qand R at F.

D C

The bisectors of the angles of a quadrilateral are drawn. From each
pair of adjacent angles, the two bisectors are extended until they
intersect, as shown in Fig. $4-33. The line segments connecting the
points of intersection form a quadrilateral. Prove that this figure
is cyclic (i.e., can be inscribed in a circle).

m~LBAD + mZLADC + mZLDCB + mZCBA = 360 (#15);
therefore, 3 m£ BAD + ymZADC + ;mZDCB +

1 1

5mZCBA = 5 (360) = 180. Substituting,

mZLEDC + mZECD + mZGAB + mZABG = 180. (3]
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Consider AABG and A DEC.

m/EDC + mZECD + m£GAB + mZ ABG
+ mZLAGB + mZLDEC = 2(180) (I1)

Now, subtracting (I) from (II), we find that

mZLAGB + mZ DEC = 180.

Since one pair of opposite angles of quadrilateral EFGH are
supplementary, the other pair must also be supplementary, and
hence quadrilateral EFGH is cyclic (#37).

In cyclic quadrilateral ABCD, perpendiculars AB and CD are
erected at B and D and extended until they meet sides CD and AB
at B’ and D', respectively (Fig. S4-34). Prove AC is parallel to
B'D".

Draw BD. Consider cyclic quadrilateral ABCD.
LACD = ZABD (£ DBD') (436) )

Since £ D'BB’ = / D’ DB’ = right angle, quadrilateral D’BB’D
is also cyclic (#37).

Therefore, £ DB’D’ = £/ DBD' (#36). 44))

Thus, from (I) and (Il), ZACD = Z DB'D',and AC || B'D’ (#7).

Perpendiculars BD and CE are drawn from vertices B and C of
AABC 10 the interior bisectors of angles C and B, meeting them
at D and E, respectively (Fig. S4-35). Prove that DE intersects
AB and AC at their respective points of tangency, F and G, with
the circle that is inscribed in &N ABC.
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(o]

Let a, b, and ¢ respresent the measures of angles 4, B, and C,
respectively. Draw A0. Since the angle bisectors of a triangle are
concurrent, A0 bisects Z BAC. Also, FO = GO, and AF = AG
(#34); therefore, A0 L FG at N (#18).

Now, in right AAFN, mZGFA = 90 — 3 (414). )
Since CO and BO are angle bisectors, in ABOC,

m/BOC = 180 — (b + ¢) (#13). an

However, b + ¢ = 180 — a (#13).
Therefore, from (1), m£BOC = 180 — 3 (180 — a) = 90 + -

Since £ BOD is supplementary to ZBOC, mZBOD = 90 — ‘21

But LDBO is complementary to ZBOD (#14); therefore,
mZ DBO = - . Since mZLDBF = mZ DBO — mZFBO,
mZDBF =9 —2 =2 (a—b). a1

Z BFO = Z BDO = right angle; therefore, quadrilateral BDFO
is cyclic (#364),and L FDO =~ L FBO (#36) Thus, m£LFDO = -
It then follows that mZFDB = 90 + (lV)
Thus, in ADFB, m/ DFB = 180 — (mLFDB -+ mZ DBF). (V)
By substituting (III) and (IV) into (V),

mZ DFB = 180 — [90 + 2 + 1 (a — b)] = 90 —

3 (VD

Since AFB is a straight line, and m£GFA = 90 — ‘—; = mZ DFB

(See (I) and (VI)), points D, F, and G must be collinear (#1).
In a similar manner, points E, G, and F are proved collinear.

Thus, points D, F, G, and FE are collinear, and DE passes through
F and G.
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A line, PQ, parallel to base BC of AABC, cuts AB and AC at P
and Q, respectively (Fig. S4-36). The circle passing through P and
tangent to AC at Q cuts AB again at R. Prove that the points
R, Q, C, and B lie on a circle.

Draw RQ. m/2 = % (m@) (#36); also m£3 = % (mf’-é) (#38);
therefore, /3= /2, and £3 = £5 (#7).

By transitivity we find that £2 =~ £5. Butm/Z2 + m/Z4 = 180.
Therefore, mZ4 + mZ5 = 180. Since one pair of opposite
angles of a quadrilateral are supplementary, the other pair of
opposite angles must also be supplementary, and the quadrilateral
is cyclic. Thus, R, Q, C, and B lie on a circle.

4-37

4-38

In equilateral AABC, D is chosen on AC so that AD = % (AO),

1

and E is chosen on BC so that CE = 3 (BO) (Fig. S4-37). BD and

AE intersect at F. Prove that ZCFB is a right angle.

Draw DE. Since AD = CE and AC = ABand ZACB=2 L/ CAB,
AACE= ABAD (S.AS.),and mZ ABD = m/ CAE = x.

Since m£LFAB = 60 — x, m£LAFB = 120 (#13).

Then m/£ DFE = 120 (#1). Since m£ACB = 60, quadrilateral
DCEF is cyclic because the opposite angles are supplementary.
In ACED, CE = %(CD) and mZC = 60; therefore, LCED is
a right angle (#55c).

Since Z DFC is inscribed in the same arc as ZCED,

ZCED =~ £ DFC = right angle. Thus, Z CFB = right angle.

Thﬂneasurg_o_f Ihg_ﬁdes of square ABCD is x. F is the midpoint
of BC, and AE L DF (Fig. S4-38). Find BE.
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4-39

Draw AF. Since CF = FB,and DC = AB, right A DCF == right
AABF (8.A.S.). Then m£ CDF = m/ZBAF = a.

L AEF =~ ABF = right angle; therefore, quadrilateral AEFB is
cyclic (#37).

It follows that mZ BAF = m/ BEF = a since both are angles
inscribed in the same arc.

Since £ DAE and £ CDF are both complementary to £ A4 DE,

mZL DAE = mZLCDF = a.

Both ZBFEA and £BAE are complementary to an angle of
measure «; therefore, they are congruent. Thus, AABE is
isosceles, and AB = BE = x (#5).

D
$4-38 E

[3]

If equilateral AABC is inscribed in a circle, and a point P is chosen
on minor arc AC prove that PB = PA + PC (Fig. S4-39).
Choose a point Q on BP such that PQ = QC.

Since AABC is equilateral, mAB = mBC = mCA =
Therefore, m£ BPC = %mé-c\' = 60 (#36).

Since in APQC, PQ = QC, and m£LBPC = 60, AQPC is
equilateral.

mZPQC = 60, mZBQC = 120, and mZAPC = - mA’? =
120. Therefore, ZAPC = £ BQC.

PC = QCand LCAP = L CBP as both are equal in measure to

% mPC (#36).

Thus, ABQC =~ AAPC (5.A.A.), and BQ = AP. Since BQ +
QP = BP, by substitution, AP + PC = PB.

120.

From point A, tangents are drawn to circle O, meeting the circle
at B and C. Chord BF || secant ADE, as in Fig. S4-40. Prove that
FC bisects DE.
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METHOD 1: Draw BC, OB, and OC.
mZBAE = 3 (mBFE — mBD) (#40)
Since BD = FE (#33), m£ BAE = 3 mBF.
However, m£ BCF = 3 mBF (436).

Therefore, ZBAE = / BCF, or ZBAG = / BCG.

It is therefore possible to circumscribe a circle about quadrilateral
ABGC since the angles which would be inscribed in the same arc
are congruent. Because the opposite angles of quadrilateral
ABOC are supplementary, it, too, is cyclic.

We know that three points determine a unique circle, and that
points A, B, and C are on both circles; we may therefore conclude
that points 4, B, O, G, and C lie on the same circle. Since LACO
is a right angle (#32a), A0 must be the diameter of the new circle
(#36). LAGO is then inscribed in a semicircle and is a right angle
(#36). As OG L DE, it follows that DG = EG (#30).

METHOD 11: Draw BG and extend it to meet the circle at H; draw
CH.

mZAGC = 3 (mDC + mFE) (#39)
Since FE = BD (433), m£AGC = 5 (mBC + mBD) = 5 (mBC).
mZABC = 3 (mBC) (#38), and m£ BFC = 3 (mBC) (#36).

Therefore, LAGC = L ABC = £ BFC.

Now we know a circle may be drawn about 4, B, G, and C, since
£ ABC and L AGC are congruent angles that would be inscribed
in the same arc.

It then follows that £CAG = ZCBG since they are both in-
scribed in arc (CG).

In circle O, m£CAG (LCAE) = 3 (mCH + mHE — mCD)
(#40).
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However, m£Z CBG = %mC/'-l\{ (#36); therefore, HE =~ €D.
Thus, CH || AE || BF (#33).

Since FEN =~ BDC, £ HBF = / CFB (#36).

Thus, BG = GF (#5), and BO = FO.

Therefore, OG is the perpendicular bisector of BF (#18).
Then OG L DE (#10), and OG must bisect DE (#30).

Area Relationships

As shown in Fig. S5-1, E is on AB and C is on FG. Prove that
parallelogram ABCD is equal in area to parallelogram EFGD.

Draw EC. Since AEDC and [7A4BCD share the same base (DC)
and a common altitude (from E to D_C.'), the area of AEDC is
equal to one-half the area of ZJABCD.
Similarly, AEDC and [JEFGD share the same base (ED), and
the same altitude to that base; thus, the area of AEDC is equal
to one-half the area of LJEFDG.

Since the area of AEDC is equal to one-half the area of each
parallelogram, the parallelograms are equal in area.

$5-1 B $5-2

5-2 The measures of the bases of trapezoid ABCD are 15 and 9, and

the measure of the altitude is 4. Legs DA and CB are extended to
meet at E, as in Fig. $5-2. If F is the midpoint of AD, and G is
the midpoint of BC, find the area of AFGE. (The figure is not
drawn to scale.)

METHOD 1: FG is the median of trapezoid ABCD, and

FG = 252 = 12 28).
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Since AEFG ~ AEDC (#49), 1o = 5o o
KH = 4and HI = ) KH = 2 (424). Therefore,

EJ 12
Ej+2=]—5and EJ = 8.

Hence, the area of AEFG = 1 (FG)(EJ) = 5 (12)(8) = 48.

METHOD 11: Since AEFG ~ AEDC (#49),
Area of AEFG _ (FG)? _ (12)2 16.

Area of AEDC ~— (DC)? ~ (15)¢ 25

- (%)(FG)(EJ) _ (%)(12)(51) =%§

/1 |
(5)(00(511) (5)(15)(51 +2)
Therefore, EJ = 8, and the area of AEFG = 48.
Challenge Draw GL || ED and find the ratio of the area of AGLC
to the area of AEDC.

(Formula #5a).

ANSWER: 1:25

5-3 The distance from a point A to a line BC is 3. Two lines | and I,

parallel to BC, divide AABC into three parts of equal area, as
shown in Fig. S5-3. Find the distance between 1 and I’.

Line / meets AB and AC at G and H, and line /’ meets AB and AC
atJand K. Let AE = x.

AAGH ~ AAJK ~ AABC (#49)
Since / and /' cut off three equal areas,

the area of AAGH = % the area of AAJK,
and the area of AAGH = ; the area of AABC.

Since the ratio of the areas is AAGH: AAJK = 1:2,
the ratio of the corresponding altitudes is AE:AF = 1:1/2.
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Similarly, another ratio of the areas is AAGH: AABC = 1:3.
The ratio of the corresponding altitudes is AE:AD = 1:4/3.
Since AE = x, AD = x\/3. However, AD = 3, so x\/3 = 3,
or x = /3.

Similarly, AF = x\/2 = \/6. Since EF = AF — AE, EF =
V6 — V3.

Find the ratio between the area of a square inscribed in a circle,
and an equilateral triangle circumscribed about the same circle

(Fig. §5-4).
E

$54

In order to compare the areas of the square and the equilateral
triangle we must represent their areas in terms of a common unit,
in this instance, the square of the radius r of circle O.

Since the center of the inscribed circle of an equilateral
triangle is also the point of intersection of the medians, E4 =
3r (#29).

The area of AEFG = % = 3r%/3 (Formula #5f).

Since the diagonal of square ABCD is equal to 2r,
the area of square ABCD = % (2r)? = 2r? (Formula #4b).

Therefore, the ratio of the area of square ABCD to the area
of equilateral triangle EFG is

2r2 2 23 .
AT WA 9 approximately 7:18.

Challenge 1 Using a similar procedure, find the ratio between the area

of a square circumscribed about a circle, and an equilateral
triangle inscribed in the same circle.

164/3
ANSWER —91
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Challenge 2 Let D represent the difference in areas between the circum-
scribed triangle and the inscribed square. Let K represent
the area of the circle. Is the ratio D:K greater than one,
equal to one, or less than one?

ANSWER: Slightly greater than one
Challenge 3 Let D represent the difference in areas between the circum-

scribed square and the circle. Let T represent the area of
the inscribed equilateral triangle. Find the ratio D:T.

ANSWER: Approximately 2:3

5-5 A circle O is tangent to the hypotenuse BC of isosceles right
AABC. AB and AC are extended and are tangent to circle O at E
and F, respectively, as shown in Fig. S5-5. The area of the triangle
is X 2. Find the area of the circle.

E B

$55 ™Nc

OD extended will pass through 4 (#18).

Since the area of isosceles right AABC = X2, AB = AC =
X\/2 (Formula #5a).

BC = 2X (#55a). Since mZOAF = 45, AADC is also an
isosceles right triangle, and AD = DC = X.

AADC ~ AAFO (#48), and o2 = 55 -

OA
Let radii OF and OD equal r.
X X2
Then = = r+X,andr= X2+ 0.
Hence, the area of the circle = #X2%(3 + 2v/2) (Formula #10).

Challenge Find the area of trapezoid EBCF.
1
. y2 2
ANSWER: X (\/f + 2)
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5-6 In Fig. $5-6a, PQ is the perpendicular bisector of AD, AB L BC,
and DC L BC. If AB =9, BC = 8, and DC = 7, find the area
of quadrilateral APQB.

METHOD 1: To find the area of APQB we must find the sum of
the areas of A4ABQ and APAQ. Let BQ = x.

By the Pythagorean Theorem
92 + x? = AQ? and 72 + 8 — x)* = QD>

But AQ = QD (#18);

therefore, 81 + x2 = 49 + 64 — 16x 4+ x2, and x = 2.
Thus, 4Q = \/85.

Draw ED 1 AB. Since EDBC is a rectangle, DC = EB = 7,
and AE = 2.

In AAED, (AE)? + (ED)? = (AD)% and AD = 2\'17.

Since AP = /17 and AQ = /85, we can now find PQ by
applying the Pythagorean Theorem to AAPQ.

(v85)2 — (V17)2 = PQ?, and PQ = 2V 117.
We may now find the area of quadrilateral APQB by adding.

The area of AABQ = ;(9)(2) = 9. (Formula #5a)
The area of AAPQ = , (vVIT)2V/17) = 1.

Therefore, the area of quadrilateral APQB = 26.

A

H

$5-6b

B

METHOD 1: Draw HPF || BC (Fig. S5-6b). Then AAPH =~
ADPF. Since HF = 8, HP = PF = 4.

Draw PG 1 BC. Since PG is the median of trapezoid 4 DCB,
PG = ) (4B + DC) = 8. Thus, AH = FD = 1.
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In Method 1 we found BQ = 2; therefore, since BG = 4,
QG = 2. The area of quadrilateral APQB is area of rectangle
HPGB — area of APGQ + area of AAPH

= @® - (;)0® + (5)@ = 2.

5-7 A triangle has sides that measure 13, 14, and 15. A line perpen-
dicular to the side of measure 14 divides the interior of the triangle
into two regions of equal area (Fig. S5-1). Find the measure of the
segment of the perpendicular that lies within the triangle.

In AABC, AB =13, AC =15, and BC = 14; therefore,
AD = 12 (#55¢), BD = 5, DC = 9.

Since FE | 4D (#9), AFEC ~ AADC (#49), and 1o = 22 = -
It follows that EC = %E)

Now the area of AABC = 3 (14)(12) = 84 (Formula #5a).
The area of right AFEC is to be % the area of AABC, or 42.
Therefore, the area of right AFEC = % (FE)EC) = 42.
Substituting for EC,
1 3FE) _
42 = 5 (FE) (T) ,and FE = 4v/7.

Challenge Find the area of trapezoid ADEF.

ANSWER: 12

5-8 Given AABC with AB = 20, AC = 22%, and BC = 27. Points
X and Y are taken on AB and AC, respectively, so that AX = AY
(Fig. S5-8). If the area of AAXY = %area of AABC, find AX.
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The area of AABC = % (AB)(AC) sin A (Formula #5b)
= 3(0) (22%) sin 4

(225) sin A

However, the area of AAXY = (AX)(A Y)sin A4.

Since AX = AY, the area of AAXY = (AX) sin 4.

Smce the area of AAXY =3 the area of AABC,

2(AX) sinA4d = [(225)sm A] and AX = 15.

Challenge Find the ratio of the area of ABXY 10 that of ACXY.

Area of ABXY 5

1 .
Draw BY and CX. Area of AAXY = 15 = 3 Since they

share the same altitude (i.e., from Y to 4B).

Similarl area of ACXY _ _2 _ 1
Ys area of AAXY — 15 2
area of ABXY 2

Therefore, the ratio rcaof ACXY = 3°

$5-8

59 In AABC, AB =7, AC = 9. On AB, point D is taken so that
= 3. DE is drawn cutting AC in E so that quadrilateral BCED

has ; the area of ANABC. Find CE.

In Fig. 85-9, AD = 4 while 4B = 7.
If two triangles share the same altitude, then the ratio of their
areas equals the ratio of their bases.

Since AA4DC and AABC share the same altitude (from C to AB),
the area of AADC = ‘—‘ area of AABC.

Since the area of quadrllateral DECB = - area of AABC, the
area of ADAE = area of AABC.
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Thus, the ratio of the areas of A DAE and A4DC equals 1:2.
Both triangles DAE and A DC share the same altitude (from D to
AC); therefore, their bases are also in the ratio 1:2.

AE 1
ThUS, ;1—6—' = i : .
Since AC = 9, AE = 4:—,_ , as does CE.

An isosceles triangle has a base of measure 4, and sides measuring
3. A line drawn through the base and one side (but not through any
vertex) divides both the perimeter and the area in half, as shown in
Fig. S5-10. Find the measures of the segments of the base defined
by this line.

AB = AC = 3,and BC = 4. If DC = x, then BD = 4 — x.
Since the perimeter of ABC = 10, EC + DC must be one-half
the perimeter, or 5. Thus, EC = 5 — x.

Now the area of AEDC = %(x)(S — x)sin C (Formula #5b),

and the area of A4ABC = % (4)(3) sin C.
Since the area of AEDC is one-half the area of AABC,

1 . 171 .
3 ()G — x)sin € = 5[5 @) sin c], and
5x — x2 = 6.
Solving the quadratic equation x? — 5x + 6 = 0, we find its

rootstobe x = 2and x = 3.

If x = 2, then EC = 3 = AC, but this cannot be since DE may
not pass through a vertex.

Therefore, x = 3. Thus, BC is divided so that BD = I, and
DC = 3.

Challenge Find the measure of DE.

ANSWER: /5
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5-11 Through D, a point on base BC of AABC, DE and DF are drawn
parallel to sides AB and AC, respectively, meeting AC at E and
AB at F (Fig. S5-11). If the area of AEDC is four times the area
of ABFD, what is the ratio of the area of AAFE 1o the area of

AABC?

, Area of AFDB _ 1
METHOD 1I: Arca of AECD — 4 AFDBJ; AE;CD (#48), and the
ratio of the corresponding altitudes is .~ = 3" (The ratio of the

corresponding linear parts of two similar polygons equals the
square root of the ratio of their areas.)

JD HG 1
JD = HG (#20); therefore, oz = Z2 = 5,
gHG+GC _1+2 HC 3
amd—Gc T2 *MGcT 2
. A .
Thus, the ratio OFM =2 (The square of the ratio of

area of AEDC ~ 4
corresponding linear parts of two similar polygons equals the
ratio of the areas.)
The ratio of area of A4BCto area of AEDCtoarea of AFBD =
9:4:1.
Area of [JAEDF = area of AEDC, and the ratio of area of
[JAEDF to area of AABC = 4:9.

But since area of AAFE = % area of [(JAEDF, area of AAFE:
area of AABC = 2:9.

METHOD 11: Since FD || AC, ABFD ~ ABAC (#49), and
since ED || AB, ADEC ~ ABAC (#49).
Therefore, ABFD ~ ADEC.

Since the ratio of the areas of ABFD to ADEC is 1:4, the ratio
of the corresponding sides is 1:2.

Let BF = x,and FD = y; then ED = 2x and EC = 2y.
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Since AEDF is a parallelogram (#21a),
FD = AF = y,and ED = AF = 2x.

Now, area of AAFE = 3 (2x)() sin 4, 0

and area of AABC = (3x)(3y) sin A (Formula #5b). (ll)

Thus, the ratio of the area of AAFF to the area of AABC =
(from (I) and (11)).

The problem may easily be solved by designating triangle 4 BC
as an equilateral triangle. This approach is left to the student.

Two circles, each of which passes through the center of the other,
intersect at points M and N. A line from M intersects the circles at
K and L, as illustrated in Fig. S5-12. [f KL = 6 compute the area
of AKLN.

Draw the line of centers 0Q. Then draw ON, OM, ON, and OM.
Since ON = 0Q = ON = OM = QM, ANOQ and AMOQ
are each equilateral.

mZNQO = mZMQO = 60, so mLNQOM = 120.

Therefore, we know that in circle O, mZNLM = 60 (#36).
Since mNCM = 240, in circle Q, mZ NKM = 120 (436).

Since ZNKL is supplementary to ZNKM, mZ NKL = 60.
Thus, ALKN is equilateral (#6).

The area of AKLN = (KL) KDV _ 9v/3 (Formula #5e).

Challenge If r is the measure of the radius of each circle, find the least

5-13

value and the greatest value of the area of AKLN.

ANSWER: The least value is zero, and the greatest value is
3r2v3
4

Find the area of a triangle whose medians have measures 39, 42,
45 (Fig. $5-13).
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Let AD = 39, CE = 42, BF = 45; then CG = 28, GE = 14,
AG = 26,GD = 13, BG = 30, and GF = 15 (#29). Now extend
AD to K so that GD = DK. Quadrilateral CGBK is a paral-
lelogram (#21f).

CK = BG = 30 (#21b). GD = DK = 13; therefore, GK = 26.
We may now find the area of AGCK by applying Hero’s formula
(Formula #5c), or by noting that the altitude to side GC must
equal 24 (#55¢).

In either case, the area of AGCK = 336.

Consider the area of AGCD which equals ; the area of

AACD (#29). However, the area of AACD = ; the area of

OV hO [ s WO —

AABC. Therefore, the area of AGCD equals ; the area of
A ABC. But the area of AGCK is twice the area of AGCD, and
thus the area of AGCK = % the area of AABC. Then, since the

area of ACGK = 336, the area of A4BC = 3(336) = 1008.

A
A
$5-13 S$5-14a
F E K J
D
B
ce& \ -
T~ v _ -7 B T~~a D F\ g ¢
e - \\ //'
K Rl T Pl
H

5-14 The measures of the sides of a triangle are 13, 14, and 15. A second
triangle is formed in which the measures of the three sides are the
same as the measures of the medians of the first triangle (Fig.
S5-14a). What is the area of the second triangle?

Let AB = 13, AC = 15, and BC = 14.
In A ABC, thé altitude to side BC equals 12 (#55¢).

Therefore, the area of AABC = % (BC)Y(AD)

= 3 (14)(12) = 84,

Another possible method to find the area of A4BC would be to
apply Hero’s formula (Formula #5¢) to obtain \/(21)(6)(7)(8).
Breaking the expression down into prime factors we have
V7-3-3:2:7-2-2-2=7-3-2-2= 84,
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Let us now consider AABC and its medians, AF, BJ, and CK.
Extend GF its own length to H.

GCHB is a parallelogram (#21f).
Now consider AGHC. HC = BG = 280 (121, 429).
GC = } CK, and GF = 1 AF (429); but GH = 3 AF.

Since the measure of each side of AGHC = gtlmes the measure
of each side of the triangle formed by the lengths of the medians,
AGHC ~ A of medians. The ratio of their areas is the square
of their ratio of similitude, or g .

We must now find the area of AGHC
Since AF is a median, area of AAFC = - area of AABC = 42,

The area of AGCF = 3 area of AAFC = 14.

However, the area of AGHC = twice the area of AGCF = 28.
area of AGHC

area of triangle of medians

28 B

area of triangle of medians ~ 9’

and the area of triangle of medians = 63.

Since the ratio of

s

& O

Challenge 1 Show that K(m) = %K where K represents the area of

AABC, and K(m) represents the area of a triangle with
sides m,, my, m,, the medians of AABC. (See Fig. S5-14b.)

Let K(§ m) represent the area of ABGH.

We have already shown that K(3 m) %

NG
m) =

Therefore, K(m) = gK(%

2

)
@G -3x
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5-15 Find the area of a triangle formed by joining the midpoints of the
sides of a triangle whose medians have measures 15, 15, and 18
(Fig. 55-15).

METHOD 1: AE = 18, BD = CF = 15
In AABC, FD || BC (#26), and in AAEC, AH = HE (425).

Since 4E = 18, HE = 9. Since GE = 6 (#29), GH = 3. GD =
5 (#29). Since BD = CF, AABC is isosceles, and median
AE 1 BC, so AE L FD (#10).

Thus, in right AHGD, HD = 4 (455).
Since FH = HD = 4, FD = 8.

Hence, the area of AFDE ; (FD)(HE)
1
5 ®)9) =

METHOD 11: Since the area of the triangle formed by the three
medians is % the area of AABC (see Problem 5-14), and the area
of the triangle formed by the three medians is equal to 108, the
area of AABC is ‘—; (108) =

Since the area of AAFD = area of ABFE = area of ACDE =
area of AFDE, area of AFDE = ‘—11(144) =

Challenge Express the required area in terms of K(m), where K(m)
is the area of the triangle formed from the medians.

1
ANSWER: > K(m)

5-16 In AABC E is the midpoint of BC, while F is the midpoint of
AE, and BF meets AC at D, as shown in Fig. S5-16. If the area
of AABC = 48, find the area of AAFD.
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The area of AABE = ; the area of AABC (456).
Similarly, the area of A4ABF = % the area of AA4BE (#56).

Therefore, since the area of A4ABC = 48,

the area of AABF = 12.

Draw EG || BD. In AEAG, AD = DG (425).
Similarly, in ABCD, DG = GC (#25).
Therefore, AD = DG = GC, or AD = 3 (AC).

Since AABD and AABC share the same altitude (from B to ;1_6')
and their bases are in the ratio 1:3,

the area of AABD = %area of AABC = 16.
Thus, the area of AAFD = area of AABD — area of AABF = 4.
Challenge 2 Change AF = %AE to AF = %AE, and find a general
solution.

ANSWER: The area of AAFD = Slf)the area of AABC.

5-17 In AABC, D is the de_point of side BC, E is the mi@im of AD,
F is the midpoint of BE, and G is the midpoint of FC. (See Fig.
S5-17.) What part of the area of AABC is the area of AEFG?

Draw EC.
Since the altitude of ABEC is % the altitude of ABAC, and both

triangles share the same base, the area of ABEC = % area of
ABAC.

Now, area of AEFC = :—1 area of ABEC,
and area of AEGF = %area of AEFC (#56);
therefore area of AEGF = ; area of ABEC.
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Thus, since area of ABEC = % area of AABC,
we find that area of AEGF = % area of AABC.

Challenge Solve the problem if BD = % BC, AE = % AD,BF = % BE,
and GC = { FC.

ANSWER: The area of AEGF = 2—87 the area of ABAC.

5-18 In trapezoid ABCD with upper base AD, lower base BC, and
legs AB and CD, E is the midpoint of CD (Fig. S5-18). A per-
pendicular, EF, is drawn to BA (extend BA if necessary). If
EF = 24 and AB = 30, find the area of the trapezoid. (Note that
the diagram is not drawn to scale.)

Draw AE and BE. Through E, draw a line parallel to 4B meeting
BC at H and AD, extended at G.

Since DE = EC and £ZDEG = LHEC (#1) and £ DGE =
/L CHE (#8), ADEG = ACEH (AS.A)).

Since congruent triangles are equal in area, the area of parallelo-
gram AGHB = the area of trapezoid ABCD. The area of AAEB

is one-half the area of parallelogram AGHB, since they share the
same altitude (EF) and base (4B). Thus, the area of AAEB = %

area of trapezoid ABCD. The area of AAEB = % (30)(24) = 360.
Therefore, the area of trapezoid ABCD = 720.

Challenge Establish a relationship between points F, A, and B such
that the area of trapezoid ABCD is equal to the area of
AFBH.

ANSWER: A is the midpoint of BF.




Area Relationships 131

5-19 In [JABCD, a line from C cuts diagonal BD in E and AB in F,
as shown in Fig. S5-19. If F is the midpoint of AB, and the area
of ABEC is 100, find the area of quadrilateral AFED.

Draw AC meeting DB at G. In AABC, BG and CF are medians;
therefore, FE = % (EC) (#29).

If the area of ABEC = 100, then the area of AEFB = 50, since
they share the same altitude.

AABD and AFBC have equal altitudes (#20), but AB = 2(FB)
Therefore, the area of AABD is twice the area of AFBC. Since
the area of AFBC = 150, the area of AABD = 300. But the
area of quadrilateral AFED = the area of AABD — the area of

AFBE; therefore, the area of quadrilateral AFED = 300 —
50 = 250.

Challenge Find the area of AGEC.
ANSWER: 50
5-20 P is any point on side AB of (JABCD. CP is drawn through P

meeting DA extended at Q, as illustrated in Fig. S5-20. Prove
that the area of ADPA is equal to the area of AQPB.

Since ADPC and [JABCD have the same altitude and share
the same base, DC, the area of A DPC = % area of parallelogram
ABCD.

The remaining half of the area of the parallelogram is equal to
the sum of the areas of A DAP and APBC.

However, the area of ADBC is also one-half of the area of the
parallelogram.

The area of ACQB = the area of ACDB. (They share the same
base, CB, and have equal altitudes since DQ || CB.)

Thus, the area of A CQB equals one-half the area of the parallelo-
gram,



132 SOLUTIONS

Therefore, the area of ADAP + the area of APBC = the area
of ACQB.

Subtracting the area of APBC from both sides, we find the area
of ADAP = the area of APQB.

5-21 RS is | the diameter of a semicircle. Two smaller semicircles, RT
and TS are drawn on RS, and their common internal tangent AT
intersects the large semicircle at A, as shown in Fig. S5-21. Find
the ratio of the area of a semicircle with radius AT to the area of
the shaded region.

Draw R4 and SA4. In right ARAS (#36), AT L RS (#32a).
AT

Therefore, 57 = 47, or (AT)? = (RT)(ST) (#51a).
The area of the semicircle, radius
AT = (AT) g(RT)(sr).
The area of the shaded region
=[(1 2 1 2 1 2
=3[Grs) - Grr) - (Gs7) ]
= 3 [(RS)? — (RT)? — (ST)?]
= g [(RT + ST)? — (RT)? — (ST)’]
= 2 [((RT)(ST)}.

Therefore, the ratio of the area of the semicircle of radius AT to
the area of the shaded region is

7 (RTXST)

L I ]

L
y (RT)(ST)
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5-22 Prove that from any point inside an equilateral triangle, the sum of
the measures of the distances to the sides of the triangle is constant.
(See Fig. §5-22a.)

METHOD 1: In equilateral A4BC, PR L AC,PQ L BC,PS L
and AD 1 BC.

Draw a line through P parallel to BC meeting AD, AB, and AC
at G, E, and F, respectively.

PQ = GD (#20)

Draw ET 1 AC. Since AAEF is equilateral, AG = ET (all the
altitudes of an equilateral triangle are congruent).

Draw PH || AC meeting ET at N. NT = PR (#20)

Since AEHP is equilateral, altitudes PS and EN are congruent.
Therefore, we have shown that PS + PR = ET = AG.

Since PQ = GD, PS4+ PR+ PQ = AG + GD = AD,

a constant for the given triangle.

=
[~

I

METHOD 1i: In equilateral AABC, PR L AC, PQ L BC, PS L
AB, and AD 1 BC.

Draw PA, PB, and PC (Fig. S5-22b).
The area of AABC
= area of AAPB + area of ABPC 4+ area of ACPA

= 2 (AB)(PS) + 5 (BC)PQ) + 3 (AC)(PR). (Formula 452)

Since AB = BC = AC,
the area of AABC = % (BC)IPS + PQ.+ PR].

However, the area of AABC = % (BCYAD);

therefore, PS + PQ 4+ PR = AD,
a constant for the given triangle.



134 SOLUTIONS

Challenge In equilateral AABC, legs AB and BC are extended through
B so that an angle is formed that is vertical to £ABC.
Point P lies within this vertical angle. From P, perpendiculars
are drawn to sides BC, AC, and AB at points Q, R, and S,
respectively. See Fig. S5-22¢. Prove that PR — (PQ + PS)
equals a constant for AABC.

Draw EPF || AC thereby making A EBF equilateral. Then
draw GBH || PR. Since PGHR is a rectangle, GH = PR.
A special case of the previous problem shows that in
ANEBF, PQ + PS = GB. Since GH — GB = BH, then
PR — (PQ + PS) = BH, a constant for AABC.
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6. A Geometric Potpourri

6-1 Heron’s Formula is used to find the area of any triangle, given
only the measures of the sides of the triangle. Derive this famous
Jormula. The area of any triangle = \/s(s — a)(s — b)(s — ¢),
where a, b, ¢ are measures of the sides of the triangle and s is the
semiperimeter.

First inscribe a circle in AABC and draw the radii OD, OE, and
OF to the points of contact. Then draw OB, OC, and OA. Let a
line perpendicular to BO at O meet, at point P, the perpendicular
to BC at C. Extend BC to K so that CK = AD (Fig. S6-1).

Since ABOP and ABCP are right triangles with BP as
hypotenuse, it may be said that £ BOP and £ BCP are inscribed
angles in a circle whose diameter is BP. Thus, quadrilateral BOCP
is cyclic (i.e., may be inscribed in a circle). It follows that £ BPC
is supplementary to £ZBOC (#37).

If we now consider the angles with O as vertex, we note that
£ DOA =~ LAOE, LCOE = LFOC, and £BOD = / BOF.
(This may be proved using congruent triangles.) Therefore,

mZBOF + m£FOC + mZDOA = 3 (360), or £DOA is
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supplementary to £BOC. Thus, £ DOA = / BPC because both
are supplementary to the same angle. It then follows that right
ADOA ~ right ACPB (#48) and that

4D = Do’ M
Since LOGF =~ £ PGC, right AOGF ~ right APGC (#48) and
76 = or an
However OF = DO. Therefore, from (I) and (II) it follows that
5o (i
Since AD = CK, it follows from (III) that %; = f-_g
Using a theorem on proportions we get
BC + CK GC + FG BK FC
Tk T FG %M ek T FG
Thus, (BK)(FG) = (CK)(FC). av)
By multiplying both sides of (IV) by BK, we get
(BK)*(FG) = (BK)(CK)(FC). )
In right ABOG, OF is the altitude drawn to the hypotenuse.
Thus by (#51a), (OF)* = (FG)(BF). 1)

We are now ready to consider the area of AABC. We may
think of the area of AABC as the sum of the areas of AAOB,
ABOC, and AAOC. Thus, the area of AABC = 5 (OD)(AB) +
2 (OE)(AC) + 3 (OF)(BC). Since OD = OE = OF (the radii
of circle 0),

2 (OFX4B + AC + BC) = (OF)- (semiperimeter of AABC).

Since BF = BD, FC = EC,and AD = AE, BF + FC + AD =
half the perimeter of AABC. Since AD = CK, BF + FC +
CK = BK which equals the semiperimeter of AABC. Hence, the
area of AABC = (BK)(OF).

(Area of AABC)? = (BK)2(OF)2.

(Area of AABC)? = (BK)?(FG)(BF). From (VI)

(Area of AABC)? = (BK)(CK)(FC)(BF). From (V)

Area of AABC = /(BK)(CK)(BF)(FC).
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Let s = semiperimeter = BK, @ = BC, b = AC, and ¢ = AB.
Thens —a= CK,s — b= BF,and s — ¢ = FC. We can now
express Heron’s Formula for the area of AABC, as it is usually
given.

Area AABC = \/s(s — a)(s — b)(s — ¢)
Challenge Find the area of a triangle whose sides measure 6, \/2, \/50.

S=w=3+3\/§
K=V03+3V2)3V2 - 3G + 2v2)3 — 2v?2)
K = VP =919 - 4(2)]

K=+9=23

6-2 An interesting extension of Heron’s Formula to the cyclic quadri-
lateral is credited to Brahmagupta, an Indian mathematician who
lived in the early part of the seventh century. Although Brah-
magupta’s Formula was once thought to hold for all quadrilaterals,
it has been proved to be valid only for cyclic quadrilaterals.

The formula for the area of a cyclic quadrilateral with side
measures a, b, ¢, and d is

K = /(s — a)(s — b)(s — c)(s — d),

where s is the semiperimeter. Derive this formula. (Fig. S6-2.)

First consider the case where quadrilateral ABCD is a rect-
angle with a = cand b = d. Assuming Brahmagupta’s Formula,
we have

area of rectangle ABCD
= Vs — a)s — b)(s — O — d)
=v@a+tb-—aa+tb—ba+b—aa+b—b
Vazb2

ab, which is the area of the rectangle as found by the
usual methods.

It
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Now consider any non-rectangular cyclic quadrilateral ABCD.
Extend DA and CB to meet at P, forming ADCP. Let PC = x
and PD = y. By Heron’s Formula, area of A DCP

= VGCII T — AT oG Fr—0G—r+9 O

Since £ZCDA is supplementary to LCBA (#37), and ZABP is
also supplementary to ZCBA, L CDA =~ £ ABP. Then by #48,

ABAP ~ ADCP. 101))

area ABAP  a?
From (II) we get arca ADCP — o2

area ADCP area ABAP c? a?
area ADCP  area ADCP ~ ¢? ¢

area ADCP — area ABAP _ area ABCD c? — g .

area ADCP = area ADCP ~ &2 (1)
From (II) we also get
x _y-d y_x-—-b
P and c= a av) )
By adding (IV) and (V),
x+y x+y—-b-d
c a ’
x+y="50+a,
x+y+c=c_c_a(b+c+d——a). (42))]

The following relationships are found by using similar methods.

c

y—x+c=c+a(a+c+d—b) (viD)
x+y—c=_—"—(@+b+d—o (VIII)
x—yte=_La+btc—d 1x)

Substitute (VI), (VII), (VIII), and (IX) into (I). Then
the area of ADCP =

‘;(czc—:,,z)\/(b+c+d—a)(a+c+d—b)><
V@+b+d—ca+b+c—d.
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Since (III) may be read

c?

area of ADCP = -z — 5 (area ABCD),

2 _ g2

the area of cyclic quadrilateral ABCD =
V(s = a)(s — b)(s — ) — d)

Challenge 1 Find the area of a cyclic quadrilateral whose sides measure
9, 10, 10, and 21.

ANSWER: 120

Challenge 2 Find the area of a cyclic quadrilateral whose sides measure
15, 24, 7, and 20.

ANSWER: 234

6-3 Sides BA and CA of AABC are extended through A to form
rhombuses BATR and CAKN. (See Fig. $6-3.) BN and RC,
intersecting at P, meet AB at S and AC at M. Draw MQ parallel
to AB. (a) Prove AMQS is a rhombus and (b) prove that the area
of ABPC is equal to the area of quadrilateral ASPM.

METHOD I: (a) Let a side of rhombus ATRB = a and let a side of
rhombus AKNC = b. Since AS | RT, ACAS ~ ACTR (#49) and

RT TrC .
E:;{E.SIHCCTC=TA+AC’weget
a a+b, _ _a |
s= s > =01 ®

Similarly, since 477 | KN, ABAM ~ ABKN (449) and S0 =
f—g. Since KB = KA + AB, we get

b _a+b, _ _ab .
; AM = = n

AM ~  a
From (I) and (II) it follows that A4S = AM.
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Since QM || CN, ABMQ ~ ABNC (#49) and

CN BN

oM = BM’ (I
Since ABAM ~ ABKN (see above),

KN BN

AM = BM’ v

Then by transitivity from (III) and (IV),

CN KN

OM ™~ AM’

However, since CN = KN, it follows that QM = AM. Now
since AS = AM = QM and AS || QM, ASQM is a parallelo-
gram with adjacent sides AS and AM congruent. It is, therefore, a
rhombus.

METHOD II: Draw AQ. Since MQ || AB|| NC, AMBQ ~ ANBC

MB
(#49) and NE

Since AMH KN, AABM ~ AKBN (449) and 3y

Therefore by transitivity, KM = MQ . But KN = NC (#21-1), and
therefore KN = NC. T_hus, AM MQ and Z£1= £2 #5).
However, since MQ || AS, £1 = £3 (#8). Thus, £2 =~ /3 and
AQ is a bisector of ZBAC. Hence, by #47,

AM MB
NB'

AB _ BQ
ac = oc’ o

Since ARSB ~ ACSA (#48), = = ==. But RB= 4B (#21-])
and therefore RB = AB. By substltutlon,

BS AB
Si= ac’ (1)

From (I) and (II), Go = o It follows that 50 || AC. Thus,

SQMA is a parallelogram (#21a). However, since AM = MQ
(previously proved), SQMA is a rhombus.

(b) The area of ABMQ equals the area of AAMQ since they
both share the same base MQ, and their vertices lie on a line
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parallel to base MQ. Similarly, the area of ACSQ equals the
area OfAASQ, since both triaig_les share base SQ, and 4 and C
lie on AC which is parallel to SQ. Therefore, by addition,

area of ABMQ + area of ACSQ = area of AMQS.

By subtracting the area of SPMQ (ASPQ + AMPQ) from both
of the above, we get,

area of ABPC = area of ASPM.

Two circles with centers A and B intersect at pomts M and N.
Radii AP and BQ are parallel (on opposzde sides of AB) If the
common external tangents meet AB at D, and PQ meets AB at
C, prove that ZCND is a right angle.

Draw AE and BF, where E and F are the points of tangency of the
common external tangent of circles 4 and B, respectively. Then
draw BN and extend AN through N to K. (Sce Fig. $6-4.)

S6-4
AAPC ~ ABQC (448) and & = Ez However, AP = AN and
BQ = BN.
Therefore, <4 = 2¥ and, in AANB, NC bisects ZANB (447
erefore, ~5 = zy an in isects #47).

In AADE, BF| AE (#9). Therefore, ADAE ~ ADBF (#49)
DA AE

and DB = BF" However AE = AN and BF = BN. Therefore
DA AN
o5 = B—Nand in AANB,

ND bisects the exterior angle at N (£BNK) (#47).

Since NC and ND are the bisectors of a pair of supplementary
adjacent angles, they are perpendicular, and thus ZCND is a
right angle.

In a triangle whose sides measure 5", 6", and 1, point P is 2" from
the 5" side and 3" from the 6"’ side. How far is P from the 7" side?
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There are four cases to be considered here, depending upon the
position of Point P which can be within any of the four angles
formed at Vertex A. (See Figs. S6-5, a—d.) In each case the area
of AABC = 6+/6 (by Heron’s Formula), and,

AB =35 BC =7 PD =3
AC =6 PF = 2 PE = x.

cC B

case I: InFig, S6-5a,
area AABC = area AAPC + area AAPB + area ABPC.
~ 1 1 1
6V/8) = 5 3)E) + ; G + 5 (D)

2(6v/6) = 18 + 10 + 7x
12v6 — 28

X = 7

case 11: In Fig. S6-5b,
area AABC = area AAPB + area ABPC — area AAPC.

6v/6 = ) (5) + 3 I — 3 O)O)

12/6 = 10 + 7x — 18
x = E\/gﬂ*

cask ui: In Fig. S6-5c,
area AABC = area ABPC + area AAPC — area AAPB.
— 1 1 1
61/6 = , () + 5 3)6) — 5((S)

12/6 = 7x + 18 — 10

12v6 — 8
7

X =
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case 1v: In Fig. $6-5d,

area AABC = area ABPC — area AAPC — area AAPB.
1 1 1
6v/6 = 3 () — 5 (3)(6) — 5 ))

126 = 7x — 18 — 10

124/6 + 28
7

X =

6-6 Prove that if the measures of the interior bisectors of two angles
of a triangle are equal, then the triangle is isosceles.

METHOD 1 (DIRECT): AE and BD are angle bisectors, and AE =
BD. Draw £ DBF =~ / AEB so that BF =~ BE; draw DF. Also
draw FG L AC, and 4H L FH. (SeeFig. S6-6a.) By hypothesis,
AE =~ DB, FB= EB, and /8= /7. Therefore AAEB =
ADBF (#2), DF = AB,and mZ1 = m/4.

msx =mZ2 + m/A3 #12)

m/x = mZ1l + mZ3 (substitution)

msx = mZ4 + mZ3 (substitution)

msx = mZT + mZ6 (#12)

m/x = mZ7 + mZS5 (substitution)

msx = mL8 4+ mZS5 (substitution)

Therefore, m£4 + m43 = mA8 + m/5 (transitivity).
Thus mZz = mZy.

Right AFDG = right AABH (#16), DG = BH, and FG = AH.
Right AAFG =~ right AFAH (#17), and AG = FH.
Therefore, GFHA is a parallelogram (#21b).

mZ9 = mZI10 (from AABH and AFDG)
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m/ DAB = mZ DFB (subtraction)
mZ DFB = mZEBA (from ADBF and AAEB)

Therefore, mZ/ DAB = mZEBA (transitivity), and AABC is
isosceles.

METHOD I (INDIRECT): Assume AABC is not isosceles. Let
mZABC > mZ ACB. (See Fig. S6-6b.)

BF = CE (hypothesis) BC =~ BC

m/ ABC > mZ ACB (assumption) CF > BE

Through F, construct GF parallel to EB.

Through E, construct GE parallel to BF.

BFGE is a parallelogram.

BF =~ EG, EG =~ CE, AGEC is isosceles.

msZ(g+ g)=ml(c+ )butmslg = mlb

ms + g) = mL(c + ') Therefore, mZg < mZc, since

msb > mlec.

In AGFC, we have CF < GF. But GIF = BE. Thus CF < BE.
The assumption of the inequality of mZABC and mZACB

leads to two contradictory results, CF > BE and CF < BE.

Therefore A ABC is isosceles. A

$6-6b A S6-6¢

/'

/
&—em
I "~

METHOD 1II (INDIRECT): In AABC, assume mZB > m/C.
BE and DC are the bisectors of £ B and £ C respectively, and
BE = DC. Draw BH || DC and CH || DB; then draw EH, as in
Fig. S6-6c. DCHB is a parallelogram (#21a).

Therefore, BH =~ DC =~ BE, making ABHE isosceles so that,
by #5, m/ BEH = m/ BHE. 0
From our assumption that m£ B > mZC,

m/CBE > m/BCD and CE > DB. Since CH = DB,
CE > CH which, by #42, leads to mZCHE > mZCEH. (1l)



6-7

A Geometric Potpourri 145

In ACEH, by adding (I) and (II), m£BHC > mZBEC.
Since DCHRB is a parallelogram, mZ BHC = mZ/BDC.
Thus, by substitution, nZBDC > mZBEC.

In ADBI and AECI, m£ZDIB = mZEIC.

Since mZ BDC > m4ZBEC, m/ DBI < m/Z ECI.

By doubling this inequality we get mZB < mZC, thereby
contradicting the assumption that mZB > mZC.

Since a similar argument, starting with the assumption that
m4B < mZC, will also lead to a contradiction, we must con-
clude that m£ZB = mZC and that AABC is isosceles.

METHOD 1V (INDIRECT): In A ABC, the bisectors of angles A BC and
ACB have equal measures (i.e. BE = DC). Assume that
mZABC < m/ZACB; then m£LABE < mZACD.

We then draw ZFCD congruent to ZABE. (See Fig. S$6-6d.)
Note that we may take F between B and A without loss of
generality.

In AFBC, FB > FC (#42). Choose a point G so that BG =
FC. Then draw GH || FC. Therefore, ZBGH = ZBFC (#7) and
ABGH = ACFD (#3). It then follows that BH = DC.

Since BH < BE, this contradicts the hypothesis that the angle
bisectors are equal. A similar argument will show that it is im-
possible to have mZACB < mZABC. It then follows that
mZLACB = mZ ABC and that AABC is isosceles.

In circle O, draw any chord AB, with midpoint M. Through M two
other chords, FE and CD, are drawn. CE and FD intersect AB at
Q and P, respectively. Prove that MP = MQ. This problem is
often referred to as the butterfly problem.
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METHOD I: With M the midpoint of 4B and chords FME and
CMD drawn, we now draw DH || AB, MN L DH, and lines MH,
QH, and EH. (See Fig. S6-7a.) Since MN L DH and DH || 4B,
MN L 4B (#10).

‘MN, the perpendicular bisector of AB, must pass through the
center of the circle. Therefore MN is the perpendicular bisector
of DH, since a line through the center of the circle and per-
pendicular to a chord, bisects it.

Thus MD = MH (#18), and AMND =~ AMNH ($17).

mZLDMN = mZHMN, so m£Lx = m£Ly (they are the com-
plements of equal angles). Since AB || DH, mAD = mBH.

msx = E(mAD + mCB) (#39)

msx = % (mEI\J + m(,"—l\?) (substitution)
Therefore, mLy = %(mﬁi + mC"TB).
But mZCEH = 5 (mCAH) (#36). Thus, by addition,

mZy + mZCEH = 5 (mBH + mCB + mCAR).

SincemBH + mCB + mCAH = 360,mZLy + mZCEH = 180.
It then follows that quadrilateral MQEH is inscriptible, that is,
a circle may be circumscribed about it.

Imagine this circle drawn. Zw and £z are measured by the same

arc, @ (#36), and thus mZLw = mZz.
Now consider our orlgmal circle mZv = m/Z z, since they are
measured by the same arc, FC (#36).

Therefore, by transitivity, mZv = m4Zw, and AMPD ==
AMQH (AS.A.). Thus, MP = MQ.

METHOD I1: Extend EF through F.

Draw KPL || CE, as in Fig. S6-7b.

mLPLC = mLECL (48),

PL MP
therefore APML ~ AQMC (#48), and o = Mo’
m/K = mLE (48),
mpP
therefore AKMP ~ AEMQ (#48), and ﬁ = M0
By multiplication, (PLYKP) _ (MP)? )

(CONQE) ~— (MQ)*
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Since m£LD = mZE (#36), and m£LK = mZLE (#8), m4LD =
mZK.

Also mZKPF = mZDPL (#1). Therefore, AKFP ~ ADLP

PL FpP
(#48), and 75 = ¥5;
(PL)(KP) = (DP)(FP). an

(MP)? _ (PLXKP) , ,
» (MO = (CONQE) > W€ substitute from equation

(MP)®  (DPXFP)
(Il) to get (o) = (CONOE)

Since (DP)(FP) = (AP)(PB) and (CQ)(QE) = (BQ)(Q4) (#52),

(MP)? _ (AP)(PB) _ (MA — MPYMA + MP)  (MA)?* — (MP)?

(MO® ~ (BOXQA) ~ (MB — MQO)MB + MQ) ~ (MB) — (MQ)*

and so

In equation (I)

Then (MP)2(MB)? = (MQ)%2(MA)2.
But MB = MA. Therefore (MP)? = (MQ)2, or MP = MQ.

S$6-7b $6-7¢

METHOD 11: Draw a line through E parallel to AB meeting the
circle at G, and draw MN 1 GE. Then draw PG, MG, and DG,
as in Fig. S6-7c¢.
mZGDP(LGDF) = m/GEF (#36). @
mALPMG = mZLMGE (#8). (1))
Since the perpendicular bisector of AB is also the perpendicular
bisector of GE (#10, #30),
then GM = ME (#18), and mZGEF = mZMGE (#5). (11

From (1), (1), and (11I), m£GDP = m£LPMG. (Iv)
Therefore, points P, M, D, and G are concyclic (#36a).

Hence, m£PGM = mZPDM (#36 in the new circle). )
However, nLCEF = m/ZPDM (LFDM) (#36). (VD)

From (V) and (VI), n£PGM = m/ QEM (LCEF).
From (I1), we know that m£PMG = mZMGE.
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Thus, m£LQME = m/ZMEG (#8), and m£LMGE = mZLMEG
(#5)-

Therefore, mAPMG = mZLQME and APMG= AQME
(A.S.A). 1t follows that PM = QM.

METHOD 1v: A reflection in a line is defined as the replacement of
each point by another point (its image), symmetric to the first
point with respect to the line of reflection.

Let D'F’ be the image of DF by reflection in the diameter
through M. D’'F’ meets AB at P’. (See Fig. S6-7d.)

mLFMA = 5 (mFA + mBE) (#39) 1)

m/FMA = mZF' MB (reflection and AB L MO)
mF’'B = m/ FA (reflection)
Therefore, by substitution in (1),

mLF'MB = 3 (mF'B + mBE) = 3 mF'E. (10
However, m£F'CE = 3 mF'E (436). (L)

Therefore, from (II) and (III), m£F'MB = mZF'CE.

Thus quadrilateral F'CMQ is cyclic (i.e. may be inscribed in a
circle), since if one of two equal angles intercepting the same arc
is inscribed in the circle, the other is also inscribed in the circle.

m/ MF'QmLMF'D’) = m/MCQ (LMCE) (#36) (V)

mZMCE = mZ DFE (436) v)
mZ DFE = mZ D'F'M (reflection) (VD)
mLDF'M = mZP'F'M (VID)

By transitivity from (IV) through (VII), mZAMF'Q =
mZMF'P’. Therefore P’, the image of P, coincides with Q; and
MP = MQ, since MO must be the perpendicular bisector of PQ,
as dictated by a reflection.
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METHOD V (PROJECTIVE GEOMETRY): In Fig. S6-7e, let K be the
intersection of DF and EC.

Let I be the intersection of FC and DE.

Let N be the intersection of 4B and KT (not shown).
K1 is the polar of M with respect to the conic (circle, in this
case). Therefore, M, A, B, N form a harmonic range.

Thus MB _ BN and since MB = MA, N is at infinity.

U, M4~ N4’
Hence 4B || KI. Now, KE, KM, KD, K1 is a harmonic pencil.

. . MQ ON
Therefore Q, M, P, N is a harmonic range, and WP = NP

Since N is at infinity, MQ = MP.

Note that this method proves that the theorem is true for any
conic.

c

6-8 AABC is isosceles, with CA = CB. m£ZABD = 60, n£BAE =
50, and m£C = 20. Find the measure of LEDB.

METHOD I: In isosceles AABC, draw DG || 4B, and AG meeting
DB at F. Then draw EF. (See Fig. $6-8a.)

By hypothesis, mZ ABD = 60, and by theorem #8, mZAGD =
mZLBAG = 60. Thus mZL AFB is also 60, and AAFB is equi-
lateral. AB = FB (equilateral triangle), 4B = EB,and EB = FB
(#5). AEFB is therefore isosceles.
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Since mALEBF =20, mABEF = m/ZBFF = 80. As
m4LDFG = 60, m£ZGFE = 40. GE = EF (equal sides of isos-
celes triangle), and DF = DG (sides of an equilateral triangle).
Thus DGEF is a kite, i.e., two isosceles triangles externally sharing
a common base. DE bisects ZG DF (property of a kite), therefore
mZEDB = 30.

METHOD II: In isosceles AABC, m£L ACB = 20, m£LCAB = 80,
mZLABD = 60, and m£LEAB = 50.

Draw BF so that mZ ABF = 20; then draw FE, Fig. $6-8b.

In AABE, mLAEB = 50 (#13);

therefore, AABE is isosceles and AB = EB (#5). (I
Similarly, AFAB is isosceles, since mZAFB = mZFAB = 80.
Thus, AB = FB. (1
From (I) and (ll), EB = FB. Since m£ZFBE = 60, AFBE is
equilateral and EB = FB = FE. (§10))]

Now, in ADFB, m/ZFDB = 40 (#13), and m<JFBD =
mZABD — mZ{ ABF = 60 — 20 = 40.

Thus, A DFB is isosceles, and FD = FB. (1v)

It then follows from (I1I) and (1V) that FE = FD,
making A FDE isosceles, and mZFDE = mZFED (#5).

Since mZLAFB = 80 and mZFEFB = 60, then mZAFE, the
exterior angle of isosceles AFDE, equals 140, by addition.
It follows that mAZADE = 70. Therefore, mZEDB =
mLADE — mZFDB = 70 — 40 = 30.

METHOD 111: In isosceles AABC, mZ CAB = 80, m£ DBA = 60,
mZACB = 20, and m£ EAB = 50.

Extend BA to G so that AG = AC.
Draw DF | AB. (See Fig. S6-8c.)

S6-8¢
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In AEAB, m£ZAEB = 50; therefore AB = EB (#5).

Since mZ CAB, the exterior angle of AAGC, is 80, m£ CGA =
mZLGCA = 40 (#5). The angles of ABCG and A ABD measure
80, 60, and 40 respectively; therefore they are similar, and

AD _ BG

AB ~ BC
However, AD = FB, AB = EB, and BC = AC = AG.

. FB BG . .
By substitution, 5B = A Applying a theorem on proportions,
FB—EB _BG — AG __FE _ AB_
EB 4G *°"EBT 4G
. _— DF AB
Since DF“ AB, n AABC, R‘ = R‘
FE DF
C — = .

Since AG = A »EB = DC

In ACDB, m£LDCB = mZ DBC = 20. Therefore DC = DB.
FE DF

It follows that B = DB

Consider AFDB. 1t can now be established, as a result of the

above proportion, that DE bisects ZFDB.

Yet m£LFDB = mZABD = 60 (#8).

Therefore, nZEDB = 30.

F""7"A 8

METHOD Iv: With B as center, and BD as radius, draw a circle
meeting BA at F and BC at G, as in Fig. $6-8d.

mZFAD = 100, nZADB = 40, and mZ AEB = 50 (#13).
Thus, AFBD is equilateral, since it is an isosceles triangle with a
60° angle.
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mZF = 60, and m£LFDA = 20. BD = CD (isosceles triangle),
BD = DF (equilateral triangle), and so CD = DF. BA = BE
(isosceles triangle), BF = BG (radii), and so FA = GE (sub-
traction). ADBG is isosceles and mZ DGB = mZBDG = 80.
mZ DGC = 100. Thus we have ADCG =~ AFDA (S.A.A)), and
FA = DG, since they are corresponding sides. Therefore
DG = GE, and m£ZGDE = mZGED = 50.
But we have ascertained earlier that m£ BDG = 80.

Therefore, by subtraction, nZEDB = 30.

S6-8e

METHOD V: Let ABA3A4 ... Ayg be a regular 18-gon with center
C. (See Fig. S6-8¢.) Draw A3A4,5. By symmetry 4345 and A4,

intersect on CB at E. m£EAB = 50 = %m@ Consider the

circumcircle about the 18-gon.
1 —~
mLAzA sAe = 5 (mAsAe) = 30 (#36),

and mZLA,sCA1s = mA1sd1s = 60 (#35).
Therefore mZ A,sFC = 90 (#13).

However CA;5 = CA,3; therefore AA,5CA,3gis equilaterall_gnd
CF = FA,g. Thus A3A,; is the perpendicular bisector of CA,s.
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Since CA 3 = CB, and 4,34 = AB, CA is the perpendicular
bisector of A,gB (#18), and DA;s = DB (#18). As mZC =
m4£DBC = 20, CD = DB.

It then follows that DA4,gs = CD, and thus D must lie on the
perpendicular bisector of CA,s. In other words, 4345 passes
through D; and 4,5, D, E, A3, are collinear.

Once more, consider the circumcircle of the 18-gon.

1 D .
mLA15AaB = E(mA15B) = 50 (#36), while

m/ CBA; = 80, and mZDBC = 20.
Thus in ADBA3, mZEDB = 30 (#13).

METHOD VI (TRIGONOMETRIC SOLUTION I): In isosceles AABC,
mZLCAB = 80, m/ DBA = 60, m£LACB = 20 and m£LEAB =
50. Let AC = a, EB = b, BD = c. (See Fig. S6-8f.)

In AAEC the law of sines yields %g — Sn ZCEA g

sin ZCAE T a — 5 =
sin 130 sin (180 — 130) .
Sn30 = T = 2sin 50 = 2 cos 40. 0))
2

Since m£ZAEB = 50 (#13), AABE is isosceles and AB = AE.

In AABD the law of sines yields %g —ansDdAB c _ sin 80

sin AADB0 b sind0

sin 2(40) 2 sin 40 cos 40
snd0 —  sind0  — 200s40. an
a

Therefore, from (I) and (1), s

mZ DBE = m/C = 20. Thus, AAEC ~ ADEB, (#50) and
m/ZBDE = m/ EAC = 30.

= Z (transitivity).

S6-8t S6-8g
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SOLUTIONS

METHOD VII (TRIGONOMETRIC SOLUTION 1I): In isosceles AABC,
mLABD = 60, m{ BAE = 50, and mZC = 20.

Draw AF || BC, take AG = BE, and extend BG to intersect AF
at H. (See Fig. S6-8g.)

Since m£L BAE = 50, it follows that m£Z ABG = 50.

Since AF || BC, m£CAF = m/C = 20; thus mZBAF = 100
and mZAHB = 30.

We know also that mZADB = 40. Since mZABD = 60, and
m/ ABC = 80, mZ DBC = 20. Therefore LGAH =~ / DBC.
BD  sin £LBAD

By applying the law of sines in AADB, 4B = sin 2408 °F BD =
sin 80 (AB) sin 2(40) _ 4BX2) sin 40 cos 40 _

AB (sin /) = sin 40 o sin 40 = 2(A4B) cos 40

)

AH _ sin ZABH
AB = sin ZAHB’®
= 2A4B cos 40. {In

Now consider A4BH. Again, by the law of sines
sin 50 __ ABcos 40
sin 30/ 1

2
From (I) and (II), BD = AH and ABDE = AAHG (S.A.S)
It thus follows that mZBDE = m/ZGHA = 30.

or AH=AB(

S$6-9a

Find the area of an equilateral triangle containing in its interior a
point P, whose distances from the vertices of the triangle are 3, 4,
and 5.

METHOD I: Let BP = 3, CP = 4, and AP = 5. Rotate AABC in
its plane about point 4 through a counterclockwise angle of 60°.
Thus, since the triangle is equilateral and mZ BAC = 60 (#6),
AB falls on AC, AP’ = 5, C'P' = 4, and CP' = 3 (Fig. $6-9a).
Since AAPB = ANAP'C and mZLa = mZLb, mZLPAP' = 60.

Draw PP’, forming isosceles APAP'. Since mZPAP' = 60,
APAP' is equilateral and PP’ = 5. Since PB = P'C = 3, and
PC = 4, APCP’ is a right triangle (#55).

The area of AAPB 4+ AAPC equals the area of AAP'C +
A APC, or quadrilateral APCP'.
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The area of quadrilateral APCP’ = the area of equilateral
AAPP’ 4 the area of right APCP'.

The area of equilateral AAPP' = 2i4\/_3_ (Formula #5e),
and the area of right APCP' = 3 (3)(4) = 6 (Formula #5d).

Thus the area of quadrilateral APCP’ = 254& + 6.

We now find the area of ABPC. Since m£BCC' = 2(60) =
120 and m£PCP’' = 90, m£LPCB + mZLP'CC’' = 30.

Since mZP'CC’' = mZPBC, then m£{PBC + m/ZPCB = 30
(by substitution), and mZ BPC = 150.
The proof may be completed in two ways. In the first one, we

find that the area of ABPC = 3 (3)(4)sin 150° = 3 (Formula
#5b), and the area of AABC = area of (quadrilateral APCP' +

ABPC) = BE L e+3=2L 10

Alternatively, we may apply the law of cosines to ABPC. There-
fore, (BC)? = 32 + 4% — 2-3-4cos150° = 25 + 12+/3.

Thus, the area of AABC = ; (BCY*V/3 = ;- 25V/3 + 9.

METHOD 11: Rotate AP through 60° to position 4P"; then draw
CP'. This is equivalent to rotating AABP into position AACP'.
In a similar manner, rotate ABCP into position ABAP'’, and
rotate ACAP into position ACBP". (See Fig. S6-9b.)

Consider hexagon AP'CP"” BP"" as consisting of AABC, AAP'C,
ABP"C, and AAP'’B. From the congruence relations,

area AABC = area AAP'C + area ABP"C + area AAP"'B.
Therefore area AABC = %area of hexagon AP’CP" BP'"’.

Now consider the hexagon as consisting of three quadrilaterals,
PAP'C, PCP"B, and PBP'"’ A, each of which consists of a 3-4-5
right triangle and an equilateral triangle.

Therefore, using formula #5d and #5e, the area of the hexagon =

1 = 1 = 1 =
3(3:3°4) + 3553 + 453 + ;303 o
= 18 4+ 3+ 25V3.

Therefore, the area of AABC = 9 + ;1‘- 25V/3.
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$6-10
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6-10 Find the area of a square ABCD containing a point P such that
PA = 3,PB = 7,and PD = 5.

Rotate A DAP in its plane 90° about A, so that AD falls on 4B
(Fig. $6-10).
AAPD = AAP'B and AP’ = 3 and BP' = 5. mZLPAP' = 90.

Thus, APAP' is an isosceles right triangle, and PP’ = 3+/2.
The area of APP’B by Heron’s Formula (Formula #5c¢) is

\/(3\/22+ 12)(3\/'22— 2)(3\/224- 2)(12 —23\/2) _ %

Also, the area of APP'B = %(PB)(PP’) sin Z BPP’ (Formula
#5b).

Therefore, 22—1 = %(3\/5)(7) sin ZBPP’, \—/1—2 = sin ZBPP’, and
m/ BPP' = 45.

In isosceles right AAPP', mZ APP' = 45,
therefore mZ APB = 90. By applying the Pythagorean Theorem
to right AAPB we get (4B)% = 58.
Thus the area of square ABCD is 58 (Formula #4a).

Challenge 1 Find the measure of PC.
ANSWER; /65
Challenge 2 Express PC in terms of PA, PB, and PD.
ANSWER: (PC)2 = (PD)? + (PB)? — (PA)>.
6-11 If, on each side of a given triangle, an equilateral triangle is con-
structed externally, prove that the line segments formed by joining

a vertex of the given triangle with the remote vertex of the equi-
lateral triangle drawn on the side opposite it are congruent.



A Geometric Potpourri 157

In AADC, AD = AC, and in AAFB, AB = AF (equilateral
triangles). Also, m£ DAC = mZFAB (Fig. S1-11). m£CAB =
mZCAB, and therefore, mZCAF = mZ£ DAB (addition). By
S.AS,, then, ACAF =2 A DAB, and thus, DB = CF.

Similarly, it can be proved that ACAE =~ ACDB, thus yielding
AE = DB.
Therefore AE = DB = CF.

Challenge 1

Challenge 2

Prove that these lines are concurrent.
Circles K and L meet at point O and 4. (Fig. S6-11).
Since mADC = 240, and we know that m/AOC =

%(mA/FC')(#36),mLAOC = 120. Similarly, mZ AOB =

2 (mAFB) = 120.

Therefore mZCOB = 120, since a complete revolu-

tion = 360°.

Since mCEB = 240, LCOB is an inscribed angle and

point O must lie on circle M. Therefore, we can see that

the three circles are concurrent, intersecting at point O.
Now join point O with points 4, B, C, D, E, and F.

mLDOA = mLAOF = mZLFOB = 60, and therefore

DOB. Similarly, COF and AOE.

Thus it has been proved that AE, CF, and DB are
concurrent, intersecting at point O (which is also the point
of intersection of circles K, L, and M).

Prove that the circumcenters of the three equilateral
triangles determine another equilateral triangle.

Consider equilateral ADAC.

Since AK is § of the altitude (or median) (#29), we obtain
the proportion ~ AC:AK = +/3:1.

Similarly, in equilateral AAFB,  AF:AL = \/3:1.
Therefore, AC:AK = AF:AL.

mLKAC = mLLAF = 30, mZALCAL = mLCAL
(reflexivity), and mZL KAL = m/Z CAF (addition).

Therefore, AKAL ~ ACAF (#50).
Thus, CF:KL = CA:AK = /3:1.

Similarly, we may prove DB:KM = +/3:1, and
AE:ML = \/3:1.
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Therefore, DB:KM = AE:ML = CF:KL. But since
DB = AE = CF, as proved in the solution of Problem
6-11, we obtain KM = ML = KL. Therefore, AKML is
equilateral.

S6-12a

6-12 Prove that if the angles of a triangle are trisected, the intersections
of the pairs of trisectors adjacent to the same side determine an
equilateral triangle. (This theorem was first derived by F. Morley
about 1900.)

METHOD I: We begin with the lower part of AA4BC, with base
AB aﬁangles 3a, 3b, and 3c, as shown. Let AP, ART, BQ,
and BRS be angle-trisectors. Point P is determined by making
mZARP = 60 + b and point Q is determined by making
mZLBRQ = 60 + a. (See Fig. S6-12a.) mZLARB = 180 —
b — a (#13)
Therefore mZPRQ = 360 — (180 — b — a) — (60 + b) —
(60 + a) = 60.
mZLAPR = 180 — a — (60 + b) (#13)
mZLAPR = 180 — 60 —a — b = 120 — (a + b)
However, since 3a + 3b + 3¢ = 180, then a 4 b + ¢ = 60
anda 4+ b = 60 — c.
Thus mZAPR = 120 — (60 — ¢) = 60 + c.
Similarly, it can be shown that mZBQR = 60 + c.

Now, drop perpendiculars from R to AP, BQ, and AB,
meeting these sides at points G, H, and J, respectively.
RG = RJ, since any point on the bisector of an angle is equi-
distant from the rays of the angle.
Similarly, RH = RJ. Therefore, RG = RH (transitivity).

b
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Z RGP and L RHQ are right angles and are congruent.

From the previous discussion mZAPR = mZRQB, since they
are both equal to 60 + c.

Thus AGPR = AHQR (S.A.A.), and RP = RQ.

This makes APRQ an equilateral triangle, since it is an isosceles
triangle with a 60° vertex angle.

mZARP = 60 + b (it was so drawn at the start). ZSRA isan
exterior angle of AARB and its measure is equal to a + b.
Therefore, by subtraction, we obtain mZ3 =60 + b —
(a + b) = 60 — q. Similarly, mZ1 = 60 — b.

Through point P, draw line /, making mZ4 = mA3, and
through point Q, draw line m making mZ£2 = mZ1. Since
mZLAPR = 60 4+ ¢; and mZ4 = 60 — a, we now obtain,
by subtraction, m£5 = 60 + ¢ — (60 — a) = a + c.

By subtracting the measure of one remote interior angle of a
triangle from the measure of the exterior angle of the triangle, we
obtain the measure of the other remote interior angle. Thus, the
measure of the angle formed by lineskand/ = (a 4+ ¢) — a = c.
Similarly, the measurec of the angle formed by lines m and
n = (b+ c) — b = ¢, while the angle formed by the lines k and
n = 180 — 3a — 3b = 3c.

If we can now show that lines k, /, m, and n are concurrent,
then we have been working properly with AA4BC. (See Fig.
S6-12b.) Since AQTR and ARPQ are each i1sosceles, it can easily
be proved that PT bisects £ QTR. Since P is the point of inter-
section of two of the angle bisectors of AkATm, we know that
the bisector of Zkm (the angle formed by lines k and m) must
travel through P, since the interior angle bisectors of a triangle
are concurrent. Consider Fig. $6-12b. Since g is one of the tri-
sectors of £C, m£L kg = c. g must also pass through P, since all
the bisectors of AkATin must pass through P,

It was previously shown that Zk/ = c. Therefore, / is parallel
to g, and both pass through point P. Thus, / and g are actually the
same line. This proves lines k, /, and m to be concurrent.
Similarly, in AnBSI, the bisector of Z/n and m are parallel and
pass through point Q.

Thus, n is concurrent with / and m. Since we have proved that
lines k, I, m, and n concurrent, it follows that we have properly
worked with AABC.

This proof is based upon that given in an article by H. D.
Grossman, American Mathematical Monthly, 1943, p. 552.
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S6-12b C

k/=lljg \m \n

B

A
METHOD 11: Let a = g, b= g, and ¢ = g In Fig. $6-12c, tri-
sectors of £ A4 and £ B of AABC meet at R and F.

Construct mZ ARP = 60 + b, IO
and mZLBRQ = 60 + a, an

where P and Q lie on AF and BF, respectively.
mZAPR = 180 — (60 + b) — a = 60 + ¢ (#13) @)

Similarly, mZBQR = 180 — (60 + a) — b = 60 + ¢ (#13).
av)
Draw HR 1 AF at H, and JR L BF at J. Since R is the point of
intersection of the interior angle bisectors of AAFB, R is the
center of the inscribed circle, and HR = JR. From (I1I) and (1V),
mZAPR = m/Z BQR. Therefore, APHR = AQJR (S5.A.A),
and PR = QR. W)

mZARB = 180 — (a + b) (#13) )

From (@), (I), and (VI), m£LPRQ = 360 — mLARP —
m/BRQ — mZARB,

ormZPRQ = 360 — (60 + b) — (60 + a) — [180 — (a + b)] =
60. Therefore, APQR is equilateral. 20)

We must now show that PC and QC are the trisectors of ZC.
Choose points D and E of sides AC and BC respectively, so that
AD = AR and BE = BR. It then follows that ADAP =~ ARAP
and AEBQ =~ ARBQ (S.A.S.).
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Thus, DP = PR = PQ = RQ = QE, (VIID)

and mZ DPQ = 360 — m/£ DPA — mZAPR — mZRPQ,
or m/LDPQ = 360 — (60 + ¢) — (60 + c¢) — 60 [from (III)
and (VII)]. Therefore mZ DPQ = 180 — 2c. (Ix)
In a like fashion, we may find mZEQP = 180 — 2c. X)
Thus, m/ DPQ = m/EQP. It is easily proved that quadrilateral
DPQE is an isosceles trapezoid and is thus inscriptible.

In the cnrcle passmg through D, P, Q, and E, from (VIII) we

know that mDP = mPQ = mQE So from any point N on the
circle, mZPNQ = mZL QNE (#36).

Since from (IX), mZLDPQ = 180 — 2¢, mZDNQ = 2c
(#37). Also, since, from (X), m£ZEQP = 180 — 2c, mZENP =
2¢ (#37). Therefore, m£ZPNQ = ¢, as does mZDNP and
mZ ENQ. Thus, from any point on the circle, line segments issued
to points D and E form an angle with measure equal to 3c.
C lies on the circle, and PC and QC are the trisectors of ZC.
We have thus proven that the intersections of angle trisectors
adjacent to the same side of a triangle determine an equilateral
triangle.

Prove that, in any triangle, the centroid trisects the line segment
Jjoining the center of the circumcircle and the orthocenter (i.e. the
point of intersection of the altitudes). This theorem was first
published by Leonhard Euler in 1765.

Let M be the midpoint of BC. (See Fig. $6-13.) G, the centroid,

lies on AM so that A—G == (#29) 1))

The center of the circumc:rcle, L
point O, lies on the perpendicular bisector of BC (#44). (1)

Extend OG to point H so that g—g = % . ai
From (I) and (IIl), 5% = &2

Therefore, AAHG ~ AMOG (#50), and m£L HAG = mZOMG.

Thus, AH || MO, and since MO L BC and AH L BC, AH
extended to BC is an altitude.

The same argument will hold if we use a side other than BC.
Each time the point H obtained will lie on an altitude, thus
making it the orthocenter of AABC, because, by definition, the
point of concurrence of the three altitudes of a triangle is the
orthocenter.
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Challenge 1 (Vector Geometry)
The result of this theorem leads to an interesting problem
first published by James Joseph Sylvester (1814-1897).
The problem is to find the resultant of the three vectors OA,
_O_li, and FC: acting on the center of the circumcircle O of
AABC.

OM is one-half the resultant of vectors OB and OC.

Since AAHG ~ AMOG, then AH _ AG_ 2 or

AH = 2(5A7 ). Thus AH represents the whole resultant of
vectors OB and OC.
Since OH is the resultant of vectors OA and ﬁ, OH is the
resultant of vectors O—/i, O_B', and OC.
COMMENT: It follows that OG = % (m + OB + O_C').
$6-13
A

B

M

6-14 Prove that if a point is chosen on each side of a triangle, then the
circles determined by each vertex and the points on the adjacent
sides, pass through a common point (Figs. 6-14aand 6-14b). This
theorem was first published by A. Miquel in 1838.

CASE I: Consider the problem when M is inside AA4BC, as shown
in Fig. $6-14a. Points D, E, and F are any points on sides AC,
BC, and AB, respectively, of AABC. Let circles Q and R, de-
termined by points F, B, E and D, C, E, respectively, meet at M.

Draw FM, ME, and MD. In cyclic quadrilateral BFME,

m/FME = 180 — m/4 B (#37). Similarly, in cyclic quadrilateral
CDME, m/ DME = 180 — m/C.

By addition, mZFME + m/ DME = 360 — (n4{B + m£C).
Therefore, m£FMD = mZB + m/C.
However, in AABC, m/ZB + mZC = 180 — mZA.

Therefore, m£ZFMD = 180 — mZA and quadrilateral AFMD
is cyclic. Thus, point M lies on all three circles.
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cAsE 11: Fig. S6-14b illustrates the problem when M is outside
AABC.

Again let circles Q and R meet at M. Since quadrilateral BFME
is cyclic, mZFME = 180 — mZB (#37).

Similarly, since quadrilateral CDME is cyclic, m£Z DME =
180 — m£ DCE (#37).

By subtraction,
mLFMD = mZFME — mZDME = mZDCE — mZB. (1)
However, n£ DCE = m/ZBAC + mZB (#12). an
By substituting (II) into (I),
mLFMD = m/BAC = 180 — mZFAD.

Therefore, quadrilateral ADMF is also cyclic and point M lies
on all three circles.

S6-15

6-15 Prove that the centers of the circles in Problem 6-14 determine a
triangle similar to the original triangle.

Draw common chords FM, EM, and DM. PQ meets circle Q at
N and RQ meets circle Q at L. (See Fig. $6-15.) Since the line of
centers of two circles is the perpendicular bisector of their
common chord, PQ is the perpendicular bisector of FM, and

therefore PO also bisects FM (#30), so that mFN = mNM.
Similarly, OR bisects EM so that mML = mLE.

Now mZNQL = (mNM + miL) = J (nFE) (#35), and
mZFBE = 3 (mFE) (§36).

Therefore, nZNQL = m/ FBE.
In a similar fashion it may be proved that m£Z QPR = mZBAC.
Thus, APQR ~ AABC (#48).
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7. Ptolemy and the Cyclic Quadrilateral

7-1 Prove that in a cylic quadrilateral the product of the diagonals is
equal 1o the sum of the products of the pairs of opposite sides
(Ptolemy’s Theorem).

S§7-1a

METHOD I: In Fig. S7-1a, quadrilateral ABCD is inscribed in
circle O. A line is drawn through A4 to meet CD at P, so that

m4LBAC = mZ DAP. 1))

Since quadrilateral ABCD is cyclic, ZABC is supplementary
to LADC (#37). However, LADP is also supplementary to
LADC.

Therefore, m£ABC = mZ ADP. an
Thus, ABAC ~ ADAP (#48), 1))
AB _ BC (ADY(BC) |
andE=—D—Py,or DP = AB (IV)
From (I), mZBAD = mZCAP, and from (IIl), 45 = 4%
Therefore, AABD ~ AACP (#30), and o5 = o
(AC)(BD)
or CP = 4B . (V)
CP = CD + DP. (VI
Substituting (IV) and (V) into (VI),
(AC)(BD) (AD)(BC)
—ap - P+ T

Thus, (4C)(BD) = (AB)CD) + (4D)(BC).
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METHOD I1: In quadrilateral ABCD (Fig. S7-1b), draw ADAP
on side AD similar to ACAB.

Thus, AP = 4D = PD’ I

and (AC)(PD) = (AD)(BC). an

Since mZBAC = m/PAD, then m/BAP = m/ CAD. There-
fore, from (I), ABAP ~ ACAD (#50), and G¢ = 2

or (AC)(BP) = (AB)(CD). (111)

Adding (II) and (11I), we have
(AC)(BP + PD) = (AD)(BC) + (AB)CD). (v)

Now BP + PD > BD (#41), unless P is on BD.

However, P will be on BD if and only if m£ZADP = m/ ADB-
But we already know that mZADP = mZ ACB (similar tri-
angles). And if ABCD were cyclic, then mZ ADB would equal
m/ ACB (#36a), and mZ£ A DB would equal mZ A DP. Therefore,
we can state that if and only if ABCD is cyclic, P lies on BD.
This tells us that BP + PD = BD. )

Substituting (V) into (IV), (AC)BD) = (AD)YBC) + (AB)YCD).
Notice we have proved both Ptolemy’s Theorem and its converse.
For a statement of the converse alone and its proof, see Challenge 1.

Challenge 1 Prove that if the product of the diagonals of a quadrilateral
equals the sum of the products of the pairs of opposite sides,
then the quadrilateral is cyclic. This is the converse of
Ptolemy’s Theorem.

Assume quadrilateral ABCD is not cyclic.
If CDP, then mZ ADP = m/ ABC.
If C, D, and P are not collinear then it is possible to have

mZADP = m/ ABC. However, then CP < CD + DP
(#41) and from steps (IV) and (V), Method I, above.

(AC)(BD) < (AB)CD) + (AD)(BC).

But this contradicts the given information that
(AC)(BD) = (ABXCD) + (AD)(BC). Therefore, quad-
rilateral ABCD is cyclic.
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Challenge 2 To what familiar result does Ptolemy's Theorem lead when
the cyclic quadrilateral is a rectangle?

By Ptolemy's Theorem applied to Fig. S7-1c
(AC)BD) = (AD)(BC) + (AB)(DC).
However, since ABCD is a rectangle,
AC = BD, AD = BC, and AB = DC (#21g).
Therefore, (AC)2 = (4D)%2 4+ (DC)?, which is the

Pythagorean Theorem, as applied to any of the right
triangles of the given rectangle.

Challenge 3 Find the diagonal d of the trapezoid with bases a and b,
and equal legs c.

ANSWER: d = v/ab + ¢2

$7-1b 4 $7-1c §72
A 8
B (

C 2

7-2 E is a point on side AD of rectangle ABCD, so that DE = 6,
while DA = 8, and DC = 6. If CE extended meets the circum-
circle of the rectangle at F, find the measure of chord DF.

Draw AF and diagonal AC. (See Fig. $7-2.) Since ZB is a right
angle, AC is a diameter (#36).
Applying the Pythagorean Theorem to right A4BC, we obtain
AC = 10.
Similarly, in isosceles right ACDE, CE = 6\/2 (#55a), and in
isosceles right AEFA, EF = FA = /2 (#55b). Now let us apply
Ptolemy’s Theorem to quadrilateral AFDC.

(FC)(DA) = (DF)(AC) + (AF)(DC)

Substituting, (6v/2 + v/2)(6 + 2) = DF(10) + (v/2)(6),
567/2 = 10(DF) + 6v/2,
5v/2 = DF.

Challenge Find the measure of FB.
ANSWER: 51/2
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7-3 On side AB of square ABCD, a right AABF, with hypotenuse
AB, is drawn externally to the square. If AF = 6 and BF = 8,
find EF, where E is the point of intersection of the diagonals of the
square.

In right AAFB, AF = 6, BF = 8, and AB = 10 (#55). (See
Fig.S$7-3.)
In isosceles right AAEB, AE = BE = 5v/2 (#55a).
Since m£LAFB = m/ZAEB = 90, quadrilateral AFBE is cyclic
#37).

Therefore, by Ptolemy’s Theorem applied to quadrilateral
AFBE, (AF)(BE) + (AE)BF) = (AB)(EF).

By substitution, (6)(5v/2) + (5v/2)(8) = (10)(EF)

and EF = 7TV2.
Challenge Find EF when F is inside square ABCD.
ANSWER: /2
s73 A s74
c
\\\
A B \\\
(3 \\\\ Q
\ \\
5 c 8 o A

7-4 Point P on side AB of right AABC is placed so that BP = PA = 2.
Point Q is on hypotenuse AC so that PQ is perpendicular to AC.
If CB = 3, find the measure of BQ, using Ptolemy’s Theorem.

Draw PC. (See Fig. $7-4.)

In right APBC, PC = +/13, and in right AABC, AC = 5 (#55).
PQ _ PA PQ 2

Since AAQP ~ AABC (448), then o5 = =, and & = , or
PQ =%. Now in right APQC, (PQ)*+ (CQ)* = (CP)*
Therefore CQ = %’

Since mZCBP =~ m/ZCQP == 90, quadrilateral BPQC is cyclic
(#37), and thus we may apply Ptolemy’s Theorem to it.

(BQ)(CP) = (PQ)BC) + (BPXQC)
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Substituting,
@D = (5) + (%)
Thus, BQ = 3 /3.
Challenge 1 Find the area of quadrilateral CBPQ.
ANSWER: 5.04

Challenge 2 As P is translated from B to A along BA, find the _range of
values of BQ where PQ remains perpendicular to CA.

ANSWER: minimum value, 2.4; maximum value, 4

S7-5

|

N\

7-5 If any circle passing through vertex A of parallelogran ABCD
intersects sides AB and AD at points P and R, respectively, and
diagonal AC at point Q, prove that (AQ)AC) = (AP)(AB) +
(AR)(AD).

Draw RQ, OP, and RP, as in Fig. $7-5.
mZ4 = mZL2 (#36).
Similarly, mZ1 = mZ3 (#36).
Since mZ5 = mZ3 (#8), m£L1l = mZL5.
Therefore, ARQP ~ AABC (#48), and since AABC = ACDA,
ARQP ~ AABC ~ ACDA.
Then -~ = —— = -~ - {O

Now by Ptolemy’s Theorem, in quadrilateral RQPA
(AQ)(RP) = (RQ)(AP) + (PQ)AR). (1)

By multiplying each of the three equal ratios in (I) by each
member of (1I),

(40)RP)(%5) = (ROXAP)(%g) + (POXARY55
Thus, (40)AC) = (AP)AB) + (AR)(AD).
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7-6 Diagonals AC and BD of quadrilateral ABCD meet at E. If

AE = 2, BE = 5, CE = 10, DE = 4, and BC = 175,ﬁm1AB.
CE 5

. . BE
InFig. §7-6, since . = 72 = 5> )

—
(V]

AAED ~ ABEC (450). Therefore, o2 = 25 or 2 = =
Thus, 4D = 3.
Similarly, from (I), AAEB ~ A DEC (#50). an)

AE  AB 1 AB
Therefore, DE= D> %3 = pe- Thus, DC = 2(AB).

Also, from (I1), m£ BAC = mZBDC. Therefore, quadrilateral
ABCD is cyclic (#36a).
Now, applying Ptolemy’s Theorem to cyclic quadrilateral ABCD,

(ABY(DC) + (AD)(BC) = (AC)(BD).

SN

Substituting, we find that AB = 3 /T71.

Challenge Find the radius of the circumcircle of ABCD if the measure
of the distance from DC to the center O is 2% .

ANSWER: 7
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7-7 If isosceles AABC (AB = AC) is inscribed in a circle, and a

PA AC
PB + PC — BC® @ constant for the

point P is on ﬁ(\i, prove that
given triangle.

Applying Ptolemy’s Theorem in cyclic quadrilateral ABPC
(Fig. §7-7), (PA)Y(BC) = (PB)(AC) + (PC)AB).
Since AB = AC, (PA)(BC) = AC(PB + PC),
PA AC
and 72756 = e

S7-9

HB S

7-8 If equilateral AABC is inscribed in a circle, and a point P is on
BC, prove that PA = PB + PC.

Since quadrilateral ABPC is cyclic (Fig. S7-8), we may apply
Ptolemy’s Theorem. (PA)(BC) = (PB)(AC) + (PCYAB) ()
However, since AABC is equilateral, BC = AC = AB.

Therefore, from (1), PA = PB + PC.
An alternate solution can be obtained by using the results of
Problem 7-7.

7-9 If square ABCD is inscribed in a circle, and a point P is on l/?:(\:,
PA+PC PD_
PB + PD = PA

In Fig. S7-9, consider isosceles AABD (AB = AD). Using the

prove that

PA AD
results of Problem 7-7, we have PBE+PD — DB 1))
. .. PD DC
Similarly, in isosceles AADC, PA + Pc = ac’ an
DC
Since AD = DC and DB = AC, ﬁ Zc aim

From (I), (II) and (III),

P4 PD PA+PC _PD
PBE+PD _PA+PC’ " PB+PD " P4
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7-10 If regular pentagon ABCDE is inscribed in a circle, and point P

7-11

7-12

is on BC, prove that PA + PD = PB + PC + PE.

In quadrilateral ABPC, (PA)(BC) = (BA)(PC) + (PBYXAC), ()
by Ptolemy’s Theorem. (See Fig. $7-10.)

In quadrilateral BPCD, (PD)(BC) = (CD)(PB) + (PC)(BD). (1)
Since BA = CD and AC = BD, by adding (I) and (II) we obtain

BC(PA + PD) = BA(PB + PC) + AC(PB + PC). (1)
However, since A BEC is isosceles, based upon Problem 7-7,

CE___PE (PE)(BC)
BC — PB+PC’ °F PB + PC)

= CE = AC. av)
Substituting (1V) into (111),

BC(PA + PD) = BA(PB + PC) + & E"BC)) (PB + PC).

(PB + PC

But BC = BA. Therefore PA + PD = PB 4+ PC + PE.

If regular hexagon ABCDEF is inscribed in a circle, and point P
is on BC, prove that PE + PF = PA + PB + PC + PD.

Lines are drawn between points 4, E, and C to make equilateral
AAEC (Fig. §7-11). Using the results of Problem 7-8, we have

PE = PA + PC. O
In the same way, in equilateral ABFD, PF = PB + PD. (II)
Adding (1) and (1I), PE + PF = PA + PB + PC + PD.

Equilateral AADC is drawn externally on side AC of AABC.
Point P is taken on BD. Find mZAPC such that BD = PA +
PB + PC.



172 SOLUTIONS

7-13

Point P must be the intersection of BD with the circumcircle of
AADC. Then m£LAPC = 120 (#36). (See Fig. S7-12.)

Since APCD is a cyclic quadrilateral, then by Ptolemy’s Theorem,

(PDY(AC) = (PAYCD) + (PCYAD). )
Since AADC is equilateral, from (I), PD = PA + PC. {an
However, BD = PB + PD. a1

Therefore by substituting (1) into (1I1), BD = P4 + PB 4+ PC.

$7-12 sta3

LA
L ONENV/AN
N

A line drawn from vertex A of equilateral AABC, meets BC at D

. . 1 1 1
and the circumcircle at P. Prove that PD = 7B + pc”

As shown in Fig. S7-13, mZPAC = mZPBC (#36). Since
AABCis equilateral, m£ BPA = 1 (mA4B) = 60,and m£CPA =
2 (mAC) = 60 (#36). Thercfore, m£ BPA = m/CPA.

B

PA PC

Thus, AAPC ~ ABPD, and PR = PD’
or (PAY(PD) = (PB)(PC). 0))
Now, PA = PB + PC (see Solution 7-8). {10

Substituting (II) into (1),
(PB)(PC) = PD(PB + PC) = (PD)(PB) + (PD)PC). (11D
Now, dividing each term of (I1I) by (PB)(PD)(PC), we obtain

1 1 1
P> = pct P’

Challenge 1 If BP = 5 and PC = 20, find AD.

ANSWER: 21

Challenge 2 If mBP:mPC = 1:3, find the radius of the circle in

challenge I.
ANSWER: 10v/2
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7-14 Express in terms of the sides of a cylic quadrilateral the ratio of
the diagonals.

On the circumcircle of quadrilateral ABCD, choose points P and
Q so that P4 = DC, and QD = AB, as in Fig. S7-14.
Applying Ptolemy’s Theorem to quadrilateral A BCP,

(AC)PB) = (AB)PC) + (BC)(PA). )
Similarly, by applying Ptolemy’s Theorem to quadrilateral
BCDQ,  (BD)(QC) = (DC)@B) + (BCYQD). an

Since PA + AB = DC + QD, mPAB = mQDC, and PB =
QcC.

Similarly, since mPBC = mD/B7, PC = AD, and since mQ/C\B =
mACD, QB = AD.

Finally, dividing (I) by (II), and substituting for all terms con-

AC"_ (AB)(AD) + (BCYDC) |

taining Q and P, BD = (DCYAD) + (BC)(AB)

$7-14 S7-15 P

S

D ——

(o 2]

7-15 A point P is chosen inside parallelogram ABCD such that ZAPB
is supplementary to £/ CPD.

Prove that (AB)(AD) = (BP)(DP) + (AP)(CP). (Fig. S7-15)

On side AB of parallelogram 4BCD, draw AAP'B =~ A DPC,
so that DP = AP, CP = BP'. (V)
Since ZAPB is supplementary to ZCPD, and mZBP'A =
mZ/CPD, £ APB is supplementary to Z BP’'A. Therefore, quadri-
lateral BP'AP is cyclic. (#37).

Now, applying Ptolemy’s Theorem to cyclic quadrilateral
BP’'AP, (AB)(P'P) = (BP)(AP") + (AP)(BP).
From (I), (AB)(P'P) = (BP)(DP) + (AP)(CP). an
Since mZ BAP' = mZCDP, and CD || 4B, (#2la), PD || P'A.
Therefore PDAP’ is a parallelogram (#22), and P’P = AD (#21b).
Thus, from (II), (AB)AD) = (BP)(DP) + (AP)(CP).
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7-16 A triangle inscribed in a circle of radius 5, has two sides measuring
5 and 6. Find the measure of the third side of the triangle.

METHOD 1. In Fig.S87-16a, we notice that there are two possibilitics
to consider in this problem. Both AABC, and AABC’ are in-
scribed in circle O, with AB = 5, and AC = AC’ = 6. We are
to find BC and BC’.

Draw diameter AOD, which measures 10, and draw DC, DB,
and DC’. m£LAC'D = mZLACD = mZ ABD = 90 (#36).

Consider the case where £ A4 in AABC is acute. B
Inright AACD, DC = 8,and inright AABD, BD = 5v/3 (#55).
By Ptolemy’s Theorem applied to quadrilateral ABCD,

(AC)(BD) = (AB)(DC) + (AD)(BC),
or (6)(5v/3) = (5)(8) + (10)(BC), and BC = 3/3 — 4.

Now consider the case where £ A4 is obtuse, as in AABC’.
In right AAC’'D, DC’ = 8 (#55).

By Ptolemy’s Theorem applied to quadrilateral ABDC’,
(AC'YBD) 4+ (AB)(DC') = (AD)(BC'),

(6)(5v/3) + (5)(8) = (10)(BC’), and BC’ = 3v/3 + 4.
METHOD 1I: In Figs. $7-16b and $7-16¢, draw radii O4 and OB.
Also, draw a line from A4 perpendicular to CB(C’B) at D.

Since AB = AO = BO = 5, mZ AOB = 60 (#6), so mAB = 60
(#35). Therefore, mZACB (L AC'B) = 30 (#36).

In right AADC, (right AADC’), since AC(AC’) = 6,
CD(C'D) = 3+/3, and AD = 3 (#55¢c).

In right AADB, BD = 4 (455).

Since BC = CD — BD, then BC = 3\/3 — 4 (in Fig. S7-16b).
In Fig. §7-16c¢, since BC' = C'D + BD, then BC' = 3\/3 + 4.
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Challenge Generalize the result of this problem for any triangle.

bVAR: = ¢% & c/4R? — b?
2R
radius of the circumcircle, and the sides b and ¢ are known.

ANSWER: @ = , where R is the

8. Menelaus and Ceva:
Collinearity and Concurrency

8-1 Points P, Q, and R are taken on sides AC, AB, and BC (extended

if necessary) of AABC. Prove that if these points are collinear,

AQ BR CP

then Q_B Rﬁ P_A— —1.

This theorem, together with its converse, which is given in the
Challenge that follows, constitutes the classic theorem known as
Menelaus’® Theorem.

METHOD I: In Fig. S8-la and Fig. S8-1b, points P, Q, and R are
collinear. Draw a line through C, parallel to 4B, meeting line
segment POR at D.

ADCR ~ AQBR (449), therefore 25 — X

=— . or
QB BR’
(QBXRC)
DC = (@BXRC) @
APDC ~ APQA (#49 or #48), therefore 56 = F » Of
(AQ)(CP)
D = 49D, an
From (1) and (1I), (QB;(RRC) = (A%;CP) ’
AQ BR CP
and (QB)RC)(PA) = (4Q)(CP)(BR), or |52 2% 1—,2| -1
S8-1a ssib 4
Q
P
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AQ BR

Taking direction into account in Fig. S8-1a, 0B’ RC’ and
P BR .
P4 are each negative ratios, and in Fig. S8- lb 1s a negative
CcP
ratio, while Q1Q3 nd 5~ are positive ratios.
Q BR CP . . .
Therefore, — 0B RC PA = —1, since in each case there is an odd

number of negative ratios.

S8-1¢ S$8-1d

METHOD 11: In Fig. S8-1c and Fig. S8-1d, PQR is a straight line.
Draw BM L PR, AN L PR, and CL L PR.
AQ _ AN

Since ABMQ ~ AANQ (#48), 5o = 5y @
Also ALCP ~ ANAP (#48), and 50 = == (1)
AMRB ~ ALRC (449), and ¢ = 2% ai

By multiplying (I), (II), and (III), we get, numerically,

AQ CP BR AN LC BM
QB PA RC ™~ BM AN LC

In Fig. S8-1c, Q?J is negative, P,I: is negative, and 1s negative.
Therefore, Q% . If—j . %{ = —1.
In Fig. S8- ld, 0B 1s positive, f:: is positive, and 1s negative.
Therefore,—Q—lQ; gj % = —1.

TRIGONOMETRIC FORM OF MENELAUS' THEOREM: In Figs. S8-1a
and S8-1b, AABC is cut by a transversal at points Q, P, and R.
AQ  area AQCA
BQ — area AQCB’
area AQCA (QCYXAC)sin AQCA
By Formula #5b, =~ 0CB = (GC)(BC) sin ZOCB

since they share the same altitude.
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AQ _ ACsin £0CA
Therefore, BQ ~ BCsin ZQCB M

BR _ ABsin ZBAR

Similarly, =z = Jca—"Fcar an
PC BCsin £LPBC
and 54 = Spn ZPBA (m

Multiplying (1), (II), and (I1I),
AQ BR PC (AC)(AB)(BC)(sin £ QCA)(sin ZBAR)(sin £ZPBC) .

BQ CR PA ~ (BC)AC)AB)(sin £QCB)(sin £CAR)(sin ZPBA)

AQ BR PC _ ,
However, BO CR PA = 1 (Menelaus’ Theorem).
(sin £QCA)(sin £BAR)(sin £LPBC) _

* (sin ZQCB)(sin ZCAR)(sin ZPBA) ~—

—1.

Thus

Challenge In AABC points P, Q, and R are situated respectively on
sides AC, AB, and BC (extended when necessary). Prove
that if

then P, Q, and R are collinear. This is part of Menelaus’
Theorem.

In Fig. S8-1a and Fig. S8-1b, let the line through R and Q
meet AC at P'.
Then, by the theorem just proved in Problem 8-1,

40 BR CP
QB RC P'A

= —1.

However, from our hypothesis,

40 BR CP _ .
OB RC'PA~- —
CP’ CP ..
Therefore, P4 P’ and P and P’ must coincide.

8-2 Prove that three lines drawn from the vertices A, B, and C of
AABC meeting the opposite sides in points L, M, and N, respec-
tively, are concurrent if and only if

This is known as Ceva’s Theorem.
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METHOD I: In Fig. S8-2a and Fig. $8-2b, AL, BM, and CN meet
in point P.
BL area AABL

IC m » (share same altitude) Q)
area APBL
Sxmxlarly, = area APCL . (II)

area AABL area APBL
Therefore from (1) and (1), s AACL = area APCL

Th B_l_, __ area ANABL — area APBL area AABP (lll
US, 1C = area AACL — area APCL — area AACP )

CM area ABMC  area APMC .
area ABMA ~ area APMA
CM _ area ABMC — area APMC area ABCP v
Therefore, 77 = area ABMA — area APMA — area Adgp (1Y)
AN area AACN __area AAPN .
> NB ~ area ABCN ~— area ABPN

AN area AACN — area AAPN area AACP

Similarly, -~

Also

Therefore, NB = area ABCN — area ABPN ~ area ABCP ) (V)
By multiplying (III), (1V), and (V) we get

BL CM AN

c ma ng= L (VD

Since in Fig. 58-2a all the ratios are positive, (VI) is positive.

N . . . .
In Fig. S8-2b, L_C and - are negative, while % is positive.

Therefore, again, (V) is posntive.

Since Ceva’s Theorem is an equivalence, it is necessary to
prove the converse of the implication we have just proved. Let
BM and AL meet at P. Join PC and extend it to meet AB at N'.
Since AL, BM, and CN’ are concurrent by the part of Ceva’s
Theorem we have already proved,

BL CM AN’ _
LC MA N'B
BL CM AN
However, our hypothesis is — IC MA NB = 1.
AN AN , L
Therefore, 7z = 45, so that N and N’ must coincide.
N
S8-2a A
N
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METHOD I: In Fig. §8-2¢ and Fig. S8-2d, draw a line through 4,
parallel to BC meeting CP at S and BP at R.
AM AR

AAMR ~ ACMB (#48), therefore MC = CB’ ()]
ABNC ~ AANS (#48), therefore ot = <2+ ()
ACLP ~ ASAP (448),  therefore o= = =2 (11D
ABLP ~ ARAP (§48), therefore 5= = =2 (IV)
From (Ill) and (IV), £ = 5=, Of Tf = 25- W)
By multiplying (1), (II), and (V),
AM BN CL AR CB SA _ | AN BL CM _ |
MC NA BL ™ CB SA RA Of NB ' LC M4

For a discussion about the sign of the resulting product, see
Method I. The converse is proved as in Method 1.

$8-2¢ $8-2d N

METHOD Ii1: In Fig. S8-2¢ and Fig. S8-2f, draw a line through 4
and a line through C parallel to BP meeting CP and AP at S and
R, respectively.

AASN ~ ABPN (448 o #49), and o = 52 )
BL BP

ABPL ~ ACRL (448 or 49), and o2 = 22+ @
cA  RC (RCYMA)

APAM ~ ARAC, m 2C (#49),and c4 = FIHD. ()
PM (AS)(CM)

APCM ~ ASCA, S5 = P (449), and €4 = LXEM. v
(RC)(MA) (ASYCM) CM _ RC

From (11I) and (1V), =—@m %" Ma = as V)

By multiplying (1), (ID), and v),

AN BL CM _ AS BP RC _ |
NB LC M4 BP CR AS '
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This proves that if the lines are concurrent, the ratio holds.
The converse is proved as in Method I.

S8-2¢ A Sg-2f

N

METHOD 1v: In Figs. S8-2aand S8-2b, BPM is a transversal of

AACL.
Applying Menelaus’ Theorem, ;—3{ z—g % = —1.

Similarly in AALB, CPN may be considered a transversal.

Thus, 7= 5~ = —1.

TIT AN BL CM
By multxphcatlon,ﬁ o wma= b

The converse is proved as in Method I.

TRIGONOMETRIC FORM OF CEVA’S THEOREM: As shown in Fig. $8-2a
and Fig. S8-2b, AABC has concurrent lines AL, BM, and CN.

BL ABAL
IC = areaALqc (Problem8-2, Method I)

1Ly 4By sin 2B4
2( YAE) sin L 4Bsin zBAL

= - (Formula #5b)
%(AL)(AC) sin zL4c ~ ACsin £LAC
Similarly, €M _ CBsin £CBM AN _ ACsin ZACN
\muiarly, 314 = 4Bsin z48M 2" NB = BCsin ZBCN
By multiplving. ZE . CM . AN _
y muliplying, 7¢" 414 "N =

(AB)(BC)AC )(sin £BAL)(sin ZCBM)(sin LACN)
(AC)AB)(BC)(sin LLAC)(sin LABM)(sin ZBCN)

However, since by Ceva’s Theorem +— - — 5 = 1,

(sin ZBAL)(sin £ CBM)(sin LACN)
(sin ZLAC)(sin £ABM)(sin £ BCN)
The converse is also true, that if
(sin ZBAL)(sin £ CBM)(sin £ ACN)
(sm LLAC)(sin ZABM)(sin ZBCN) ~—
CN are concurrent.

= 1, then lines AL, BM, and
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8-3 Prove that the medians of any triangle are concurrent.
In AABC, AL, BM, and CN are medians, as in Fig. $8-3.
Therefore, AN = NB, BL = LC, and CM = MA.
So (AN)(BLY(MC) = (NB)(LC)(MA),

(ANYBLYCM) _
T WNB)LCYMA) =

Thus, by Ceva’s Theorem, AL, BM, and CN are concurrent.

PN

8-4 Prove that the altitudes of any triangle are concurrent.

In AABC, AL, BM, and CN are altitudes. (See Fig. S8-4a and
Fig. $8-4b.)

1.

~
9

AANC ~ AAMB (#48), and 200 = 2= - @
ABLA ~ ABNC (448), and o = 52 an
ACMB ~ ACLA (#48), and C—M = 5. ai

By multiplying (I), (1), and (III),

AN BL CM AC AB BC

MA NB IC — 4B BC Ac — I

Thus, by Ceva’s Theorem, altitudes AL, BM, and CN are con-

current. A

S8-4a $8-4b

8-5 Prove that the interior angle bisectors of a triangle are concurrent.
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In AABC, AL, BM, and CN are interior angle bisectors, as in
Fig. S8-5.

AN _ 4AC BL AB cM BC
Therefore, yr = 5 (#47), [¢ = 4o #47), and = = — (#47).
Thus, by multiplying,

AN BL CM  AC AB BC

. = === 1

NB LC MA BC AC AB —

Then, by Ceva’s Theorem, AL, BM, and CN are concurrent.

$8-5

8 T C

8-6 Prove that the interior angle bisectors of two angles of a non-

isosceles triangle and the exterior angle bisector of the third angle
meet the opposite sides in three collinear points.

In AABC, BM and CN are the interior angle bisectors, while
AL bisect< the exterior angle at A. (sce Fig S8 6)

AM BN BC

MC = BC (#47), Na = ac (#47), an d— =~z (#47)

Therefore, by multlpllcatlon,

AM BN CL AB BC AC

MC NA BL— BC AC AB = 1"

H CL _ —CL \perefore AM . BN CL _
owever, 7 = L erefore - 7= 75 = — L.

Thus, by Menelaus’ Theorem, N, M, and L must be collinear.

(o} L

Prove that the exterior angle bisectors of any non-isosceles triangle
meet the opposite sides in three collinear points.
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In AABC, the bisectors of the exterior angles at A4, B, and C meet
the opposite sides (extended) at points N, L, and M respectively

(Fig. S8-7).

CL BC BN AB

— = — (#47) — = (#47), and CN = ac #47).

Therefore 2 AM BN BC AcC AB = —1, since all three

* AL BM CN ~ 4B BC 4AC ~
ratios are negative.

Thus, by Menelaus’ Theorem, L, M, and N are collinear.

S8-7

R,
O

8-8 In right AABC, P and Q are on BC and AC, respectively, such
that CP = CQ = 2. Through the point of intersection, R, of AP
and BQ, a line is drawn also passing through C and meeting AB
at S. PQ extended meets AB at T. If hypotenuse AB = 10 and
AC = 8, find TS. (See Fig. 58-8.)

In right AABC, hypotenuse AB = 10, and AC = 8,s0 BC = 6

(#55).
In AABC, since AP, BQ, and CS are concurrent,
gg . % . %3 = 1, by Ceva’s Theorem.
Substituting, g Z 10875 1, and BS = 4.
Now consider AABC with transversal QPT.
AQ CP BT . R
0C PB TA= —1 (Menelaus’ Theorem).

Since we are not dealing with directed line segments, this may be
restated as (4 Q)(CP)(BT) = (QCYPB)(AT).
Substituting, (6)(2)(BT) = (2)(4)(BT + 10).
Then BT = 20, and TS = 24.
Challenge 1 By how much is TS decreased if P is taken at the midpoint
of BC? .

ANSWER: 24 — 7 162
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Challenge 2 What is the minimum value of TS?

ANSWER: 7§ = 0

8.8
T B s A
R
AN
C
8-9 A circle through vertices B and C of AABC meets AB at P and

8-10

C (RCYAC
AC at R. If PR meets BC ar Q, prove that gB W(AB))

Consider A ABC with transversal QPR. (See Fig. $8-9.)

- oo —— = —1 (Menelaus’ Theorem)
QC  RC AP

Then, considering absolute values, - OB = AR PB 0y}
However, (AP)(AB) = (AR)(AC) (454), or 1= =25 ()

QC _ (RCYAC)
0B = (PB)4B)

In quadrilateral ABCD, AB and CD meet at P; while AD and BC
meet at Q. Diagonals AC and BD meet PQ at X and Y, respectively.

By substituting (I1) in (1), we get ——

PY .
Prove that Q ~Yq' (Sce Fig. $8-10.)
Consider APQC with PB, QD, and CX concurrent. By Ceva’s
PX QB CD _
Theorem, X0 BC DP = I. 6))]
Now consider APQC with DBY as a transversal. By Menelaus’
PY QB CD
Theorem, Yo' BC DP —1. an
Therefore, from (I) and (ll) o= = %2
$8-10 c
D
8
A
P Y
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$8-11 A

P

8-11 Prove that a line drawn through the centroid, G, of AABC, cuts

8-12

sides AB and AC at points M and N, respectively, so that
(AM)(NC) + (AN)(MB) = (AM)(AN).

In Fig.S8-11, line MGN cuts BC at P. G is the centroid of AA4BC.
Consider NGP as a transversal of AAKC.

NC AG PK ’
N GK P = —1, by Menelaus’ Theorem.
A NC 2PK NC PC
Since ~o = | (#29), N ep = Lo TN = 2Pk )
Now takmg GMP as a transversal of AAKB,
MB AG PK
M GK BP = —1 (Menelaus’ Theorem).
AG 2 MB 2PK MB PB
Since CK=1 (#29), m ﬁ = lor aM = 2PK (I0)
. MB PC + PB
By adding (I) and (II), ZW + =k

Since PC = PB + 2BK,then PC + PB = 2(PB + BK) = 2PK.
(AM)(NC) + (AN)MB)

Thus, (AM)(AN) = 1;

and  (AM)NC) + (ANYMB) = (AM)(AN).

In AABC, points L, M, and N lie on BC, AC, and AB, respectively,
and AL, BM, and CN are concurrent. (See Fig. $8-12.)

PN

(a) Find the numerical value of AL N

(b) Find the numerical value of E + m + %

(a) Consider APBC and AABC. Draw altitudes PE and AD

of APBC and AABC, respectively. Since PE || AD (#9),

APEL ~ AADL (#49), and 42 = °L -
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Therefore the ratio of the altitudes of APBC and AABC is f;—II: .

The ratio of the areas of two triangles which share the same
base is equal to the ratio of their altitudes.

PL area APBC

AL ~ area AABC @M
.. PM area ACPA
Similarly, BM = area AABC’ (n
PN area AAPB
and CN = area AABC (l”)
. PL PM PN
By adding (1), (II), and (III), IL + M + N

area APBC area ACPA area AAPB
= area AABC + area NAABC + area AABC ~ L (IV)

AP AL — PL _ PL

(b) a=- o ~“l'-u )
BP  BM — BP BP
A VTV vh
cp CN — PN PN
TN= N = 1 - N (vID)
By adding (V), (VI), and (VII),
AP BP

cpP PL  BP _ PN
Gtamtav=3—la+aten I

N
However, from (IV), %’: + g]\% + %IV = 1.
AP

cpP

Substituting into (VIII), 2.

BP
atemmton=

$8-12

8-13 Congruent line segments AE and AF are taken on sides AB and AC,
respectively, of AABC. The median AM intersects EF at point Q.
AC

QE _ AC
Prove that QF — AB
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$8-13
F
_E__Q_
—’
-
P N
8 M

For AB = AC, the proof is trivial. Consider AB = AC.

Extend FE to meet BC (extended) at P. FE meets median AM
at Q, as in Fig. S8-13.
Consider AM as a transversal of APFC.

PQ FA CM _ )
OF AC MP = —1, by Menelaus’ Theorem. ()]

Taking AM as a transversal of APEB, we have

CF 4B MP_ . an

PQ EA BM
QF FA AB CM

By multiplying (I) and (II), we obtain OF AC EA BM = 1.

. QE AC
However, since FA = EA and BM = CM, OF = 4B

In AABC, Kﬁ, éﬁ, and CN are concurrent at P. Express the

AP .
ratio o in terms of segments made by the concurrent lines on the

sides of NABC.
In the proof of Ceva’s Theorem (Problem 8-2, Method I), it was

established that
BL area AABP

LC = area AACP’ (HI)
CM area ABCP
MA = area AABP ’ av)
AN area AACP

and NB ~— area ABCP (V)
AP _ area AABP , 1)

PL area ALBP
AP area AACP
and PL = area ALCP (VII)
Therefore from (VI) and (VII),
A_P __area NAABP __ area DACP
PL ~ area ALBP = area ALCP

area AA4BP + area AACP  area AABP area DACP .

= area ABCP N area ABCP + area ABCP
AP MA
From (IV) and (V) ﬁ = M N—B , for Flg $8-14a;
and AF_ MA AN for Fig. S8-14b.
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8-15

Se-14a $8-14b
A
N o P
8 n c B t L

Thus, we have established the ratio into which the point of con-
currency divides any cevian (i.e. the line segment from any vertex
to the opposite side).

Side AB of square ABCD is extended to P so that BP = 2(AB).
With M the midpoint of DC, BM is drawn meeting AC at Q. PQ

meets BC at R. Using Menelaus’ Theorem, find the ratio % .

A 8 P
Q A
R
D M (o
Applying Menelaus’ Theorem to AABC (Fig. S8-15) with
—_— CR AQ BP
transversal PRQ, RB OC PA = —1. (4))
Since mZBAC = mLMCA (#8), and mZMQC = mZAQB
(#1), AMQC ~ ABQA (#48), and ’é—g =22 an
But 2(MC) = DC = AB, or s = 3 (1)
From (II) and (IIT), g—% -2 v)
. BP 2 PB -2
Since BP = 2(AB), 4P = SorP—A = —3— (V)
Substituting (IV) and (V) into (1), Sx-2- 22 = —1,0r £ = 3

Challenge 1 Find % when BP = AB.

ANSWER: 1

Challenge 2 Find T when BP = k(AB).

k41

ANSWER 2%
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8-16 Sides Kﬁ, ﬁf, C‘_'D, and DA of quadrilateral ABCD are cut by a

straight line at points K, L, M, and N respectively. Prove that

BL AK DN CM _
LC KB NA MD ™

Draw diagonal AC meeting KLNM at P. (See Fig. S8-16.)
Consider KLP as a transversal of AABC.

BL AK CP ,
ic xB 4 = —! (Menelaus’ Theorem) @
Now consider MNP as a transversal of AA4DC.
DN CM P4 DN CM cP
NA mb cp~ —LThem 3% Wb = ~Pa’ (n
- . BL AKX DN CM
Substituting (II) into (I), we get ic xB N4 wmp = I
$817 2
0°
P
B C =
" i > ] -
,,,,,, Q
"R

8-17 Tangents to the circumcircle of AABC, at points A, B, and C,
meet sides BC, AC, and AB at points P, Q, and R respectively.
Prove that points P, Q, and R are collinear.

In Fig. $8-17, since both £ BAC and £ Q BC are equal in measure

to one-half mBC (#36, #38), mLBAC = mZLQBC. Therefore,
BA (40 _ (BA)?*

AABQ ~ ABCQ (#48), and B0 — BC T () = (BC) 0))
However, (li’Q)2 = (AQ)CQ) (#53). aIn

T . AQ (BA)?
By substituting (II) into (I), we get Co = (BCy 1

Similarly, since ZBCR and £ZBAC are equal in measure to
one-half mBC (#36, #38), mLBCR = m/ BAC. Therefore,

BC __(CR? _ (BC)
ACRB ~ AARC (#48), and ﬁ =26’ URE = oy M)

However, (CR)2 = (AR)(RB) (#53). )

By substituting (V) into (IV), & = 882 : (VD)

Also, since ZCAP and £ ABC are equal in measure to one-half
mAC (436, #38), mZLCAP = mZ ABC. Therefore,
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8-18

AC _(4Py _ (AC)

ACAP ~ AABP and BP = BA> T BPy = (BA)Y (VD)

However, (4P)? = (BP)(PC ) (#53). (Vi)
o . PC _ (AC)

By substituting (VIII) into (VII), BP = (BA)} (Ix)

Now multiplying (I1I), (VI), and (IX),
49| |Ro| . Pc| _ (bar (BC) (AC): _
= B0y (acy (B = 1T

1].

AQ RB PC _
*CQ AR BP =
are negative. Thus, by Menelaus’ Theorem, P, Q, and R are
collinear.

Therefore — 1, since all the ratios on the left side

A czrcle is tangent to side BC of AABC at M, its midpoint, and
cuts AB and AC at points R, R’, and S, S, respectively. If RS and
RS’ are each extended to meet BC at points P and P’ respectively,
prove that (BP)(BP') = (CP)(CP').

Consider RSP as a transversal of AABC (Fig. S8-18).

BP AR CS
CP BR 4S5 = —1, (Menelaus’ Theorem)
BP _ _ BR S .
OrcPr = ~ 4R’ Cs @
Now consider R’S’P’ as a transversal of A ABC.
CP BR AS _ | CP_ -AR CS' o
BP AR 'cs = ~ 1% T BR a§ n
, , AR AS
However, (AS')(AS) = (AR')(AR) (#52), or 4S = 4R’ (I11)

Also, (BM)? = (BR)(BR’) and (MC)? = (CS)(CS’) (#53).

But BM = MC; therefore (BR)(BR') = (CS)(CS’)
CcS’ BR

or —BF = _CTQ . ([V)
By substituting (HI) and (IV) into (1I), we get from (1),
(o/ 24 BR AS BP
BPPT T CS AR T CP’

Therefore, (BP)(BP') = (CP)(CP’).
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8-19 In AABC, P, Q , and R are the midpoints of the sides AB, BC, and
AC. Lines AN BL and CM are concurrent, meetmg the opposzte
sides in N, L, and M, respectively. If PL meets BC at J, MQ meets
AC at I, and RN meets AB at H, prove that H, 1, and J are
collinear.

Since RNH is a transversal of AABC, as shown in Fig. S8-19,

AH CR BN ,
HB RA NC = —1, by Menelaus’ Theorem.
However, RA = CR
AH NC
Therefore, 72 = — 3+ )
Consider PLJ as a transversal of AABC.
CL AP BJ s
IA PB JC = —1 (Menelaus’ Theorem)
BJ LA

However AP = PB, therefore =~ (10
Now consider M QI as a transversal of AABC
1%1 : g%% = —1 (by Menelaus’ Theorem)
Since BQ = QC, 1 = — 42 @t
By multiplying (I), (II), and (III), we get

AH BJ CI  NC LA MB

HB JC'IA~ ~ BN CL AM

However, since AN, BL, and CM are concurrent,

NC LA MB ,

BN CL AM = 1 (Ceva’s Theorem).

AH BJ CI ,
Therefore, HB JC 14 = —1, and by Menelaus’ Theorem, H,

I, and J are collinear.
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8-20 AABC cuts a circle at points E, E', D, D', F, F', as in Fig. §8-20.

Prove that if AD, BF, and CE are concurrent, then AD’, BF',
and CE’ are also concurrent.

$8-20 F

o]
o

Since AD, BF, and CE are concurrent, then

E8 DC FA = 1 (Ceva’s Theorem). ¢))
AE AF’
(AE)AE') = (AF)(AF") (#54), or S5 =45 D
BD BE'
(BE')(BE) = (BD)(BD') (#54), or 4= = 53~ aim
CF cD'
(CD')CD) = (CF')(CF) (#54), or op = ¢p av)
By multiplying (II), gll), and (1V), we get
AE BD CF _ AF BE CD
AF BE CD ~ AE' BD' CF’
AE BD CF
But from (I) we know that “F' BE cp =V
Therefore, j—g-g—i-% = 1, and by Ceva’s Theorem, AD’,

BF’, and CE’ are concurrent.

8-21 Prove that the three pairs of common external tangents to three
circles, taken two at a time, meet in three collinear points.
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In Fig. $8-21, common external tangents to circles 4 and B meet

at R, and intersect the circles at points D, E, F, and G.
Common external tangents to circles 4 and C meet at Q, and
intersect the circles at points H, I, J, and K.

Common external tangents to circles B and C meet at P, and
intersect the circles at points L, M, N, and S.

Draw 4D, 4H, BE, BL, CK, and CM. AD 1 DR, BE L DR
(#32a), so 4D || BE (#9), ARAD ~ ARBE (#49),

AR AD

and RE = BE 4]
Similarly, BL | PL, CM | PL and BL || CM, so that
BP BL
APBL ~ APCM (#49), and 2g = o an
Also AH | QH,and CK L QH, and AH || CK, so that
oC _ cK,
AQAH ~ AQCK, (#49), and 25 = S5 ain

By multiplying (1), (1), and (11I), we get

AR BP QC AD BL CK

RB PC 40 — BE CM AH av)

Since AH = AD, CK = CM, and BL = BE,
AR BP QC _
RB PC AQ ~
Thus, by Menelaus’ Theorem, P, Q, and R are collinear.

—1. (Note that they are all negative ratios.)
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8-22 AM is a median of AABC, and point G on AM is the centroid.
AM is extended through M to point P so that GM = MP.
Through P, a line parallel to AC cuts AB at Q, and BC at P,;
through P, a line parallel to AB cuts CB at N and AC at P,;
and a line through P and parallel to CB cuts AB at P3. Prove that
points Py, Pg, and P3 are collinear.

In Fig. $8-22, since PP, 0 || 4C, ACMA AP MP (#48), and

cM AM
Vb, = b = 1 429 @
Similarly, AAMB ~ APMN, and
MB AM 3
MN = MP T T an
From (I) and (II), 35 = pq° a1y

However, since CM = MB, from (IlI), MP, = MN,
and CN = P,B. av)

Thus, PNGP, is a parallelogram (#21f).

Since NG || AC, in ACMA, ,SZI = ﬁ =7 (#46)
CN 2
Therefore, — NE= 1

In AABC, where PoN || 4B, £t = % = 2 (446). )

BP,
P.C_NB ™ 2 (V1)

Also in AAPPg, since MB || PP, PE=MP™1 (#46) (VID)

Multiplying (V), (VI), and (VII), we get

CP; BP, AP, 1 1

o re 7 = E® = -1
taking direction into account. Thus, by Menelaus’ Theorem,
points Py, P,, and P are collinear.

Similarly,
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8-23 If AA,B,C, and AA2B.C; are situated so that the lines joining

the corresponding vertices, A A 2, B B2, and C,C., are concurrent,
then the pairs of corresponding sides intersect in three collinear
points. (Desargues’ Theorem)

In Fig. S8-23, lines A4, B B;, C,Cs all meet at P, by the
hypothesis.

Lines Ez—C.z and 1?161 meet at A’; lines :4_2—(:‘2 and ml meet
at B’; and lines 5274'2 and ml meet at C’.

Consider A'C,B, to be a transversal of APB,C,. Therefore,

PB, B:A C:C\

BB, A4C, CP = —1 (Menelaus’ Theorem). 4))

Similarly, considering C’B, A, as a transversal of APB;A,,
P41 A:C' BBy
AlAz C’ Bz B\P

And taking B’4,C, as a transversal of APA,C.,

PC, C.B A4, ,
CC FA, AP = 1. (Menelaus’ Theorem) dain

By multiplying (I), (II), and (III), we get

= —1. (Menelaus’ Theorem) an

AC; C'B;, B'A;

Thus, by Menelaus’ Theorem, applied to AA4:B,C,, we have
points A’, B’, and C’ collinear.

R~

8-24

A circle inscribed in A\ ABC is tangent to sides BC, CA, and AB at
points L, M, and N, respectively. If MN extended meets BC at P,
(a) prove that — BL _ _ BP,

LC PC
(b) prove that if NL meets AC at Q and ML meets AB at R, then
P, Q, and R are collinear.

(a) By Menelaus’ Theorem applied to AABC with transversal

PNM, AN BE MC _ | (Fig. $8-24).
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8-25

However, AN = AM, NB = BL, and MC = LC (#34). (D)

o AN BP LC BL BP

By substitution, - pa- 7o = —1,50 72 = — pa- an
(b)  Similarly, ';—Z = — ;—2 » and ,1;4_15 = - g—g' {1, av)
By multiplication of (II), (11I) and (IV), we get

BL AN MC _ —BP —-AR —QC,

LC NB AM ~— PC RB AQ
However from (1), f—g . ;—Z . % = 1.
Therefore, gg-';—g-g—g = —1, and points P, Q, and R are

collinear, by Menelaus’ Theorem.
Another method of proof following equation (II) reasons in

this fashion. From (1), - — - = l. Therefore, by Ceva’s

Theorem, 7[:, m, and CN are concurrent. Since these are the
lines joining the corresponding vertices of AABC and ALMN,
by Desargues’ Theorem (Problem 8-23), the intersections of the
corresponding sides are collinear; therefore P, Q, and R are
collinear.

In AABC, where_Eﬁ is the altitude to A_BLnd P is any point on
DC, AP meets CB at Q, and BP meets CA at R. Prove that
mZRDC = mZQDC, using Ceva’s Theorem.

Extend DR and DQ through R and Q, respectively, to meet a
line through C, parallel to 4B, at points G and H, respectively
(Fig. $8-25).

$8-25

CR _ GC

ACGR ~ AADR (#48), and = = —— 4y
Similarly, ABDQ ~ ACHQ, an 2% =22 an
However, in AABC CR 4D 50 _ 1 (Ceva’s Theorem). (1II)
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By substituting (I) and (1I) into (III), we get
GC AD DB GC

E-D—B-EI= ]’OI‘EH= l.ThUS,Gc= CH.

Since CD is the perpendicular bisector of GH (#10),
AGCD = AHCD, and m£LGDC = m£LHDC,
orm4LRDC = mZLQDC.

8-26 In AABC, points F, E, and D are the feet of the altitudes drawn
from the vertices A, B, and C, respectively. The sides of the pedal
AFED, EF, DF, and DE, when extended, meet the sides of
AABC, A_li, A_(f, and BC at points M, N, and L, respectively.
Prove that M, N, and L are collinear. (See Fig. $8-26.)

METHOD I: In Problem 8-25, it was proved that the altitude of a

triangle bisects the corresponding angle of the pedal triangle.
Therefore, BE bisects £ DEF, and m£ DEB = m/ BEF. 4))

£ DEB is complementary to ZNED. an
Therefore since MEF is a straight line,
£ NEM is complementary to £ BEF. dam

Therefore from (I), (II), and (Il), m£LNED = mZNEM, or
NE is an exterior angle bisector of AFED. It then follows that

NF EF
~p = pE #47)- av)
Similarly, FL is an exterior angle bisector of AFED and
Lb _ DF (v
L LE = EF )
Also, DM is an exterior angle bisector of AFED and so
ME  DE
MF = pF#4D- (VD)

By multiplying (1V), (V), and (VI), we get

NF LD ME _ EF DF DE _ |
’

taking direction into account.
Thus, by Menelaus’ Theorem, M, N, and L are collinear.
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8-27

METHOD II: Let D, E, F and C, B, A be corresponding vertices of
ADEF and ACBA, respectively. Since AF, CD, and BE are
concurrent (Problem 8-4), the intersections of the corresponding
sides DE and BC, FE and BA, and FD and CA4, are collinear by
Desargues’ Theorem (Problem 8-23).

In AABC, L, M, and N are the feet of the altitudes from vertices
A, B, a_nd C. Prﬁe that the perpendiculars from A, B, and C to
MN, LN, and LM, respectively, are concurrent.

As shown in Fig.$8-27, ﬂ,i_M, aﬂC_N are altitudes of AABC.
AP L NM, BQ L NL,and CR L ML.

In right ANAP, sin LNAP = 3° = cos L ANP. m

Since mZBNC = mZBMC = 90, quadrilateral BNMC is
cyclic (#36a).

Therefore, ZMCB is supplementary to ZBNM.

But £ZANP is also supplementary to ZBNM. Thus, n£ZLMCB =

mZANP, and cos ZMCB = cos LANP. 1)
From (I) and (1I), by transitivity,

sin ZNAP = cos LMCB. (n
Now, in right AAMP, sin LMAP = 110 = cos LAMP. (IV)

Since quadrilateral BNMC is cyclic, ZNBC is supplementary to
ZNMC, while ZAMP is supplementary to ZNMC. Therefore,
mANBC = mZLAMP and cos LNBC = cos LAMP. W)

From (IV) and (V), it follows that sin ZMAP = cos ZNBC. (VI)

sin ZNAP cos LMCB
sin ZMAP ~ cos ZNBC (Vi
In a similar fashion we are able to get the following proportions:
sin ZCBQ cos £ZBAC
sin ZABQ ~ cos ZACB' (VII)
sin ZACR cos LZABC

and 37 BCR = cos ZBAC (Ix)

By multiplying (VII), (VIII), and (IX), we get
sin ZNAP sin ACBQ sin AACR
sin ZMAP sin AABQ sin Z/BCR =
cos LACB cos LBAC cos £LABC
cos ZABC cos ZACB cos LBAC
Thus, by Ceva's Theorem (trigonometric form) AP, BQ, and CR
are concurrent.

From (III) and (VI),

1.
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8-28 Prove that the perpendicular bisectors of the interior angle bisectors
of any triangle meet the sides opposite the angles being bisected
in three collinear points.

Let A4’, BB’, and CC’ be the bisectors of angles 4, B, and C,
respectively, terminating at the opposite side. The perpendicular
bisector of A4’ meets AC, AB, and CB at points M, M’, and P,,
respectively; the perpendicular bisector of BB’ meets ﬁ, /TE,
and AC at points L, L', and P,, respectively; and the perpendic-
ular bisector of CC’ meets AC, CB, and 4B at points N, N’,
and Pj, respectively (Sec Fig. S8-28))

Draw B'L. Since B'L = LB (#18), mZLB'B = m/ LBB' (45).
However, m/ABB’ = m/LBB’'; therefore m/ZLB'B =
mLABB’ and B'L || A_B (#8).

a

CL
Then AB' = E = LB (#46) (l)

However, mLBPsL’ = mZBP,L',and S0 = S5 (447). ()

CB’
Therefore, 45 = ¢ = BB (11D)

Similarly, since B'L’ || CB, =-=1r = ap.’ av)

Thus, multiplying (II1) and (IV), we get )
cPy _ a?
AP; ~ 2

CA _ b _AM _ AP WD

Since A'M' || AC, BA = ¢ M'B = BP,

AndSmCCAM”AB,BA,=;=m=m' (VIID)

Now, multiplying (V1) and (VII), we get

cP 2
55, = [% (VIII)
In a similar fashion we obtain % = % . ax)

By multiplying (V), (VIII), and (IX), we get
CPz BP[ APa a? 02 b2

bl LI WL —

AP; CP, BP; ~ ¢? b2 a2

taking direction into account. Therefore, by Menelaus’ Theorem,
P;, P,, and P; are concurrent.
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8-29 Figure 8-29a shows a hexagon ABCDEF whose pairs of opposite
sides are: [AB, DE), [CB, EF), and [CD, AF). If we place points
A, B, C, D, E, and F in any order on a circle, the above pairs of
opposite sides intersect at points L, M, and N. Prove that L, M,
and N are collinear.

Pairs of opposite sides (scc Fig. $8-29a) 4B and DE meet at L,

CB and EF meet at M, and CD and AF meet at N. (See Fig.

$8-29b.) Also AB meets CN at X, EF meets CN at Y, and EF

meets AB at Z. Consider BC to be a transversal of A XYZ. Then
ZB XC YM

5x cr mz = — 1 by Menelaus’ Theorem. 0]
Now taking AF to be a transversal of AXYZ,
ZA YF XN
2 = L. an
Also since DE is a transversal of AXYZ,
XD YE ZL
221 ()

By multiplying (I), (II), and (III), we get
YM XN ZL (ZB)(ZA) (XDXXC) (YEXYF) _

MZ NY LX (EZ)FZ) (AX)BX) (DYXCY) —L V)
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ZB)Z4) _

However, E2F2) = 1, W)
(XDXXC)
axex = b vhH
(YEXYF)
and m =1 (#52). (VII)
By substituting (V), (VI), and (VII) into (IV), we get
YM XN ZL _ |
MZ NY Lx
Thus, by Menelaus’ Theorem, points M, N, and L must be
collinear.
sg30 C

8-30 Points A, B, and C are on one line and points A’, B’, and C’ are
on another line (in any order). If AB’ and A’B meet at C'’, while
AC and A’C meet at B”, and BC' and B'C meet at A", prove
that points A'', B”, and C" are collinear.
(This theorem was first published by Pappus of Alexandria about
300 A.D.)

In Fig. S8-30, B'C meets A'B at Y, AC’ meets A'B at X, and B'C
meets AC’ at Z.

Consider C'’AB’ as a transversal of AXYZ.

ZB' XA YC” ,
YE ZA X' = —1 (Menelaus’ Theorem) @
Now taking A’B”C as a transversal of AXYZ,
YA XxB' ZC
X2 z ve = ~ b (n
BA"C’ is also a transversal of AXYZ, so that
YB ZA" XC’
X_B.Y”.Z_—C’=_1' (11I)
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Multiplying (I), (II), and (III) gives us equation (IV),

YC" XB" ZA" ZB' YA XC' XA ZC YB _ |
XC" ZB" YA" YB XA ZC ZA YC XB~

Since points 4, B, C and A4’, B’, C’ are collinear, we obtain the
following two relationships by Menelaus® Theorem when we con-
sider each line a transversal of AXYZ.

ZB YA XC’

YF x4z = ! V)
XA ZC YB

za vc x8= "} VD

Substituting (V) and (V1) into (1V), we get
YCII XBII ZAI/

Thus, points A", B”, and C" are collinear, by Menelaus’ Theorem.

9-1

The Simson Line

Prove that the feet of the perpendiculars drawn from any point on
the circumcircle of a given triangle to the sides of the triangle are
collinear (Simson’s Theorem).

METHOD I: From any point P, on the circumcircle of AABC
perpendiculars PX, PY, and PZ are drawn to sides BC, AC, and
AB, respectively (Fig. $9-1a). Since ZPYA is supplementary to
£ PZA, quadrilateral PZAY is cyclic (#37). Draw PA4, PB, and PC.

Therefore, m/ PYZ = m/PAZ (#36). 1))

Similarly, since ZPYC is supplementary to £ PXC, quadrilateral
PXCY is cyclic, and m/ZPYX = m/PCB. (I1)

However, quadrilateral PACB is also cyclic, since it is inscribed
in the given circumcircle, and therefore

m/ PAZ(mZPAB) = mZPCB (436). (111

From (I), (II), and (III), m£PYZ = mAPYX, and thus points
X, Y, and Z are collinear. The line through X, Y, and Z is called
the Simson Line of A ABC with respect to point P.
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METHOD 1I: From any point P on the circumcircle of AABC
(inside ZACB), perpendiculars PX, PY, and PZ are drawn to
sides BC, AC, and AB, , respectively. (SeeFig. $9-1b.) Draw
circles with PA and PB as diameters. Since m/ZPYA =
m/PXB = m/PZA = 90, points Y and Z lie on the circle with
PA as diameter (#37). Also points X and Z lie on the circle with
PB as diameter (#36a).

Since m£LPXC = m/ZPYC = 90, in quadrilateral XPYC, £C
is supplementary to Z XPY (#15).

However £ C is also supplementary to ZAPB (#37).

Therefore, m£ XPY = m/ APB. (I
By subtracting each member of (I) from mZ BPY,

we get mZBPX = m/ APY. (1D
Now m/ BPX = m/BZX (#36),

and mZAPY = mZ AZY (#36). {1r)

Substituting (111) into (I1), m£BZX = mZLAZY.

Since AZB is a straight line, points X, Y, and Z must be collinear,
making ZBZX and ZAZY vertical angles.

METHOD 1i: From any point, P, on the circumcircle of AABC,

PX, PY, and PZ are drawn to the sides BC, AC, and 4B, re-

spectively. PZ extended meets the circle at K. Draw CK, as shown

in Fig. $9-1c.

Since mZPZB = m/PXB = 90, quadrilateral PZXB is cyclic

(#36a), and so ZPBC is supplementary to ZPZX (#37).
However £ KZ X is supplementary to ZPZX;

therefore, m/ PBC = mZKZX. 1))
But m£ZPBC = mZPKC (#36). an
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Thus from (I) and (II) m£KZX = mZPKC, and XZ || KC (48).
Since quadrilateral PACK is cyclic, ZPKC is supplementary
to LPAC (#37). However, LPAY is also supplementary to

ZLPAC. Therefore, n/PKC = mZPAY. i
Since m£PYA = m/PZA = 90, quadrilateral PYAZ is cyclic
#37), and m£LPZY = mZPAY. avy

From (III) and (IV), m£PKC = mZPZY and ZY || KC (#7).
Since both XZ and ZY are parallel to KC, X, Y, and Z must be
collinear, by Euclid’s parallel postulate.

Challenge 1 State and prove the converse of Simson’s Theorem.

If the feet of the perpendiculars from a point to the sides
of a given triangle are collinear, then the point must lie
on the circumcircle of the triangle.

Collinear points X, Y, and Z, are the feet of perpen-
diculars PX, PY, and PZ to sides BC, AC, and 4B,
respectively, of AABC (Fig. $9-1d). Draw PA, PB, and
PC.

Since m/APZB=~= m/PXB=90, quadrilateral
PZXB is cyclic (#36a), and £PBX is supplementary to
ZPZX (#37). However, ZPZX is supplementary to
ZPZY, since X, Z, and Y are collinear.

Therefore, m£PBX = m/PZY. @

Since ZPZA is supplementary to £ZPYA, quadri-
lateral PZAY is also cyclic (#37), and

mZPAY = m/LPZY (#36). an
From (I) and (II), m£PBX = mZPAY or m/{PBC=
mZPAY.

Therefore ZPBC is supplementary to ZPAC and
quadrilateral PACB is cyclic (#37); in other words point
P lies on the circumcircle of A4BC.
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Another proof of the converse of Simson’s Theorem
can be obtained by simply reversing the steps shown in
the proof of the theorem itself, Method II.

Challenge 2 Which points on the circumcircle of a given triangle lie
on their own Simson Lines with respect to the given
triangle?

ANSWER: The three vertices of the triangle are the only
points which lie on their own Simson Lines.

9-2 Altitude AD of AABC meets the circumcircle at P. Prove that the
Simson Line of P with respect to AABC is parallel to the line
tangent to the circle at A.

Since PX, and PZ are perpendicular respectively to sides AC, and
AB of AABC, points X, D, and Z determine the Simson Line of
P with respect to AABC.

Draw PB (Fig. S9-2).

Consider quadrilateral PDBZ, where m/PDB = m/PZB ==
90, thus making PDBZ a cyclic quadrilateral (#37).

In PDBZ, m/. DZB = m/ DPB (#36). (I
However, in the circumcircle of A4ABC, mZGAB = :—lz(m;ﬁ?)
(#38), and m£ DPB (£ APB) = 3 (mAB)(#36).

Therefore, m/GAB = mZ DPB. (1)

From (I) and (II), by transitivity, m£ DZB = mZGAB, and
thus Simson Line XDZ || tangent GA (#8).
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9-4
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From point P on the circumcircle of AABC, perpendiculars PX,
PY, and PZ are drawn to sides AC, AB, and BC, respectively.
Prove that (PAY(PZ) = (PB)(PX). (See Fig. §9-3.)

Since m/ZPYB =~ m/ZPZB == 90, quadrilateral PYZB is cyclic

(#36a), and m£LPBY = mZPZY (#36). O
Since m/PXA = m/PYA = 90, quadrilateral PXAY is cyclic
(#37), and m£LPXY = m/ZPAY. an

Since X, Y, and Z are collinear (the Simson Line),

APAB ~ APXZ (448), and 5y = o

Pz Of (PAYPZ) = (PB)(PX).

Sides A_ﬁ, 1‘3_6, and CA of AABC are cut by a transversal at points
Q, R, and S, respectively. The circumcircles of AABC and ASCR
intersect at P. Prove that quadrilateral APSQ is cyclic.

Draw perpendiculars PX, PY, PZ, and PW to /ﬁ, R, Q_lé, and
BC, respectively, as in Fig. $9-4.

Since point P is on the circumcircle of AABC, points X, Y,
and W are collinear (Simson’s Theorem).

Similarly, since point P is on the circumcircle of ASCR, points Y,
Z, and W are collinear.

It then follows that points X, Y, and Z are collinear.

Thus, P must lie on the circumcircle of AAQS (converse of
Simson’s Theorem), or quadrilateral APSQ is cyclic.

In Fig. §9-5, AABC, with right angle at A, is inscribed in circle O.
The Simson Line of point P, with respect to AABC meets PA at M.
Prove that MO is perpendicular to PA.
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In Fig. $9-5, PZ, PY, and PX are perpendicular to lines 4B, AC,
and BC, respectively. XYZ is the Simson Line of AABC and
point P, and meets PA at M. Since ZBAC is a right angle,
AZPY is a rectangle (it has three right angles). Therefore, M is
the midpoint of PA (#21f). It then follows that MO is perpendic-
ular to PA (#31).

S9-5

From a point P on the circumference of circle O, three chords are
drawn meeting the circle in points A, B, and C. Prove that the three
points of intersection of the three circles with PA, PB, and PC
as diameters, are collinear.

In Fig. $9-6, the circle on PA meets the circle on PB at X, and the
circle on PC at Y, while the circle on PB meets the circle on PC
at Z.

Draw AB, BC, and 4AC, also PX, PY, and PZ. In the circle on
PA, LPXA is a right angle (#36). Similarly, ZPYC and ZPZC
are right angles. Since PX, PY, and PZ are drawn from a point
on the circumcircle of AABC perpendicular to the sides of
ANABC, X, Y, and Z determine a Simson Line and are therefore
collinear.

P is any point on the circumcircle of cyclic quadrilateral ABCD.
If PK, PL, PM, and PN are the perpendiculars from P to sides
AB, BC, CD, and DA, respectively, prove that (PK}PM) =
(PL)(PN).

Draw DB, AP, and CP, as shown in Fig. S9-7. Draw PS L BD.

Since m£LANP = m/ AKP =2 90, quadrilateral AKPN is cyclic
(#37), and mZNAP = mZNKP (#36). 1))
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NSK is the Simson Line of AABD with respect to point P.

Also mZ NAP (L DAP) = m/PCM (LPCD) (#36). an
Since mZ PLC =~ m/PMC = 90, quadrilateral PLCM is cyclic
#37), m£PCM = m/PLM (#36), (1
and LMS is the Simson Line of A DBC with respect to point P.
From (1), (11), and (111), mZPLM = m/NKP. av
Since ZLCM is supplementary to £ZBCD, and £ZBAD is sup-
plementary to LBCD (#37), n£LCM = mZBAD. W)
However, ZLPM is supplementary to ZLCM, therefore, from
(V), LLPM is supplementary to ZBAD. (VD)
Since quadrilateral AKPN is cyclic,

Z NPK is supplementary to £ZBAD. (VII)

From (VI) and (VII), mZLPM = mZNPK.
_ M
~ PN?

Thus, ALPM ~ AKPN (#48), and £x
(PL)PN).

or (PKYPM) =

S§9-7

9-8 Line segments AB, BC, EC, and ED form triangles ABC, FBD,
EFA, and EDC. Prove that the four circumcircles of these triangles
meet at a common point.

Consider the circumcircles of AABC and A FBD, which meet at
B and P.

From point P draw perpendiculars PX, PY, PZ, and PW to
BC, AB, ED, and EC, respectively (Fig. S9-8). Since P is on the
circumcircle of AFBD, X, Y, and Z are collinear (Simson Line).
Similarly, since P is on the circumcircle of AABC, X, Y, and W
are collinear. Therefore X, Y, Z, and W are collinear.
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Since Y, Z, and W are collinear, P must lie on the circum-
circle of AEFA (converse of Simson’s Theorem). By the same
reasoning, since X, Z, and W are collinear, P lies on the circum-
circle of AEDC. Thus all four circles pass through point P,

9-9 The line joining the orthocenter of a given triangle with a point on
the circumcircle of the triangle is bisected by the Simson Line, (with
respect to that point).

METHOD I: As in Fig. $9-9a, point P is on the circumcircle of
AABC. PX, PY, and PZ are perpendicular to BC, AC, and AB,
respectively. Points X, Y, and Z are therefore collinear and define
the Simson Line. Let J be the orthocenter of A ABC. PG meets the
Simson Line at Q and BC at H. PJ meets the Simson Line at M.
Draw HJ.

Since m/PZB =~ m/PXB =90, quadrilateral PZXB is
cyclic (#36a),

and mZPXQ (LPXZ) = mLPBZ (#36). @
In the circumcircle, m£PBZ = mZPGA (#36). 1D
Since PX || AG (#9), m£PGA = mZ QPX (#8). (111)

From (1), (1), and (I11),
m/PXQ = m/QPX. (1v)

Therefore, PQ = XQ (#5). Since ZQXH is complementary to
£LPXQ, and ZQHX is complementary to ZQPX (#14),
mZLQXH = mZQHX, and XQ = HQ (#5). Thus Q is the
midpoint of hypotenuse PH of right APXH.
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Consider a circle passing through points B, J, and C. BC, the
common chord of the new circle and the original circle, is the
perpendicular bisector of line segment JG. To prove this last
statement, it is necessary to set up an auxiliary proof (called a
Lemma), before we continue with the main proof.

$9-9b

LEMMA: Draw altitudes BE, and CF; also draw BG, CJ, and CG.
(See Fig. $9-9b.)
JD L BC, therefore mZJDB = mZGDB = 90 )

ZLJBC (LEBC) is complementary to ZC (#14).  (VI)
mZLGBC = m£LGAC (L DAC) (#36). Therefore, since LGAC
(£ DAC) is complementary to ZC (#14),

ZGBC is complementary to ZC. (VID)

Thus, from (VI), and (VIl), mZJBC = mZGBC. Hence,
ABJD =~ ABGD; therefore JD = GD, and BC is the per-
pendicular bisector of JG.

Continuing with the main proof, we can now say that H/ = HG
(#18), and mZL HIG = mZ HGJ (#5). (VIH)
ZJHD is complementary to £ HJD.

But mZHJD = m/ HGD (1X), and mZ HGD = m/ QPX (I1I),
and mZ QPX = mZPXQ (IV).

Therefore, ZJHD is complementary to £ Q XP.
However, Z QXH is complementary to £ QXP; therefore
m/JHD = m/ZQXH.

Thus JH is parallel to the Simson Line X YZ (47).

Therefore, in APJH, since Q is the midpoint of PH, and QM is
parallel to JH, M is the midpoint of PJ, (#46).

Thus the Simson Line bisects PJ at M.
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METHOD 11: In Fig.$9-9c, point P is on the circumcircle of A ABC.
PX, PY, and PZ are perpendicular to sides BC, AC, and 4B,
respectively. Therefore points X, Y, and Z are collinear and define
the Simson Line. PY extended meets the circle at K. Let J be the
orthocenter of AABC. The altitude from B meets AC at E and
the circle at N. PJ meets the Simson line at M. Draw a line parallel
to KB, and through the orthocenter, J, meeting PYK at L.

Since PK || NB_(#9), KBJL is a parallelogram, and LJ = KB
(#21b). Also PN = KB (#33), and PN = KB. Therefore LJ =
PN and trapezoid PNJL is isosceles.

Consider a circle passing through points A4, J, and C. The
common chord AC is then the perpendicular bisector of JN. (See
Method I Lemma.) Thus E is the midpoint of JN. Since AC is
perpendicular to both bases of isosceles trapezoid PNJL, it may
easily be shown that Y is the midpoint of PL.

Since quadrilateral AYPZ is cyclic (#37), mZKBA =
m/KPA = mLYPA = m/ YZA (#36), and KB is parallel to
Simson Line XYZ (#8). Now, in APLJ, M, the point of inter-
section of PJ with the Simson Line, is the midpoint of PJ (4#25).

9-10 The measure of the angle determined by the Simson Lines of two
given points on the circumcircle of a given triangle is equal to
one-half the measure of the arc determined by the two points.

In Fig. $9-10, XYZ is the Simson Line&r point P, and UVW is
the Simson Line for point Q. Extend PX and QW to meet the
circle at M and N, respectively. Then draw AM and AN.
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Since m£PZB =~ m/PXB = 90, quadrilateral PZXB is cyclic
(#36a), and mZLZXP = m/ZBP (#36). 4))
Also mZABP = mZ AMP (§36), or m£ZBP = mZAMP. (1)
From (I) and (II), m£ZXP = mZ AMP,and XYZ | AM. (Il
In a similar fashion it may be shown that UVW || AN.

Hence, if T is the point of intersection of the two Simson Lines,
then mZ XTW = m/Z MAN, since their corresponding sides are
parallel. Now, mZ MAN = %(mm), but since PM || ON (#9),
mMN = mFQ (#33), and therefore mZ MAN = 5 (mPQ). Thus,

mLXTW = (mPQ)

$9-11 A

9-11 If two triangles are inscribed in the same circle, a single point on
the circumcircle determines a Simson Line for each triangle. Prove
that the angle formed by these two Simson Lines is constant, regard-
less of the position of the point.

Triangles ABC and A’B’C’ are inscribed in the same circle. (See
Fig. $9-11.) From point P, perpendiculars are drawn to 4B and
A’B’, meeting the circle at M and M’, respectively. From Solu-
tion 9-10 (I1I), we know that the Simson Lines of point P with
respect to AABC and AA’B'C’ are parallel to MC and M'C’,
respectively. We may now consider the angle formed by MC
and M'C’, since it is congruent to the angle formed by the two
Simson Lines. The angle a formed by MC and M'C’ =

3 (mMM’ — mCC’) (#40). In Fig. S9-11, APFD ~ AEJD (#48),
and mALM'PM = mAB’EB Now, mZM'PM = —(mMM’)
(#36), while m/ZB'EB = = (mBB’ + mAA') (#39) Therefore,
mMM' = mBB’ + mAA'. Thus mla =3 (mBB’ + mAA" —

mCC’) Since CC’ BB’ and A4’ are mdependent of the position
of point P, the theorem is proved.
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9-12 In the circumcircle of AABC, chord PQ is drawn parallel to side
BC. Prove that the Simson Lines of AABC, with respect to points
P and Q, are concurrent with the altitude AD of AABC.

As illustrated in Fig. S9-12, M MM 3 is the Simson Line of
point P, and N N,N; is the Simson Line of point Q.
Extend PM; and QN to meet the circle at points M and N,
respectively. In Solution 9-10 (III), it was proved that AM || Sim-
son Line M, M,M3 and AN || Simson Line N,N,N3.

Draw altitude 4D, cutting M;M,M3 and N N3N 3, at points
T and S.
Since MM, || AD || NN, (#9), quadrilaterals ATM,M, and
ASNN are parallelograms, (#21a). Therefore, MM, = AT

and NN; = AS (#21b). 10))

However, since PM || ON, mMN = mPQ, and MN = PQ. As
MP 1 PQ (#10), then quadrilaterals MNQP and M.N,QP are

rectangles,
and MM, = NN,. an

From (I) and (II), AT = AS.

Therefore, altitude AD crosses Simson Lines M,M,M; and

N NyNjatthe same point. Thus, the Simson Lines are concurrent
with the altitude 4D.
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10.

10-1

The Theorem of Stewart

A classic theorem, known as Stewart’s Theorem, is very useful as a
means of finding the measure of any line segment from the vertex
of a triangle to the opposite side. Using the letter designations in
Fig. S10-1, the theorem states the following relationship:

a%n + b%m = c¢(d? + mn).
Prove the validity of the theorem.

$10-1

h__

ﬂ

[
In AABC, let BC = a, AC = b, AB= ¢, CD =d. Point D
divides 4B into two segments; BD = m and DA = n. Draw
altitude CE = hand let ED = p.
In order to proceed with the proof of Stewart’s Theorem we
first derive two necessary formulas. The first one is applicable to
ACBD. We apply the Pythagorean Theorem to ACEB to obtain

(CB)? = (CE)? + (BE)™.
Since BE = m — p,a% = h* + (m — p)2. ()]
However, by applying the Pythagorean Theorem to ACED, we
have (CD)? = (CE)? + (ED)?, or h* = d® — p2.
Replacing /42 in equation (I), we obtain
a® =d* — p* + (m — p)’,
a? = d* — p? + m? — 2mp + p2.
Thus, a2 = d%2 + m? — 2mp. an
A similar argument is applicable to ACDA.
Applying the Pythagorean Theorem to ACEA, we find that
(CAY? = (CE)* + (EA)%.
Since EA = (n + p), b2 = h* + (n + p)%. (111)
However, h? = d? — p2, substitute for A2 in (II1) as follows:
b* = d® — p* + (n + p)?
b? = d? — p% 4+ n? + 2np + p2.
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Thus, b2 = d% 4+ n? + 2np. av)

Equations (IT) and (1V) give us the formulas we need.
Now multiply equation (1I) by n to get

a’n = d’n + m®n — 2mnp, )
and multiply equation (IV) by m to get
b2m = d*m + n%*m + 2mnp. (VD)
Adding (V) and (VI), we have
a’n 4 b*m = d*n + d°m + m?n + n*m + 2mnp — 2mnp.
Therefore, a’n + b%m = d*(n + m) + mn(m + n).

Since m+4n =c, we have a’n+ b%m = d%c + mnc, or
a’n + b*m = c(d? + mn).

$10-2

X
8 D [

In an isosceles triangle with two sides of measure 11, a line measur-
ing 16 is drawn from the vertex to the base. If one segment of the
base, as cut by this line, exceeds the other by 8, find the measures
of the two segments.

In Fig.S10-2, AB = AC = 17, and AD = 16. Let BD = x so
that DC = x 4+ 8.
By Stewart’s Theorem,

(AB)*(DC) + (AC)*(BD) = BC[(AD)? + (BD)(DC)].
Therefore,

(D%x + 8) + (IN*(x) = (2x + 8)[(16)* + x(x + 8)],
and x = 3. Therefore, BD = 3 and DC = 11.
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$10-3 C

A 3 8

10-3 In AABC, point E is on AB, so that AE = 3 EB. Find CE if
AC = 4,CB = 5, and AB = 6.

METHOD 1: By applying Stewart’s Theorem to AABC (Fig. S10-3),
we get

(AC)*(EB) + (CB)*(AE) = ABI(CE)* + (AEXEB)].
Therefore, (4)*(4) + (5)*(2) = 6[(CE)* + (2)(4)),
114 = 6(CE)? + 48, and CE = /I1.
METHOD I1: Since A ACE and A ACB share the same altitude, and
AE = —;AB, the area of AACE = ; the area of AACB.

By Heron’s Formula,

1 1 15 /7\/5\/3 5 .
 the area AACB = | \/7 (2)(5)(2) =3Vi. W
Let CE = x. Then the area of AACE

-NEE S

= LV GE = 30)GE = 4). an
Let y = x%. From (1) and (1I),

SV = V=7 — 4oy ¥ 149).
Therefore, y% — 40y + 319 =0, and y =11 or, y =29
(reject). Therefore, CE = /11.

coMMENT: Compare the efficiency of Method Il with that of
Method I.

Challenge Find the measure of the segment from E to the midpoint of
CB.

ANSWER: % V29

10-4 Prove that the sum of the squares of the distances from the vertex
of the right angle, in a right triangle, to the trisection points along

, 5
the hypotenuse is equal to 9 the square of the measure of the

hypotenuse.
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Applying Stewart’s Theorem to Fig. S10-4,
using p as the internal line segment,

2a%n + b%n = c(p? + 2n?); )
using ¢ as the internal line segment,
a’n + 2b%n = c(@® + 2n?). an

By adding (I) and (II), we get

3a’n + 3b%n = c(4n® + p? + ¢?).
Since a% + b2 = ¢2, 3n(c?) = c(4n2 + p? + ¢2.
Since 3n = c 2= (@2m? + p% 4+ ¢
But 21 = —c therefore, p? + ¢% = ¢? — gc ? =§ 2,

8

$10-4 (' $10-5

10-5 Prove that the sum of the squares of the measures of the sides of a
parallelogram equals the sum of the squares of the measures of the
diagonals.

In Fig.S105, consider AABE.
Draw altitude BF.

(4B)? = (BE)? 4 (AE)® — 2(AE)(FE), M
and (BC)? = (BE)? + (EC)? + 2(EC)FE). an
[See the proof of Stewart’s Theorem, Solution 10-1, equations (II)

and (IV).]
Since the diagonals of 4BCD bisect each other, AE = EC.
Therefore, by adding equations (I) and (II), we get

(AB)? + (BC)? = 2(BE)? + 2(AE)2. d1m
Similarly, in ACAD,
(CD)? 4 (DA)? = 2(DE)? + 2(CE)™. av)

By adding lines (III) and (1V), we get
(4B)* 4 (BC)? + (CD)? + (DA)?
= 2(BE)? + 2(AE)? + 2(DE)? + 2(CE)2.
Since AE = EC and BE = ED,
(4B)> + (BC)® + (CD)® 4 (DA)* = 4(BE)® + 4(AE)?,
(4B)® 4+ (BC)® + (CD)* + (DA)? = (2BE)? + (R4E)?,
(4B)? + (BC)? + (CD)* + (DA)* = (BD)* + (AC)*.
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Challenge A given parallelogram has sides measuring 7 and 9, and a
shorter diagonal measuring 8. Find the measure of the
longer diagonal.

ANSWER: 14

\
\

\

i
!
\

\)

N\

3

10-6 Using Stewart’s Theorem, prove that in any triangle the square of
the measure of the internal bisector of any angle is equal to the
product of the measures of the sides forming the bisected angle
decreased by the product of the measures of the segments of the
side to which this bisector is drawn.

By Stewart’s Theorem we obtain the following relationship:
c2n 4 b%m = a(t;,> 4+ mn), or 1,2 + mn = 52”—#’

as illustrated by Fig. $10-6.

But, g = 'nf (#47), therefore cn = bm.

Substituting in the above equation,

2 _cbm 4 cbn cb(m + n) _
.+ mn = mAn — min = cb.

Hence, 1,2 = ¢cb — mn.

Challenge 1 Can you also prove the theorem in Problem 10-6 without
using Stewart’s Theorem?

As in Fig.S10-6, extend 4D, the bisector of £ BA C, to
meet the circumcircle of AABC at E. Then draw BE.
Since m£BAD = mZLCAD, and mZE = mZC (#36),
AC AE

ANABFE ~ AADC, and 4D = 4B’ or
(ACYAB) = (AD)(AE) = (ADYAD + DE)

= (AD)* + (AD)DE). ()
However, (4D)(DE) = (BD)(DC) (#52). aIn
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Substituting (II) into (I), we obtain
(4D)? = (AC)(4B) — (BD)(DC),

or, using the letter designations in Fig. S10-6,

te2 = cb — mn.

10-7 The two shorter sides of a triangle measure 9 and 18. If the internal
angle bisector drawn to the longest side measures 8, find the measure
of the longest side of the triangle.

Let AB =9, AC = 18, and angle bisector 4D = 8. (See Fig.

S10-7.) Since D—C = c=3 (#47) we can let BD = m = x, so

that DC = n = 2x. From the solution to Problem 10-6, we know
that 1,2 = bc — mn, or (AD)? = (AC)(AB) — (BD)(DC).
Therefore, (8)2 = (18)(9) — 2x2%, and x = 7.

Thus, BC = 3x = 21.

Challenge Find the measure of a side of a triangle if the other two sides
and the bisector of the included angle have measures 12, 15,
and 10, respectively.

ANSWER: 18
$10-7 s10-8

c 3 8

10-8 In a right triangle, the bisector of the right angle divides the hypote-
nuse into segments that measure 3 and 4. Find the measure of the
angle bisector of the larger acute angle of the right triangle.

In right AABC, with right angle at C, and angle bisector CD,
AD = 3 while DB = 4. (See Fig. S10-8.)

AD

Since C—g = 48 _ 2 (#47), AC = 3x,and CB = 4x.

By the Pythagorean Theorem, applied to AABC,
Gx)? + (42 = 72, and x = 2

5
AC

CE
ThusAC—— dCB-—- - Also, 2 = £ (H47).
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21

CE

28
= - CE
5

Substituting, we get —;- = - Thus CE = — and EB =

NI\I

The proof may be concluded using either one of the following
methods.

METHOD I: From Solution10-6,(4E)? = (AC)(AB) — (CE)(EB).
Substituting, we have (4E)? = (2—5])(7) - (f_(l))(%) ,

_ Avs,
and AE = 10
METHOD II: By the Pythagorean Theorem, applied to AACE,
(AE)? = (AC)? + (CE)%; therefore, AE = 2>,
s109
F
G
A [5) 8

Ina 30-60-90 right triangle, if the measure of the hypotenuse is 4,
find the distance from the vertex of the right angle to the point of
intersection of the angle bisectors.

In AABC (Fig.S10-9), if AB = 4, then AC = 2 (#55c).

In AACE, since m/ CAE = 30, CE = \% ) @
and AE = \/3 - In AACE, CE GE (#47). (1
If we let AG = y, then from equation (II), we find GE = \%
. 4

Since AG+GE=AE,y-}:\%=7§, and Y=1%v3~
2v/3 — 2. Thus, AG = 23/3 — 2, [0119)
and GE = 2 — 23. av)
From Solution 10- 6we know that

(CG)2 = (AC)CE) — (AG)(GE). W)

Substituting (1), (I11), and (1V) into (V), we get
(CG)? = 8 — 4\/3.
Therefore, CG = /8 — 4/3 = v/6 — V2.
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1-8

HINTS

Express angles AFB, AEB, and ADB in terms of LCAF, ZCBF,
ZABE, and ZBAD. Then apply Theorem #13.

Consider £ A DB as an exterior angle of ACDB.
Examine the isosceles triangles.

METHOD 1. Use Theorem #27 to show AFCA is isosceles.

METHOD H: Circumscribe a circle about AABC, extend CE to
meet the circle at G. Then draw GF.

To show BP is parallel AE, use Theorem #7, after using Theorems
#14 and #5. To show BP is perpendicular AE, use Theorems #14
and #5 to prove that the bisector of £ 4 is also the bisector of the
vertex angle of an isosceles triangle.

Extend 4M through M to P so that AM = MP. Draw BT; T is
the midpoint of AD. Then show that ATBP is isosceles. Use
Theorems #21, #27, #12, and #8.

METHOD I: Draw a line through M parallel to BC. Then use
Theorems #27 and #8.

METHOD I1: Extend KM to meet CB extended at G; then prove
AKMC = AGMC.

Extend CP and CQ to meet AB at S and R, respectively. Prove
that P and @ are the midpoints of CS and CR, respectively; then
use Theorem #26.

From E, the point of intersection of the diagonals of square
ABCD, draw a line parallel to BPQ. Use Theorems #25, #10, and
#23.
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1-10 METHOD I: Draw AF L DE, and draw DG, where G is on AF and
mZFDG = 60. Then show that AF is the perpendicular bisector
of DE. Apply Theorem #18.

METHOD II: Draw AAFD on side AD so that mZFAD =
m/FDA = 15; then draw FE. Now prove mZEAB = 60.

METHOD IIi: Draw equilateral A DFC externally on side DC;
then draw EF. Show that m/Z BAE = 60.

METHOD 1V Extendﬁ_E and_C__E to meet BC and @ at K and H,
respectively. Draw AF and CG perpendicular to DK. Now prove
AF is the perpendicular bisector of DE.

1-11 Join E and F, and prove that DGFE is an isosceles trapezoid.

1-12 Draw CD, CE, and the altitude from C to 4AB; then prove tri-
angles congruent.

1-13 Draw a line from one vertex (the side containing the given point)
perpendicular to a diagonal of the rectangle; then draw a line
from the given point perpendicular to the first line.

1-14 Prove various pairs of triangles congruent.
1-15 Use Theorems #26 and #10.

1-16 Draw a line through C and the midpoint of 4D; then prove that
it is the perpendicular bisector of TD.

1-17 Prove that the four given midpoints determine a parallelogram.
Use Theorem #26.

1-18 Draw median CGD. From D and E (the midpoint of CG) draw
perpendiculars to XYZ. Show QD is the median of trapezoid

AXZB. Then prove QD = EP = % CY.

1-19 Extend BP through P to E so that BE = AQ. Then draw AE and
BQ. Prove that EMQ is a diagonal of parallelogram AEBQ.
Use Theorem #27.

1-20 Prove AAFE =~ ABFC = ADCE.
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2-4

2-5
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227

2-8

2-10
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(a) Prove four triangles congruent, thereby obtaining four equal
sides; then prove one right angle.

(b) Prove that one diagonal of the square and one diagonal of
the parallelogram share the same midpoint.

Consider AADC, then AABC. Apply Theorem #46.

METHOD 1I: Prove ABFC ~ APEB; then manipulate the resulting
proportions.

METHOD I1: Draw a line from B perpendicular to PD at G. Then
prove AGPB =~ AEPB.

Prove two pairs of triangles similar and equate ratios. Alterna-
tively, extend the line joining the midpoints of the diagonals to
meet one of the legs; then use Theorems #25 and #26.

Draw a line through D parallel to BC meeting AE at G. Obtain
proportions from AADG ~ AABE and ADGF ~ ACEF.

Draw a line through E parallel to AD. Use this line with Theorems
425 and #26.

Prove AHEA ~ ABEC, and ABFA ~ AGFC; then equate
ratios.

Extend APM to G so that PM = MG, also draw BG and GC.
Then use Theorem #46.

Show H is the midpoint of 4B. Then use Theorem #47 in AABC.

Prove AAFC ~ AHGB. Use proportions from these triangles,
and also from AABE ~ ABHG; apply Theorem #46.

Use proportions resulting from the following pairs of similar
triangles:

AAHE ~ AADM, AAEF ~ AAMC, and ABEG ~ ABDC.
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2-12

2-13

2-14

2-15

2-16

3-1

HINTS

Prove AKAP ~ APAB. Also consider ZPKA as an exterior
angle of AKPB and AKPL.

From points R and Q, draw perpendiculars to AB. Prove various
pairs of triangles similar.

Prove AACZ ~ AAYB, and ABCZ ~ ABXA; then add the
resulting proportions.

Draw lines through B and C, parallel to 4D, the angle bisector.
Then apply the result of Problem 2-13.

Use the result of Problem 2-13.

Prove AFDG ~ AABG, and ABGE ~ ADGA.

Apply the Pythagorean Theorem #55 in the following triangles:
AADC, AEDC, AADB, and AEDB.

Use Theorem #29; then apply the Pythagorean Theorem to
ADGB, AEGA, and ABGA. (G is the centroid.)

Draw a line from C perpendicular to HL. Then apply the Py-
thagorean Theorem to AABC and AHGC. Use Theorem #51.

Through the point in which the given line segment intersects the
hypotenuse, draw a line parallel to either of the legs of the right
triangle. Then apply Theorem #55.

METHOD 1: Draw AC meeting EF at G; then apply the Pythagorean
Theorem to AFBC, AABC, and AEGC.

METHOD II: Choose H on EC so that EH = FB; then draw BH.
Find BH.

Use the last two vectors (directed lines) and form a parallelogram
with the extension of the first vector. Also drop a perpendicular
to the extension of the first vector. Then use the Pythagorean
Theorem. The Law of Cosines may also be used.
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3-13

3-14

4-1

4-2

43

4-4

4-5

4-6
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Draw the altitude to the side that measures 7. Then apply the
Pythagorean Theorem to the two right triangles.

METHOD I: Construct AABC so that CG L AB. (Why can this
be done?) Then use Theorem #55.

METHOD Ii: Draw altitude CJ. Apply the Pythagorean Theorem
to AGJC, AJEC, and AJHC.

Extend BP to meet 4D at E; also draw a perpendicular from C
to AD. Use Theorems #51b and #46.

Use Theorems #55, #29, and #51b.

From the point of intersection of the angle bisectors, draw a line
perpendicular to one of the legs of the right triangle. Then use
Theorem #55.

Apply the Pythagorean Theorem to each of the six right triangles.

Use Theorems #41, and #29.

Draw a perpendicular from the centroid to one of the sides;
then apply Theorem #55.

Use Theorem #34.
Draw A0, BC, and OC. Prove ABEC ~ AABO.

Draw QA and QB; then prove ADAQ ~ ACBQ, and AQBE ~
AQAC. (D, C, and E are the feet of the perpendiculars on PA,
AB, and PB, respectively.)

Show that AGPB is isosceles.

Apply the Pythagorean Theorem to A DEB, ADAB, AAEC, and
AABC.

Extend 40 to meet circle O at C; then draw MA. Use Theorem
#52 with chords AOC and MPN.
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4-7

4-8

49

4-10

4-11
4-12
4-13
4-14

4-15
4-16

4-17
4-18
4-19

4-20
4-21

HINTS
Use Theorem #52 with chords AB and CD.

Draw BC and 4D.
METHOD I: Show ACFD ~ ADEA, and AAEB ~ ABFC.

METHOD 11: Use the Pythagorean Theorem in AAED, ADFC,
AAEB, and ABFC.

From the center of the circle draw a perpendicular to the secant
of measure 33. Then use Theorem #54.

Draw radii to points of contact; then draw OB. Consider OB as
an angle bisector in AABC. Use Theorem #47.

Draw KO and LO. Show that ZKOL is a right angle.
Draw DS and SJ. Use Theorems #51a and #52.
Draw BD and CD. Apply Theorem #51b.

METHOD 1: Draw ED. Use Theorems #55c and 55d. Then prove
AAEF ~ AABC.

METHOD 11: Use only similar triangles.
Use Theorems #18 and #55.

Prove ABEC ~ AAED, and AAEB ~ ADEC. E is the inter-
section of the diagonals.

Use Theorems #53, #50, #37, and #8.
Prove ADPB ~ ABPC, and ADAP ~ AACP.

METHOD I: Draw diameter BP of the circumcircle. Draw PT L
altitude AD; draw PA and CP. Prove APCO is a parallelogram.

METHOD 1I1: Let AB = AC. (Why is this permissible?) Then
choose a point P so that AP = BP. Prove AACD ~ ABOD.

Draw PC, ED, and DC. Show that PC bisects £ BPA.

Draw DO and CDE where E is on circle O. Use Theorems #30
and #52.
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From O draw perpendiculars to AB and CD; also draw OD. Use
Theorems #52 and #55.

For chords 7§_el_rld CD, draw AD and CB. Also draw diameter
CF and chord BF. Use Theorem #55; also show that AD = FB.

Draw MO, NQ, and the common internal tangent. Show MNQO
is a parallelogram.

(a) Draw common internal tangent AP. Use Theorem #53. Also
prove AADE ~ AABC.

(b) METHOD 1: Apply Theorem #15 in quadrilateral A DPE.

METHOD 11I: Show AABC is a right triangle.

Draw OA4 and O'B; then draw AE L 00’ and BD L OO'. Prove
ABO'O is a parallelogram.

Prove AAEO ~ AAFC ~ AADO'.

Extend the line of centers to the vertex of the square. Also draw
a perpendicular from the center of each circle to a side of the
square. Use Theorem #55a.

Apply the Pythagorean Theorem to ADEOQ. E is the midpoint
of 40.

Find one-half the side of the square formed by joining the centers
of the four smaller circles.

Draw radii to the paints of contact. Use Theorem #55.

Use an indirect method. That is, assume the third common chord
is not concurrent with the other two.

Show that the opposite angles are supplementary.
Show that quadrilateral D’BB’D is cyclic.
Show that LGFA =¢ Z DFB after proving BDFO cyclic.

Show Z BRQ is supplementary to £ BCQ.
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4-37

4-38

4-39

5-1

5-2

5-3

5-4

5-5

5-7

Draw DE. Show quadrilateral DCEF is cyclic. Then find the
measure of ZCED.

Draw AF. Show quadrilateral AEFB is cyclic. What type of
triangle is AABE?

Choose a point Q on BP such that PQ = QC. Prove ABQC =~
AAPC.

METHOD I: Draw BC, OB, and OC. Show quadrilateral ABGC
is cyclic, as is quadrilateral ABOC.

METHOD Ii: Draw BG and extend it to meet the circle at H.
Draw CH. Use Theorems #38, #18, and #30.

Draw EC and show that the area of A DEC is one-half the area
of each of the parallelograms.

METHOD 1: In AEDC draw altitude EH. Use Theorems #28, #49,
and #24.

METHOD II: Use the ratio between the areas of AEFG and
AEDC.

Compare the areas of the similar triangles.

Represent the area of each in terms of the radius of the circle.

Prove AADC ~ AAFO.

METHOD I: Draw a line through D and perpendicular to AB.
Then draw 4Q and DQ. Use the Pythagorean Theorem in various
right triangles.

METHOD Ii: Draw a line through P parallel to BC and meeting
AB and DC (extended) at points H and F, respectively. Then
draw a line from P perpendicular to BC. Find the desired result
by adding and subtracting areas.

Draw the altitude to the line which measures 14. Use similarity
to obtain the desired result.
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Use Formula #5b with each triangle containing £ 4.

Draw DC. Find the ratio of the area of ADAE to the area of
AADC.

Use Formula #5b with each triangle containing the angle be-
tween the specified sides.

METHOD 1: From points C and D draw perpendiculars to AB.
Find the ratio between the areas of LZJAEDF and AABC.

METHOD II: Use similarity and Formula #5b for triangles con-
taining £ A.

Draw the line of centers O and Q. Then draw NO, NQ, MO, and
MQ. Determine the type of triangle AKLN is.

Extend one of the medians one-third its length, through the side
to which it is drawn; then join this external point with the two
nearest vertices. Find the area of one-half the parallelogram.

Use Theorem #55e or Formula #5c to find the area of AABC.
Thereafter, apply #29.

METHOD I: Draw the medians of the triangle. Use Theorems #26,
#25, #29, and #55.
METHOD 1i: Use the result of Problem 5-14.

Draw a line through E parallel to BD meeting AC at G. Use
Theorems #56 and #25.

Draw EC. Compare the areas of triangles BEC and BAC. Then
use Theorem #56 and its extension.

Through E, draw a line parallel to AB meeting BC and AD
(extended) at points H and G, respectively. Then draw AE and
BE. Find the area of AAEB.

Draw diagonal AC. Use Theorem #29 in AABC. To obtain the
desired result, subtract areas.

Draw OB and diagonal BD. Consider each figure whose area
equals one-half the area of parallelogram ABCD.
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S-21

S-22

6-1

6-5

Draw AR and AS. Express both areas in terms of RS, RT, and
TS. Also use Theorems #32a, and #51a.

METHOD I: In equilateral AABC, draw a line through point P,
the internal point, parallel to BC meeting AB and AC at E and F,
respectively. From E draw ET L AC. Also draw PH || AC where
H is on AB. Show that the sum of the perpendiculars equals the
altitude of the equilateral AABC, a constant for the triangle.

METHOD I: Draw PA, PB, and PC; then add the areas of the three
triangles APB, APC, and BPC. Show that the sum of the per-
pendiculars equals the altitude of equilateral AABC, a constant
for the triangle.

Draw the radii of the inscribed circle to the points of tangency of
the sides of the triangle. Also join the vertices to the center of the
inscribed circle. Draw a line perpendicular at the incenter, to
one of the lines drawn from the incenter to a vertex. Draw a line
perpendicular to one of the sides at another vertex. Let the two
perpendiculars meet. Extend the side to which the perpendicular
was drawn through the point of intersection with the perpendicular
so that the measure of the new line segment equals the semi-
perimeter of the triangle.

Extend a pair of non-parallel opposite sides to form triangles with
the other two sides. Apply Heron’s Formula to the larger triangle.
Then compare the latter area with the area of the quadrilateral.

.. . C
(a) METHOD 1: Use similar triangles to get —— = - . Also

prove AS = AM. Use Theorem #21-1 to prove rhombus.
METHOD I1: Use similar triangles to show AQ is an angle bisector.
Use #47 to show SQ || AC, also show AM = MQ.

(b) Compare the areas of ABMQ and AAMQ, also of ACSQ
and AASQ.

Draw AE and BF, where E and F are the points of tangency of
the common external tangent with the two circles. Then draw AN
(extended) and BN. Use #47 twice to show that CN and DN
bisect a pair of supplementary adjacent angles.

First find the area of the triangle by Heron’s Formula (Formula
#5¢). Then consider the area of the triangle in terms of the tri-
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angles formed by joining P with the vertices. (Use Formula #5a).
Do this for each of the four cases which must be considered.

METHOD I: In AABC, with angle bisectors AE = BD, draw
/ DBF=~ / AEB, BF ~ BE, FG 1 AC, AH 1L FH, where G
and H lic on AC and BF, respectively. Also draw DF. Use
congruent triangles to prove the base angles equal.

METHOD 11: (indirect) In AABC, with angle bisectors CE = BF,
draw GF || EB externally, and through E draw GE || BF. Then
draw CG. Assume the base angles are not congruent.

METHOD HiI: (indirect) In A 4BC, with angle bisectors BE =~ DC,
draw parallelogram BDCH; then draw EH. Assume the base
angles are not congruent. Use Theorem #42.

METHOD 1v: (indirect) In A 4BC, with angle bisectors BE and DC
of equal measure, draw ZFCD = / ABE where F is on AB.
Then choose a point G so that BG = FC. Draw GH || FC, where
H is on BE. Prove ABGH =~ ACFD and search for a con-
tradiction. Assume mZC > m/ZB.

METHOD I: Draw DH || AB and MN L DH, where H is on the
circle; also draw MH, QH, and EH. Prove AMPD =~ AMQH.

METHOD I1: Through P draw a line parallel to CE, meeting EF,

extended through F, at K, and CD at L. Find the ratio %’Q);—j .
METHOD Ii1: Draw a line through E parallel to AB, meeting the
circle at G. Then draw GP, GM, and GD. Prove APMG ==
AQME.

METHOD 1v: Draw the diameter through M and O. Reflect DF
through this diameter; let D’F’ be the image of DF. Draw CF’,
MF’, and MD’. Also, let P’ be the image of P. Prove that P’
coincides with Q.

METHOD V: (Projective Geometry) Use harmonic pencil and
range concepts.

METHOD 1: Draw DG || AB, where G is on CB. Also draw 4G,
meeting DB at F, and draw FE. Prove that quadrilateral DGEF
is a kite (i.e. GE = FE and DG = DF).

METHOD 1I: Draw BF so that mZ ABF = 20 and F is on AC.
Then draw FE. Prove AFEB equilateral, and AFDE isosceles.
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METHOD 11: Draw DF | AB, where F is on BC. Extend BA
through A4 to G so that AG = AC. Then draw CG. Use similarity
and theorem #47 to prove that DE bisects ZFDB.

METHOD 1v: With B as center and BD as radius, draw a circle
meeting BA, extended, at F and BC at G. Then draw FD and
DG. Prove AFBD equilateral, and A DBG isosceles. Also prove
ADCG = AFDA.

METHOD v: Using C as center, AC and BC as radii, and 4B as a
side, construct an 18-sided regular polygon.

METHOD VI: (Trigonometric Solution I) Use the law of sines in
AAEC and AABD. Then prove AAEC ~ ADEB.

METHOD ViI: (Trigonometric Solution I1) Draw AF || BC. Choose
a point G on AC so that 4G = BE. Extend BG to meet AF at H.
Apply the law of sines to AADB and AABH. Then prove
ABDE =~ NAHG.

6-9 METHOD I: Rotate the given equilateral A ABC in its plane about
point A4 through a counterclockwise angle of 60°. Let P’ be the
image of P. Find the area of quadrilateral APCP’ (when B is to
the left of C), and the area of ABPC.

METHOD H: Rotate each of the three triangles in the given equi-
lateral triangle about a different vertex, so that there is now one
new triangle on each side of the given equilateral triangle, thus
forming a hexagon. Consider the area of the hexagon in parts,
two different ways.

6-10 Rotate ADAP in its plane about point 4 through a counter-
clockwise angle of 90°. Express the area of APP'B (P’ is the
image of P), in two different ways using Formula #5c, and Formula
#5b. Investigate APAP’ and AAPB.

6-11 Prove a pair of overlapping triangles congruent.

Challenge 1 Draw two of the required lines. Draw the third line as
two separate lines drawn from the point of intersection
of the latter two lines, and going in opposite directions.
Prove that these two smaller lines, in essence, combine to
form the required third line.
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Challenge 2 Use similarity to obtain three equal ratios. Each ratio

6-12

6-13

6-14

6-15

7-2

7-4

is to contain one of the line segments proved congruent
in Solution 6-11, while the measure of the other line
segment in each ratio is a side of AKML where K, M,
and L are the circumcenters.

METHOD I: Begin by fixing two angles of the given triangle to yield
the desired equilateral triangle. Then prove a concurrency of the
four lines at the vertex of the third angle of the given triangle.

METHOD II: This method begins like Method I. However, here we
must prove that the lines formed by joining the third vertex of the
given triangle to two of the closer vertices of the equilateral
triangle are trisectors of the third angle (of the original triangle).
In this proof an auxiliary circle is used.

Use similarity to prove that the orthocenter must lie on the line
determined by the centroid and the circumcenter. The necessary
constructions are a median, altitude, and perpendicular bisector
of one side.

Draw the three common chords of pairs of circles. Show that the
three quadrilaterals (in the given triangle) thus formed are each
cyclic. (Note that there are two cases to be considered here.)

Draw the three common chords of pairs of circles. Use Theorems
#30, #35, #36, and #48.

METHOD 1: A line is drawn through A of cyclic quadrilateral
ABCD, to meet CD, extended, at P, so that mZ BAC =
mZ DAP. Prove ABAC ~ ADAP, and AABD ~ NACP.

METHOD 1I: In quadrilateral ABCD, draw A DAP (internally)
similar to ACAB. Prove ABAP ~ ACAD. (The converse may
be proved simultaneously.)

Draw AF and diagonal AC. Use the Pythagorean Theorem; then
apply Ptolemy’s Theorem to quadrilateral AFDC.

Use the Pythagorean Theorem; then apply Ptolemy’s Theorem to
quadrilateral AFBE.

Draw CP. Use the Pythagorean Theorem; then apply Ptolemy’s
Theorem to quadrilateral BPQC.



234 HINTS

7-5

7-6

7-7

7-8

7-9

7-10

7-11

7-12

7-13

7-14

7-15

7-16

8-1

Draw RQ, QP, and RP. Use similarity and Ptolemy’s Theorem.
Prove that 4ABCD is cyclic; then apply Ptolemy’s Theorem.
Apply Ptolemy’s Theorem to quadrilateral 4BPC.

Apply Ptolemy’s Theorem to quadrilateral ABPC.

Apply the result obtained in Problem 7-7 to AABD and AADC.

Apply Ptolemy’s Theorem to quadrilateral ABPC, and quadri-
lateral BPCD. Then apply the result obtained in Problem 7-7 to
ABEC.

Apply the result of Problem 7-8 to equilateral triangles AEC and
BFD.

Consider BD in parts. Verify result with Ptolemy’s Theorem.
Use the result of Problem 7-8.

Choose points P_and Q on the circumcircle of quadrilateral
ABCD (on arc AD) so that PA = DC and QD = AB. Apply
Ptolemy’s Theorem to quadrilaterals ABCP and BCDQ.

On side AB of parallelogram ABCD draw AAP'B = A DPC,
externally. Also use Ptolemy’s Theorem.

METHOD I: Draw the diameter from the vertex of the two given
sides. Join the other extremity of the diameter with the remaining
two vertices of the given triangle. Use Ptolemy’s Theorem.
(Note: There are two cases to be considered.)

METHOD H: Draw radii to the endpoints of the chord measuring
5. Then draw a line from the vertex of the two given sides per-
pendicular to the third side. Use Theorem #55c. Ptolemy’s
Theorem is not used in this method. (Note: There are two
cases to be considered.)

METHOD I: Draw a line through C, parallel to 4B, meeting POR
at D. Prove that ADCR ~ AQBR, and APDC ~ APQA.
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MeTHOD 1i: Draw BM L PR, AN L PR, and CL 1 PR, where
M, N, and L are on PQR. Prove that ABMQ ~ AANQ,
ALCP ~ ANAP, and AMRB ~ ALRC.

METHOD 1: Compare the areas of the various triangles formed,
which share the same altitude. (Note: There are two cases to be
considered.)

METHOD II: Draw a line through A, parallel to BC, meeting CP
at S, and BP at R. Prove that AAMR ~ ACMB, ABNC ~
AANS, ACLP ~ ASAP, and ABLP ~ ARAP. (Note: There
are two cases to be considered.)

METHOD 111: Draw a line through A4 and a line through C parallel
to BP, meeting CP and AP at S and R, respectively. Prove that
ANASN ~ ABPN, and ABPL ~ ACRL; also use Theorem #49.
(Note: There are two cases to be considered.)

METHOD 1Iv: Consider BPM a transversal of AACL and CPN a
transversal of AALB. Then apply Menelaus’ Theorem.

Apply Ceva’s Theorem.

Use similarity, then Ceva’s Theorem.

Use Theorem #47; then use Ceva’s Theorem.
Use Theorem #47; then use Menelaus’ Theorem.
Use Theorem #47; then use Menelaus’ Theorem.

First use Ceva’s Theorem to find BS; then use Menelaus’ Theorem
to find TB.

Use Menelaus’ Theorem; then use Theorem #54.
Use both Ceva’s and Menelaus’ Theorems.

Consider NGP a transversal of AAKC, and GMP a transversal of
AAKB. Then use Menelaus’ Theorem.

Draw AD 1 BC, and PE L BC, where D and E lie on BC. For
both parts (a) and (b), neither Ceva’s Theorem nor Menelaus’
Theorem is used. Set up proportions involving line segments and
areas of triangles.
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8-13

8-14

8-15

8-16

8-17

8-18

8-19

8-20

8-21

8-22
8-23

8-24

8-25

8-26
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Extend FE to meet CB at P. Consider AM as a transversal of
APFC and APEB; then use Menelaus’ Theorem.

Use one of the secondary results established in the solution of
Problem 8-2, Method I. (See III, IV, and V.) Neither Ceva’s
Theorem nor Menelaus’ Theorem is used.

Use Menelaus’ Theorem and similarity.

Use Menelaus’ Theorem, taking KLP and MNP as transversals
of AABC and AADC, respectively where P is the intersection of
AC and LN.

Use Theorems #36, #38, #48, and #53, followed by Menelaus’
Theorem.

Taking RSP and R’S’P’ as transversals of A ABC, use Menelaus’
Theorem. Also use Theorems #52 and #53.

Consider RNH, PLJ, and MQI transversals of AABC; use
Menelaus’ Theorem. Then use Ceva’s Theorem.

Use Ceva’s Theorem and Theorem #54.

Draw lines of centers and radii. Use Theorem #49 and Menelaus’
Theorem.

Use Theorems #48, #46, and Menelaus’ Theorem.
Use Menelaus’ Theorem exclusively.

(a) Use Menelaus’ Theorem and Theorem #34.
(b) Use Menelaus’ Theorem, or use Desargues’ Theorem
(Problem 8-23).

Extend DR and DQ through R and Q to meet a line through C
parallel to 4B, at points G and H, respectively. Use Theorem #48,
Ceva’s Theorem and Theorem #10. Also prove AGCD ==
AHCD.

METHOD I. Use the result of Problem 8-25, Theorem #47, and
Menelaus’ Theorem.
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METHOD 11: Use Desargues’ Theorem (Problem 8-23).
Use Theorem #36a and the trigonometric form of Ceva’s Theorem.
Use Theorems #18, #5, #46, and #47. Then use Menelaus’ Theorem.

Consider transversals BC, AN, and DE of A XYZ. Use Menelaus’
Theorem.

Consider transversals C"’AB’, A’B"C, BA"’C’ of AXYZ. Use
Menelaus’ Theorem.

METHOD I: Prove quadrilaterals cyclic; then show that two angles
are congruent, both sharing as a side the required line.

METHOD II: Prove quadrilaterals cyclic to show that two congruent
angles are vertical angles (one of the lines forming these vertical
angles is the required line).

METHOD I1: Draw a line passing through a vertex of the triangle
and parallel to a segment of the required line. Prove that the
other segment of the required line is also parallel to the new line.
Use Euclid’s parallel postulate to obtain the desired conclusion.

Discover cyclic quadrilaterals to find congruent angles. Use
Theorems #37, #36, and #8.

Prove X, Y, and Z collinear (the Simson Line); then prove
APAB ~ APXZ.

Draw the Simson Lines of AABC and ASCR; then use the
converse of Simson’s Theorem.

Show that M is the point of intg_riection of the diagonals of a
rectangle, hence the midpoint of AP. Then use Theorem #31.

Draw various auxiliary lines, and use Simson’s Theorem.
Use Simson’s Theorem, and others to prove ALPM ~ AKPN.

Use the converse of Simson’s Theorem, after showing that various
Simson Lines coincide and share the same Simson point.
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9-9

9-10

9-11

9-12

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

METHOD 1: Extend an altitude to the circumcircle of the triangle.
Join that point with the Simson point. Use Theorems #36, #8, #14,
#5, #36a, #37, #7, and #18. Also use Simson’s Theorem.

METHOD II: An isosceles (inscribed) trapezoid is drawn using one
of the altitudes as part of one base. Other auxiliary lines are
drawn. Use Theorems #9, #33, #21, #25, and Simson’s Theorem.

Prove that each of the Simson Lines is parallel to a side of an
inscribed angle. Various auxiliary lines are needed.

Use a secondary result obtained in the proof for Problem 9-10,
line (IIT). Then show that the new angle is measured by arcs
independent of point P.

Use the result of Solution 9-10, line (III).

Draw altitude CE; then use the Pythagorean Theorem in various
right triangles.

Apply Stewart’s Theorem.

METHOD I: Use Stewart’s Theorem.

METHOD 11: Use Heron’s Formula (Problem 6-1).

Apply Stewart’s Theorem, using each of the interior lines separate-
ly. Also use the Pythagorean Theorem.

Use a secondary result obtained in the proof of Stewart's Theorem
[See the solution to Problem 10-1, equations (II) and (IV).]

Apply Stewart’s Theorem and Theorem #47.
Use the result obtained from Problem 10-6.

METHOD 1: Use Theorems #47, and #55, and the result obtained
from Problem 10-6.

METHOD 11: Use Theorems #47 and #55.

Use Theorems #47 and #55, and the result obtained from Problem
10-6.
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APPENDIX 1 Selected Definitions, Postulates, and Theorems

If two angles are vertical angles then the two angles are congruent.
Two triangles are congruent if two sides and the included angle
of the first triangle are congruent to the corresponding parts of
the second triangle. (S.A.S.)

Two triangles are congruent if two angles and the included side
of the first triangle are congruent to the corresponding parts of
the second triangle. (A.S.A.)

Two triangles are congruent if the sides of the first triangle are
congruent to the corresponding sides of the second triangle.
(S.8.8)

If a triangle has two congruent sides, then the triangle has two
congruent angles opposite those sides. Also converse.

An equilateral triangle is equiangular. Also converse.

If a pair of corresponding angles formed by a transversal of two
lines are congruent, then the two lines are parallel. Also converse.
If a pair of alternate interior angles formed by a transversal of
two lines are congruent, then the lines are parallel. Also converse.
Two lines are parallel if they are perpendicular to the same line.
If a line is perpendicular to one of two parallel lines, then it is
also perpendicular to the other.

If a pair of consecutive interior angles formed by a transversal of
two lines are supplementary, then the lines are parallel. Also
converse.

The measure of an exterior angle of a triangle equals the sum of
the measures of the two non-adjacent interior angles.

The sum of the measures of the three angles of a triangle is 180,
a constant.

The acute angles of a right triangle are complementary.
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The sum of the measures of the four interior angles of a convex
quadrilateral is 360, a constant.

Two triangles are congruent if two angles and a non-included
side of the first triangle are congruent to the corresponding parts
of the second triangle.

Two right triangles are congruent if the hypotenuse and a leg of
one triangle are congruent to the corresponding parts of the other
triangle.

Any point on the perpendicular bisector of a line segment is
equidistant from the endpoints of the line segment. Two points
equidistant from the endpoints of a line segment, determine the
perpendicular bisector of the line segment.

Any point on the bisector of an angle is equidistant from the
sides of the angle.

Parallel lines are everywhere equidistant.

The opposite sides of a parallelogram are parallel. Also converse.
The opposite sides of a parallelogram are congruent. Also
converse.

The opposite angles of a parallelogram are congruent. Also
converse.

Pairs of consecutive angles of a parallelogram are supplementary.
Also converse.

A diagonal of a parallelogram divides the parallelogram into two
congruent triangles.

The diagonals of a parallelogram bisect each other. Also converse.
A rectangle is a special parallelogram; therefore 21a through 21f
hold true for the rectangle.

A rectangle is a parallelogram with congruent diagonals. Also
converse.

A rectangle is a parallelogram with four congruent angles, right
angles. Also converse.

A rhombus is a special parallelogram; therefore 21a through 21f
hold true for the rhombus.

A rhombus is a parallelogram with perpendicular diagonals.
Also converse.

A rhombus is a quadrilateral with four congruent sides. Also
converse.

The diagonals of a rhombus bisect the angles of the rhombus.

A square has all the properties of both a rectangle and a rhombus;
hence 21a through 21m hold true for a square.

A quadrilateral is a parallelogram if a pair of opposite sides are
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both congruent and parallel.

The base angles of an isosceles trapezoid are congruent. Also
converse.

If a line segment is divided into congruent (or proportional)
segments by three or more parallel lines, then any other trans-
versal will similarly contain congruent (or proportional) seg-
ments determined by these parallel lines.

If a line contains the midpoint of one side of a triangle and is
parallel to a second side of the triangle, then it will bisect the third
side of the triangle.

The line segment whose endpoints are the midpoints of two sides
of a triangle is parallel to the third side of the triangle and has a
measure equal to one-half of the measure of the third side.

The measure of the median on the hypotenuse of a right triangle
is one-half the measure of the hypotenuse.

The median of a trapezoid, the segment joining the midpoints of
the non-parallel sides, is parallel to each of the parallel sides, and
has a measure equal to one-half of the sum of their measures.
The three medians of a triangle meet in a point, the centroid,
which is situated on each median so that the measure of the
segment from the vertex to the centroid is two-thirds the measure
of the median.

A line perpendicular to a chord of a circle and containing the
center of the circle, bisects the chord and its major and minor
arcs.

The perpendicular bisector of a chord of a circle contains the
center of the circle.

If a line is tangent to a circle, it is perpendicular to a radius at the
point of tangency.

A line perpendicular to a radius at a point on the circle is tangent
to the circle at that point.

A line perpendicular to a tangent line at the point of tangency
with a circle, contains the center of the circle.

The radius of a circle is only perpendicular to a tangent line at the
point of tangency.

If a tangent line (or chord) is parallel to a secant (or chord) the arcs
intercepted between these two lines are congruent.

Two tangent segments to a circle from an external point are
congruent.

The measure of a central angle is equal to the measure of its
intercepted arc.
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36

36a

37

38

39

41

42

43

45

47

49

The measure of an inscribed angle equals one-half the measure
of its intercepted arc.

A quadrilateral is cyclic (i.e. may be inscribed in a circle) if one
side subtends congruent angles at the two opposite vertices.

The opposite angles of a cyclic (inscribed) quadrilateral are
supplementary. Also converse.

The measure of an angle whose vertex is on the circle and whose
sides are formed by a chord and a tangent line, is equal to one-
half the measure of the intercepted arc.

The measure of an angle formed by two chords intersecting inside
the circle, is equal to half the sum of the measures of its inter-
cepted arc and of the arc of its vertical angle.

The measure of an angle formed by two secants, or a secant and
a tangent line, or two tangent lines intersecting outside the circle,
equals one-half the difference of the measures of the intercepted
arcs.

The sum of the measures of two sides of a non-degenerate
triangle is greater than the measure of the third side of the
triangle.

If the measures of two sides of a triangle are not equal, then the
measures of the angles opposite these sides are also unequal, the
angle with the greater measure being opposite the side with
the greater measure. Also converse.

The measure of an exterior angle of a triangle is greater than the
measure of either non-adjacent interior angle.

The circumcenter (the center of the circumscribed circle) of a
triangle is determined by the common intersection of the per-
pendicular bisectors of the sides of the triangle.

The incenter (the center of the inscribed circle) of a triangle is
determined by the common intersection of the interior angle
bisectors of the triangle.

If a line is parallel to one side of a triangle it divides the other two
sides of the triangle proportionally. Also converse.

The bisector of an angle of a triangle divides the opposite side
into segments whose measures are proportional to the measures
of the other two sides of the triangle. Also converse.

If two angles of one triangle are congruent to two corresponding
angles of a second triangle, the triangles are similar. (A.A.)

If a line is parallel to one side of a triangle intersecting the other
two sides, it determines (with segments of these two sides) a
triangle similar to the original triangle.
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Two triangles are similar if an angle of one triangle is congruent
to an angle of the other triangle, and if the measures of the sides
that include the angle are proportional.

The measure of the altitude on the hypotenuse of a right triangle
is the mean proportional between the measures of the segments
of the hypotenuse.

The measure of either leg of a right triangle is the mean propor-
tional between the measure of the hypotenuse and the segment,
of the hypotenuse, which shares one endpoint with the leg con-
sidered, and whose other endpoint is the foot of the altitude on the
hypotenuse.

If two chords of a circle intersect, the product of the measures of
the segments of one chord equals the product of the segments of
the other chord.

If a tangent segment and a secant intersect outside the circle, the
measure of the tangent segment is the mean proportional between
the measure of the secant and the measure of its external segment.

If two secants intersect outside the circle, the product of the
measures of one secant and its external segment equals the product
of the measures of the other secant and its external segment.
(The Pythagorean Theorem) In a right triangle the sum of the
squares of the measures of the legs equals the square of the
measure of the hypotenuse. Also converse.

In an isosceles right triangle (45-45-90 triangle), the measure of
the hypotenuse is equal to /2 times the measure of either leg.
In an isosceles right triangle (45-45-90 triangle), the measure of
either leg equals one-half the measure of the hypotenuse times /2.
In a 30-60-90 triangle the measure of the side opposite the 30
angle is one-half the measure of the hypotenuse.

In a 30-60-90 triangle, the measure of the side opposite the 60
angle equals one-half the measure of the hypotenuse times /3.
In a triangle with sides of measures 13, 14, and 15, the altitude to
the side of measure 14 has measure 12.

The median of a triangle divides the triangle into two triangles of
equal area. An extension of this theorem follows. A line segment
joining a vertex of a triangle with a point on the opposite side,
divides the triangle into two triangles, the ratio of whose areas
equals the ratio of the measures of the segments of this “opposite”
side.
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APPENDIX II Selected Formulas

4a

4b

Sa

5b

Sc

5d

Se

5f

6a

The sum of the measures of the interior angles of an n-sided
convex polygon = (n — 2)180.

The sum of the measures of the exterior angles of any convex
polygon is constant, 360.

The area of a rectangle:
K = bh.

The area of a square:
K = s

The area of a square:

_ 1
K—zd.

The area of any triangle:
K= % bh, where b is the base and A is the altitude.

The area of any triangle:
K= %ab sin C.

The area of any triangle:
K = /s(s — a)(s — b)(s — ¢), where s = %(a + b+ o).

The area of a right triangle:
K = 3 Lly, where Is a leg.

The area of an equilateral triangle:

N~
K="1 2/3 , where s is any side.
The area of an equilateral triangle:
N
= ’l% , where A is the altitude.

The area of a parallelogram:
K = bh.
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6b The area of a parallelogram:

10

11

12

13

K = absin C.

The area of a rhombus:
K= %dldr_).

The area of a trapezoid:
1

The area of a regular polygon:

K= %ap, where a is the apothem and p is the perimeter.

The area of a circle:

K=a?="2

2 where d is the diameter.

The area of a sector of a circle:

K = %0 xr?, where n is the measure of the central angle.

The circumference of a circle:
C = 2xr.

The length of an arc of a circle:

245

L= %0 2xr, where n is the measure of the central angle of the arc.



